Quis Custodiet Ipsos Custodes The Java memory model

Size: px
Start display at page:

Download "Quis Custodiet Ipsos Custodes The Java memory model"

Transcription

1 Quis Custodiet Ipsos Custodes The Java memory model Andreas Lochbihler funded by DFG Ni491/11, Sn11/10 PROGