Planning and Acting. CITS3001 Algorithms, Agents and Artificial Intelligence. 2018, Semester 2

Size: px
Start display at page:

Download "Planning and Acting. CITS3001 Algorithms, Agents and Artificial Intelligence. 2018, Semester 2"

Transcription

1 Planning and Acting CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2018, Semester 2

2 Summary We introduce and motivate planning algorithms based on factored representations We define partial-order planning, and illustrate with examples We describe conditional planning, monitoring, and replanning, and illustrate with examples 1

3 The planning problem So far We have seen two types of problemsolving/searching/ planning mechanisms Searching algorithms such as A* work well for many domains But they need good domain-specific heuristics, which can be hard to identify for complex problems Logical agents are domain-independent But they have tractability issues in large domains What we need is the ability to break up ( factor ) the state and goals of a problem, so that we can address them piece-wise This gives the system much more flexibility in its search 2

4 Planning systems Factored planning systems open up the representations of states, actions, and goals to facilitate Optimal selection and re-ordering of goals Divide-and-conquer by sub-goaling Interleaving of action-sequences 3

5 Planning Systems A state is a conjunction of ground literals e.g. At(Plane1, Sydney) Ù At(Plane2, Melbourne) A goal is a conjunction of literals e.g. At(Plane1, x) Ù At(Plane2, x) An action is defined by A precondition: a conjunction of literals that must be true for the action to be available An open condition is an unfulfilled precondition An effect: a conjunction of literals that is true after the action has been performed Captures everything relevant that has changed e.g. FlyTo(p, x): Precondition: At(p, y) Ù Range(p, r) Ù Distance(x, y) r Effect: At(p, y) Ù At(p, x) 4

6 Partial-order planning In standard search: A node is a concrete world state An operator expands a node to generate its descendant states The search proceeds until a goal state is generated In planning search A node is a partial plan A set of steps, each of which is an action An operator modifies a partial plan by one of Adding a step to fulfil an open condition Asserting an order between two steps Instantiating a bound variable The search proceeds until the plan is complete A plan is complete when no open conditions remain A partial-order planner places an order on steps in its plan only when it is essential to do so AKA a least commitment planner The final result is a directed acyclic graph where Nodes are steps Edges are orderings/dependencies between steps Topological sorting turns this into a linear plan 5

7 Topological sorting A topological sort turns a graph from a partial order into a total order that respects the same dependencies i.e. if X has an arc pointing to Y, X must precede Y in the total order Consider the DAG (copied from l_sorting) The graph has many valid topological sorts, e.g. 7, 5, 3, 11, 8, 2, 9, 10 3, 5, 7, 8, 11, 10, 9, 2 7, 5, 11, 2, 3, 8, 9, 10 3, 7, 8, 5, 11, 10, 9, 2 6

8 Clobbering A precondition for a step is achieved if it is the effect of an earlier step and no intervening step undoes ( clobbers ) it If a step Si achieves a precondition for a step Sj, and a new step Sk clobbers that precondition, Sk must either be Demoted, so that Sk happens before Si Promoted, so that Sk happens after Sj, or If neither of these is possible, then the partial plan cannot be completed and backtracking is required Basically lose Sk and try something else 7

9 An example: Blocks World The initial state: On(C,A) Ù On(A, Table) Ù Clear(B) Ù On(B, Table) Ù Clear(C) The goal state: On(A,B) Ù On(B,C) Action PutOn(x, y): Precondition: Clear(x) Ù On(x, z) Ù Clear(y) Effect: On(x, z) Ù Clear(y) Ù On(x, y) Ù Clear(z) Action PutOnTable(x): Precondition: On(x, z) Ù Clear(x) Effect: On(x, z) Ù On(x, Table) Ù Clear(z) This problem illustrates the Sussman Anomaly It cannot be solved by addressing one goal first, then the other The actions addressing the two goals have to be interleaved 8

10 Example 1 9

11 Example 2 10

12 Example 3 11

13 Real world considerations Agents have to deal with uncertainty Information might be incomplete The agent may not know whether preconditions hold or not Actions may not have the expected outcome Information might be incorrect The current state might be incorrect Actions outcomes might be missing or incorrect These are instances of the qualification problem In a real environment, it is generally impossible to list all preconditions and possible outcomes of any action no plan survives contact with the enemy [Helmuth von Moltke the Elder, 1871] These issues are particularly acute in environments where multiple agents are operating Either cooperatively or competitively 12

14 Two approaches Conditional planning: Anticipate problems and build contingencies into the plan Add observation actions to check preconditions and effects, and create a sub-plan for each possibility But this is expensive because it plans for many unlikely cases Monitoring and replanning: Assume normal, successful execution Continually check the progress of the plan Replan when necessary In general, a combination of the two is a common choice In particular, some monitoring is unavoidable Very difficult to anticipate everything! 13

15 Conditional planning [, if p [true plan] [false plan], ] Check p against the current database, and proceed accordingly If an open condition can be established by an observation action: Add the action to the plan Complete the plan for each possible outcome Insert a conditional step with these sub-plans 14

16 Example 1 15

17 Example 2 16

18 Example 3 17

19 Monitoring Check the progress of the plan during execution i.e. check the state of the world Comes in three flavours Action monitoring The agent checks whether the preconditions of the next action are met Plan monitoring The agent checks whether the preconditions of the remaining plan are met Goal monitoring The agent checks whether changing its goals is appropriate In all cases, failure requires replanning 18

20 Replanning Replanning comes in two flavours Simplest is to replan from scratch Based on the (actual) current state of the world More efficient, but often harder, is to replan to restore the expected state so that the rest of the plan can continue Note that in the extreme in 11.9, P = E = G Then the process defaults to replanning from scratch 19

21 Situated planning The most general (online) approach is sometimes called situated planning The agent interleaves planning and execution It views itself always as part of the way through a plan Activities include Execute a plan step Monitor the state of the world Fix deficiencies in the plan Select an action to resolve open conditions Reorder actions to resolve clobbering Refine the plan in light of new information An example: e.g. execution errors e.g. actions by other agents Transform (a) to (d) 20

22 Example 1 21

23 an unexpected event... 22

24 Execute step (unsuccessful) 23

25 Try again Planning for real world applications requires a mixture of all the techniques we have discussed: tree search, game playing, learning, and logic. It is a challenging field but has great potential. Good luck in your exams. 24

Artificial Intelligence. Planning

Artificial Intelligence. Planning Artificial Intelligence Planning Planning Planning agent Similar to previous problem solving agents Constructs plans that achieve its goals, then executes them Differs in way it represents and searches

More information

1 What is Planning? automatic programming. cis716-spring2004-parsons-lect17 2

1 What is Planning? automatic programming. cis716-spring2004-parsons-lect17 2 PLANNING 1 What is Planning? Key problem facing agent is deciding what to do. We want agents to be taskable: give them goals to achieve, have them decide for themselves how to achieve them. Basic idea

More information

Planning. Philipp Koehn. 30 March 2017

Planning. Philipp Koehn. 30 March 2017 Planning Philipp Koehn 30 March 2017 Outline 1 Search vs. planning STRIPS operators Partial-order planning The real world Conditional planning Monitoring and replanning 2 search vs. planning Search vs.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lecturer 7 - Planning Lecturer: Truong Tuan Anh HCMUT - CSE 1 Outline Planning problem State-space search Partial-order planning Planning graphs Planning with propositional logic

More information

Commitment Least you haven't decided where to go shopping. Or...suppose You can get milk at the convenience store, at the dairy, or at the supermarket

Commitment Least you haven't decided where to go shopping. Or...suppose You can get milk at the convenience store, at the dairy, or at the supermarket Planning as Search-based Problem Solving? Imagine a supermarket shopping scenario using search-based problem solving: Goal: buy milk and bananas Operator: buy Heuristic function: does = milk

More information

A deterministic action is a partial function from states to states. It is partial because not every action can be carried out in every state

A deterministic action is a partial function from states to states. It is partial because not every action can be carried out in every state CmSc310 Artificial Intelligence Classical Planning 1. Introduction Planning is about how an agent achieves its goals. To achieve anything but the simplest goals, an agent must reason about its future.

More information

KI-Programmierung. Planning

KI-Programmierung. Planning KI-Programmierung Planning Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2007/2008 B. Beckert: KI-Programmierung p.1 Outline Search vs. planning STRIPS operators Partial-order planning The real

More information

Primitive goal based ideas

Primitive goal based ideas Primitive goal based ideas Once you have the gold, your goal is to get back home s Holding( Gold, s) GoalLocation([1,1], s) How to work out actions to achieve the goal? Inference: Lots more axioms. Explodes.

More information

Planning Algorithms Properties Soundness

Planning Algorithms Properties Soundness Chapter MK:VI III. Planning Agent Systems Deductive Reasoning Agents Planning Language Planning Algorithms State-Space Planning Plan-Space Planning HTN Planning Complexity of Planning Problems Extensions

More information

CPS 270: Artificial Intelligence Planning

CPS 270: Artificial Intelligence   Planning CPS 270: Artificial Intelligence http://www.cs.duke.edu/courses/fall08/cps270/ Planning Instructor: Vincent Conitzer Planning We studied how to take actions in the world (search) We studied how to represent

More information

Planning II. Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007

Planning II. Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007 Planning II Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007 Administration Your second to last Programming Assignment is up - start NOW, you don t have a lot of time The PRIZE:

More information

Where are we? Informatics 2D Reasoning and Agents Semester 2, Planning with state-space search. Planning with state-space search

Where are we? Informatics 2D Reasoning and Agents Semester 2, Planning with state-space search. Planning with state-space search Informatics 2D Reasoning and Agents Semester 2, 2018 2019 Alex Lascarides alex@inf.ed.ac.uk Where are we? Last time... we defined the planning problem discussed problem with using search and logic in planning

More information

Artificial Intelligence Planning

Artificial Intelligence Planning Artificial Intelligence Planning Instructor: Vincent Conitzer Planning We studied how to take actions in the world (search) We studied how to represent objects, relations, etc. (logic) Now we will combine

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 4: Reasoning, change and planning Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes

More information

Classical Planning. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Classical Planning. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Classical Planning CS 486/686: Introduction to Artificial Intelligence Winter 2016 1 Classical Planning A plan is a collection of actions for performing some task (reaching some goal) If we have a robot

More information

Planning (What to do next?) (What to do next?)

Planning (What to do next?) (What to do next?) Planning (What to do next?) (What to do next?) (What to do next?) (What to do next?) (What to do next?) (What to do next?) CSC3203 - AI in Games 2 Level 12: Planning YOUR MISSION learn about how to create

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014 Set 9: Planning Classical Planning Systems ICS 271 Fall 2014 Planning environments Classical Planning: Outline: Planning Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning

More information

Planning (Chapter 10)

Planning (Chapter 10) Planning (Chapter 10) http://en.wikipedia.org/wiki/rube_goldberg_machine Planning Example problem: I m at home and I need milk, bananas, and a drill. What do I do? How is planning different from regular

More information

3. Knowledge Representation, Reasoning, and Planning

3. Knowledge Representation, Reasoning, and Planning 3. Knowledge Representation, Reasoning, and Planning 3.1 Common Sense Knowledge 3.2 Knowledge Representation Networks 3.3 Reasoning Propositional Logic Predicate Logic: PROLOG 3.4 Planning Planning vs.

More information

CS 621 Artificial Intelligence. Lecture 31-25/10/05. Prof. Pushpak Bhattacharyya. Planning

CS 621 Artificial Intelligence. Lecture 31-25/10/05. Prof. Pushpak Bhattacharyya. Planning CS 621 Artificial Intelligence Lecture 31-25/10/05 Prof. Pushpak Bhattacharyya Planning 1 Planning Definition : Planning is arranging a sequence of actions to achieve a goal. Uses core areas of AI like

More information

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent)

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Planning CPS 570 Ron Parr Some Actual Planning Applications Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Particularly important for space operations due to latency Also used

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013 Set 9: Planning Classical Planning Systems ICS 271 Fall 2013 Outline: Planning Classical Planning: Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning graphs Readings:

More information

3. Knowledge Representation, Reasoning, and Planning

3. Knowledge Representation, Reasoning, and Planning 3. Knowledge Representation, Reasoning, and Planning 3.1 Common Sense Knowledge 3.2 Knowledge Representation Networks 3.3 Reasoning Propositional Logic Predicate Logic: PROLOG 3.4 Planning Introduction

More information

CS 2750 Foundations of AI Lecture 17. Planning. Planning

CS 2750 Foundations of AI Lecture 17. Planning. Planning S 2750 Foundations of I Lecture 17 Planning Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Planning Planning problem: find a sequence of actions that achieves some goal an instance of a search

More information

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14.

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14. Intelligent Agents State-Space Planning Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 14. April 2016 U. Schmid (CogSys) Intelligent Agents last change: 14. April

More information

Artificial Intelligence 2004 Planning: Situation Calculus

Artificial Intelligence 2004 Planning: Situation Calculus 74.419 Artificial Intelligence 2004 Planning: Situation Calculus Review STRIPS POP Hierarchical Planning Situation Calculus (John McCarthy) situations actions axioms Review Planning 1 STRIPS (Nils J. Nilsson)

More information

Planning: STRIPS and POP planners

Planning: STRIPS and POP planners S 57 Introduction to I Lecture 8 Planning: STRIPS and POP planners Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Representation of actions, situations, events Propositional and first order logic

More information

EMPLOYING DOMAIN KNOWLEDGE TO IMPROVE AI PLANNING EFFICIENCY *

EMPLOYING DOMAIN KNOWLEDGE TO IMPROVE AI PLANNING EFFICIENCY * Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 29, No. B1 Printed in The Islamic Republic of Iran, 2005 Shiraz University EMPLOYING DOMAIN KNOWLEDGE TO IMPROVE AI PLANNING EFFICIENCY

More information

cis32-ai lecture # 21 mon-24-apr-2006

cis32-ai lecture # 21 mon-24-apr-2006 cis32-ai lecture # 21 mon-24-apr-2006 today s topics: logic-based agents (see notes from last time) planning cis32-spring2006-sklar-lec21 1 What is Planning? Key problem facing agent is deciding what to

More information

STRIPS HW 1: Blocks World

STRIPS HW 1: Blocks World STRIPS HW 1: Blocks World Operator Precondition Delete List Add List Stack(x, y) CLEAR(y) CLEAR(y) HOLDING(x) HOLDING(x) ON(x, y) Unstack(x, y) ON(x, y) ON(x, y) HOLDING(x) CLEAR(x) CLEAR(y) PickUp(x)

More information

CS 1571 Introduction to AI Lecture 17. Planning. CS 1571 Intro to AI. Planning

CS 1571 Introduction to AI Lecture 17. Planning. CS 1571 Intro to AI. Planning S 1571 Introduction to I Lecture 17 Planning Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square S 1571 Intro to I Planning Planning problem: find a sequence of actions that achieves some goal an instance

More information

Lecture 10: Planning and Acting in the Real World

Lecture 10: Planning and Acting in the Real World Lecture 10: Planning and Acting in the Real World CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA Apr 11, 2018 Amarda Shehu (580) 1 1 Outline

More information

Planning. Chapter 11. Chapter Outline. Search vs. planning STRIPS operators Partial-order planning. Chapter 11 2

Planning. Chapter 11. Chapter Outline. Search vs. planning STRIPS operators Partial-order planning. Chapter 11 2 Planning hapter 11 hapter 11 1 Outline Search vs. planning STRIPS operators Partial-order planning hapter 11 2 Search vs. planning onsider the task get milk, bananas, and a cordless drill Standard search

More information

Planning. Some material taken from D. Lin, J-C Latombe

Planning. Some material taken from D. Lin, J-C Latombe RN, Chapter 11 Planning Some material taken from D. Lin, J-C Latombe 1 Logical Agents Reasoning [Ch 6] Propositional Logic [Ch 7] Predicate Calculus Representation [Ch 8] Inference [Ch 9] Implemented Systems

More information

Creating Admissible Heuristic Functions: The General Relaxation Principle and Delete Relaxation

Creating Admissible Heuristic Functions: The General Relaxation Principle and Delete Relaxation Creating Admissible Heuristic Functions: The General Relaxation Principle and Delete Relaxation Relaxed Planning Problems 74 A classical planning problem P has a set of solutions Solutions(P) = { π : π

More information

Planning. Chapter 11. Chapter 11 1

Planning. Chapter 11. Chapter 11 1 Planning hapter 11 hapter 11 1 Outline Search vs. planning STRIPS operators Partial-order planning hapter 11 2 Search vs. planning onsider the task get milk, bananas, and a cordless drill Standard search

More information

Intelligent Systems. Planning. Copyright 2010 Dieter Fensel and Ioan Toma

Intelligent Systems. Planning. Copyright 2010 Dieter Fensel and Ioan Toma Intelligent Systems Planning Copyright 2010 Dieter Fensel and Ioan Toma 1 Where are we? # Title 1 Introduction 2 Propositional Logic 3 Predicate Logic 4 Reasoning 5 Search Methods 6 CommonKADS 7 Problem-Solving

More information

Planning in a Single Agent

Planning in a Single Agent What is Planning Planning in a Single gent Sattiraju Prabhakar Sources: Multi-agent Systems Michael Wooldridge I a modern approach, 2 nd Edition Stuart Russell and Peter Norvig Generate sequences of actions

More information

Planning. Planning. What is Planning. Why not standard search?

Planning. Planning. What is Planning. Why not standard search? Based on slides prepared by Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Modifications by Jacek.Malec@cs.lth.se Original slides can be found at http://aima.cs.berkeley.edu

More information

Automated Planning. Plan-Space Planning / Partial Order Causal Link Planning

Automated Planning. Plan-Space Planning / Partial Order Causal Link Planning Automated Planning Plan-Space Planning / Partial Order Causal Link Planning Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University Partly adapted

More information

Plan Generation Classical Planning

Plan Generation Classical Planning Plan Generation Classical Planning Manuela Veloso Carnegie Mellon University School of Computer Science 15-887 Planning, Execution, and Learning Fall 2016 Outline What is a State and Goal What is an Action

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning Partially ordered plans Representation

cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning Partially ordered plans Representation cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning today s topics: partial-order planning decision-theoretic planning The answer to the problem we ended the last lecture with is to use partial

More information

Failure Driven Dynamic Search Control for Partial Order Planners: An Explanation based approach

Failure Driven Dynamic Search Control for Partial Order Planners: An Explanation based approach Failure Driven Dynamic Search Control for Partial Order Planners: An Explanation based approach Subbarao Kambhampati 1 and Suresh Katukam and Yong Qu Department of Computer Science and Engineering, Arizona

More information

Planning. Introduction

Planning. Introduction Planning Introduction Planning vs. Problem-Solving Representation in Planning Systems Situation Calculus The Frame Problem STRIPS representation language Blocks World Planning with State-Space Search Progression

More information

Planning. Introduction

Planning. Introduction Introduction vs. Problem-Solving Representation in Systems Situation Calculus The Frame Problem STRIPS representation language Blocks World with State-Space Search Progression Algorithms Regression Algorithms

More information

Introduction to Planning COURSE: CS40002

Introduction to Planning COURSE: CS40002 1 Introduction to Planning COURSE: CS40002 Pallab Dasgupta Professor, Dept. of Computer Sc & Engg 2 Outline Planning versus Search Representation of planning problems Situation calculus STRIPS ADL Planning

More information

Artificial Intelligence 2005/06

Artificial Intelligence 2005/06 Planning: STRIPS 74.419 rtificial Intelligence 2005/06 Planning: STRIPS STRIPS (Nils J. Nilsson) actions are specified by preconditions and effects stated as restricted FOPL formulae planning is search

More information

Section 9: Planning CPSC Artificial Intelligence Michael M. Richter

Section 9: Planning CPSC Artificial Intelligence Michael M. Richter Section 9: Planning Actions (1) An action changes a situation and their description has to describe this change. A situation description (or a state) sit is a set of ground atomic formulas (sometimes literals

More information

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 2, 2016

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 2, 2016 CITS3001 Algorithms, Agents and Artificial Intelligence Semester 2, 2016 Tim French School of Computer Science & Software Eng. The University of Western Australia 2. Review of algorithmic concepts CLRS,

More information

Components of a Planning System

Components of a Planning System Planning Components of a Planning System In any general problem solving systems, elementary techniques to perform following functions are required Choose the best rule (based on heuristics) to be applied

More information

INF Kunstig intelligens. Agents That Plan. Roar Fjellheim. INF5390-AI-06 Agents That Plan 1

INF Kunstig intelligens. Agents That Plan. Roar Fjellheim. INF5390-AI-06 Agents That Plan 1 INF5390 - Kunstig intelligens Agents That Plan Roar Fjellheim INF5390-AI-06 Agents That Plan 1 Outline Planning agents Plan representation State-space search Planning graphs GRAPHPLAN algorithm Partial-order

More information

BASIC PLAN-GENERATING SYSTEMS

BASIC PLAN-GENERATING SYSTEMS CHAPTER 7 BASIC PLAN-GENERATING SYSTEMS In chapters 5 and 6 we saw that a wide class of deduction tasks could be solved by commutative production systems. For many other problems of interest in AI, however,

More information

INTERNATIONAL EDITION. Problem Solving with C++ Data Abstraction & SIXTH EDITION. Walls and Mirrors. Frank M. Carrano Timothy Henry

INTERNATIONAL EDITION. Problem Solving with C++ Data Abstraction & SIXTH EDITION. Walls and Mirrors. Frank M. Carrano Timothy Henry INTERNATIONAL EDITION Data Abstraction & Problem Solving with C++ Walls and Mirrors SIXTH EDITION Frank M. Carrano Timothy Henry Operator Meaning Associativity Usage * multiply left expr * expr / divide

More information

Structure and Complexity in Planning with Unary Operators

Structure and Complexity in Planning with Unary Operators Structure and Complexity in Planning with Unary Operators Carmel Domshlak and Ronen I Brafman ½ Abstract In this paper we study the complexity of STRIPS planning when operators have a single effect In

More information

Planning. Introduction to Planning. Failing to plan is planning to fail! Major Agent Types Agents with Goals. From Problem Solving to Planning

Planning. Introduction to Planning. Failing to plan is planning to fail! Major Agent Types Agents with Goals. From Problem Solving to Planning Introduction to Planning Planning Failing to plan is planning to fail! Plan: a sequence of steps to achieve a goal. Problem solving agent knows: actions, states, goals and plans. Planning is a special

More information

Unifying Classical Planning Approaches

Unifying Classical Planning Approaches Unifying Classical Planning Approaches Subbarao Kambhampati & Biplav Srivastava Department of Computer Science and Engineering Arizona State University, Tempe AZ 85287-5406 email: frao,biplavg@asu.edu

More information

Informed Search Algorithms

Informed Search Algorithms Informed Search Algorithms CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2 Introduction

More information

Automatic Undo for Cloud Management via AI Planning

Automatic Undo for Cloud Management via AI Planning Automatic Undo for Cloud Management via AI Planning Ingo Weber, Hiroshi Wada, Alan Fekete, Anna Liu and Len Bass Based on presentation at USENIX HotDep 12 NICTA in Brief Australia s National Centre of

More information

CPS352 Lecture - The Transaction Concept

CPS352 Lecture - The Transaction Concept Objectives: CPS352 Lecture - The Transaction Concept Last Revised March 3, 2017 1. To introduce the notion of a transaction and the ACID properties of a transaction 2. To introduce the notion of the state

More information

CS352 Lecture - The Transaction Concept

CS352 Lecture - The Transaction Concept CS352 Lecture - The Transaction Concept Last Revised 11/7/06 Objectives: 1. To introduce the notion of a transaction and the ACID properties of a transaction 2. To introduce the notion of the state of

More information

Planning. Artificial Intelligence 1: Planning. What is Planning. General language features. Planning language. Difficulty of real world problems

Planning. Artificial Intelligence 1: Planning. What is Planning. General language features. Planning language. Difficulty of real world problems Planning Artificial Intelligence 1: Planning Lecturer: Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie The Planning problem Planning with State-space search Partial-order planning

More information

GPS: The general problem solver. developed in 1957 by Alan Newel and Herbert Simon. (H. Simon, 1957)

GPS: The general problem solver. developed in 1957 by Alan Newel and Herbert Simon. (H. Simon, 1957) GPS: The general problem solver developed in 1957 by Alan Newel and Herbert Simon (H. Simon, 1957) GPS: The general problem solver developed in 1957 by Alan Newel and Herbert Simon - Was the first program

More information

Planning. Outside Materials (see Materials page)

Planning. Outside Materials (see Materials page) Planning Outside Materials (see Materials page) What is Planning? Given: A way to describe the world An ini

More information

Artificial Intelligence 1: planning

Artificial Intelligence 1: planning Artificial Intelligence 1: planning Lecturer: Tom Lenaerts Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA) Université Libre de Bruxelles Planning The

More information

Chapter 15: Transactions

Chapter 15: Transactions Chapter 15: Transactions! Transaction Concept! Transaction State! Implementation of Atomicity and Durability! Concurrent Executions! Serializability! Recoverability! Implementation of Isolation! Transaction

More information

COMBINING TASK AND MOTION PLANNING FOR COMPLEX MANIPULATION

COMBINING TASK AND MOTION PLANNING FOR COMPLEX MANIPULATION COMBINING TASK AND MOTION PLANNING FOR COMPLEX MANIPULATION 16-662: ROBOT AUTONOMY PROJECT Team: Gauri Gandhi Keerthana Manivannan Lekha Mohan Rohit Dashrathi Richa Varma ABSTRACT Robots performing household

More information

A Unified Framework for Explanation-Based Generalization of Partially Ordered and Partially Instantiated Plans

A Unified Framework for Explanation-Based Generalization of Partially Ordered and Partially Instantiated Plans A Unified Framework for Explanation-Based Generalization of Partially Ordered and Partially Instantiated Plans Subbarao Kambhampati y Department of Computer Science and Engineering Arizona State University

More information

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer Module 2: Divide and Conquer Divide and Conquer Control Abstraction for Divide &Conquer 1 Recurrence equation for Divide and Conquer: If the size of problem p is n and the sizes of the k sub problems are

More information

Planning. Why not standard search? What is Planning. Planning language. Planning 1. Difficulty of real world problems

Planning. Why not standard search? What is Planning. Planning language. Planning 1. Difficulty of real world problems Planning Based on slides prepared by Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Modifications by Jacek.Malec@cs.lth.se Original slides can be found at http://aima.cs.berkeley.edu

More information

ATOMIC COMMITMENT Or: How to Implement Distributed Transactions in Sharded Databases

ATOMIC COMMITMENT Or: How to Implement Distributed Transactions in Sharded Databases ATOMIC COMMITMENT Or: How to Implement Distributed Transactions in Sharded Databases We talked about transactions and how to implement them in a single-node database. We ll now start looking into how to

More information

LECTURE 3: SOFTWARE DESIGN. Software Engineering Mike Wooldridge

LECTURE 3: SOFTWARE DESIGN. Software Engineering Mike Wooldridge LECTURE 3: SOFTWARE DESIGN Mike Wooldridge 1 Design Computer systems are not monolithic: they are usually composed of multiple, interacting modules. Modularity has long been seen as a key to cheap, high

More information

BİL 354 Veritabanı Sistemleri. Transaction (Hareket)

BİL 354 Veritabanı Sistemleri. Transaction (Hareket) BİL 354 Veritabanı Sistemleri Transaction (Hareket) Example BUSEY SAVINGS Winslett $1000 Transfer $500 BUSEY CHECKING Winslett $0 A single operation from the customer point of view It comprises several

More information

Introduction Conflict Serializability. Testing for Serializability Applications Scope of Research

Introduction Conflict Serializability. Testing for Serializability Applications Scope of Research Lecture- 22 Serializability Contents Introduction Conflict Serializability View Serializability Testing for Serializability Applications Scope of Research Introduction Basic Assumption Each transaction

More information

Incremental development A.Y. 2018/2019

Incremental development A.Y. 2018/2019 Incremental development A.Y. 2018/2019 Incremental development Interleaves the activities of specification, development, and validation. The system is developed as a series of versions (increments), with

More information

Introduction to Software Testing Chapter 4 Input Space Partition Testing

Introduction to Software Testing Chapter 4 Input Space Partition Testing Introduction to Software Testing Chapter 4 Input Space Partition Testing Paul Ammann & Jeff Offutt http://www.cs.gmu.edu/~offutt/ softwaretest/ Ch. 4 : Input Space Coverage Four Structures for Modeling

More information

What is On / Off Policy?

What is On / Off Policy? What is On / Off Policy? Q learns how to perform optimally even when we are following a non-optimal policy In greedy, leaves no trace in Q SARSA is on-policy Learns the best policy given our systematic

More information

1: planning. Lecturer: Tom Lenaerts

1: planning. Lecturer: Tom Lenaerts Artificial Intelligence 1: planning Lecturer: Tom Lenaerts Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA) Université Libre de Bruxelles Planning The

More information

Planning. Outline. Planning. Planning

Planning. Outline. Planning. Planning Planning Outline Jacky Baltes University of Manitoba jacky@cs.umanitoba.ca http://www4.cs.umanitoba.ca/~jacky/teaching/co urses/comp_4190-artificial-intelligence Reasoning about actions STRIPS representation

More information

COMP390 (Design &) Implementation

COMP390 (Design &) Implementation COMP390 (Design &) Implementation Phil (& Dave s) rough guide Consisting of some ideas to assist the development of large and small projects in Computer Science (and a chance for me to try out some features

More information

Control Strategies in Planning*

Control Strategies in Planning* From: AAAI Technical Report SS-95-07. Compilation copyright 1995, AAAI (www.aaai.org). All rights reserved. Control Strategies in Planning* Fahiem Bacchus Dept. Of Computer Science University Of Waterloo

More information

CS311 Lecture: Pipelining, Superscalar, and VLIW Architectures revised 10/18/07

CS311 Lecture: Pipelining, Superscalar, and VLIW Architectures revised 10/18/07 CS311 Lecture: Pipelining, Superscalar, and VLIW Architectures revised 10/18/07 Objectives ---------- 1. To introduce the basic concept of CPU speedup 2. To explain how data and branch hazards arise as

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, Course on Artificial Intelligence, winter term 2012/2013 0/35 Artificial Intelligence Artificial Intelligence 3. Constraint Satisfaction Problems Lars Schmidt-Thieme Information Systems and Machine Learning

More information

Transformational Analogy: A General Framework, Semantics and Complexity

Transformational Analogy: A General Framework, Semantics and Complexity Transformational Analogy: A General Framework, Semantics and Complexity By Sarat Chandra Vithal Kuchibatla Venkata A Thesis Presented to the Graduate and Research Committee of Lehigh University in Candidacy

More information

ITERATIVE REPAIR PLANNING FOR SPACECRAFT OPERATIONS USING THE ASPEN SYSTEM

ITERATIVE REPAIR PLANNING FOR SPACECRAFT OPERATIONS USING THE ASPEN SYSTEM ITERATIVE REPAIR PLANNING FOR SPACECRAFT OPERATIONS USING THE ASPEN SYSTEM Gregg Rabideau, Russell Knight, Steve Chien, Alex Fukunaga, Anita Govindjee Jet Propulsion Laboratory, California Institute of

More information

(defvar *state* nil "The current state: a list of conditions.")

(defvar *state* nil The current state: a list of conditions.) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; GPS engine for blocks world ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defvar *dbg-ids* nil "Identifiers used by dbg") (defvar *state* nil "The current state: a list of conditions.")

More information

Chapter 13: Transactions

Chapter 13: Transactions Chapter 13: Transactions Transaction Concept Transaction State Implementation of Atomicity and Durability Concurrent Executions Serializability Recoverability Implementation of Isolation Transaction Definition

More information

CITS5501 Software Testing and Quality Assurance Formal methods

CITS5501 Software Testing and Quality Assurance Formal methods CITS5501 Software Testing and Quality Assurance Formal methods Unit coordinator: Arran Stewart May 1, 2018 1 / 49 Sources Pressman, R., Software Engineering: A Practitioner s Approach, McGraw-Hill, 2005

More information

Transactions. Prepared By: Neeraj Mangla

Transactions. Prepared By: Neeraj Mangla Transactions Prepared By: Neeraj Mangla Chapter 15: Transactions Transaction Concept Transaction State Concurrent Executions Serializability Recoverability Implementation of Isolation Transaction Definition

More information

Extending PDDL for Hierarchical Planning and Topological Abstraction

Extending PDDL for Hierarchical Planning and Topological Abstraction Extending PDDL for Hierarchical Planning and Topological Abstraction Adi Botea and Martin Müller and Jonathan Schaeffer Department of Computing Science, University of Alberta Edmonton, Alberta, Canada

More information

T ransaction Management 4/23/2018 1

T ransaction Management 4/23/2018 1 T ransaction Management 4/23/2018 1 Air-line Reservation 10 available seats vs 15 travel agents. How do you design a robust and fair reservation system? Do not enough resources Fair policy to every body

More information

Sterling Federal Systems and Dept. of Computer Science

Sterling Federal Systems and Dept. of Computer Science Subbarao Karnbhampati* Center for Design Research Sterling Federal Systems and Dept. of Computer Science AI Research Branch Stanford University NASA AMES Research Center Bldg 530, Duena Street, Stanford

More information

Lecture 10. Finding strongly connected components

Lecture 10. Finding strongly connected components Lecture 10 Finding strongly connected components Announcements HW4 due Friday Nothing assigned Friday because MIDTERM in class, Monday 10/30. Please show up. During class, 1:30-2:50 If your last name is

More information

Search vs. planning. Planning. Search vs. planning contd. Outline

Search vs. planning. Planning. Search vs. planning contd. Outline Search vs. planning Planning onsider the task get milk, bananas, and a cordless drill Standard search algorithms seem to fail miserably: Go To Pet Store Talk to Parrot uy a Dog Go To School Go To lass

More information

CPS122 Lecture: Detailed Design and Implementation

CPS122 Lecture: Detailed Design and Implementation CPS122 Lecture: Detailed Design and Implementation Objectives: Last revised March 3, 2017 1. To introduce the use of a complete UML class box to document the name, attributes, and methods of a class 2.

More information

Planning, Execution & Learning 1. Heuristic Search Planning

Planning, Execution & Learning 1. Heuristic Search Planning Planning, Execution & Learning 1. Heuristic Search Planning Reid Simmons Planning, Execution & Learning: Heuristic 1 Simmons, Veloso : Fall 2001 Basic Idea Heuristic Search Planning Automatically Analyze

More information

ICS 606. Intelligent Autonomous Agents 1

ICS 606. Intelligent Autonomous Agents 1 Intelligent utonomous gents ICS 606 / EE 606 Fall 2011 Nancy E. Reed nreed@hawaii.edu Lecture #4 Practical Reasoning gents Intentions Planning Means-ends reasoning The blocks world References Wooldridge

More information

Lecture 21. Lecture 21: Concurrency & Locking

Lecture 21. Lecture 21: Concurrency & Locking Lecture 21 Lecture 21: Concurrency & Locking Lecture 21 Today s Lecture 1. Concurrency, scheduling & anomalies 2. Locking: 2PL, conflict serializability, deadlock detection 2 Lecture 21 > Section 1 1.

More information

A proof-producing CSP solver: A proof supplement

A proof-producing CSP solver: A proof supplement A proof-producing CSP solver: A proof supplement Report IE/IS-2010-02 Michael Veksler Ofer Strichman mveksler@tx.technion.ac.il ofers@ie.technion.ac.il Technion Institute of Technology April 12, 2010 Abstract

More information

CS322: Database Systems Transactions

CS322: Database Systems Transactions CS322: Database Systems Transactions Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Outline Transaction Concept Transaction State Concurrent Executions Serializability

More information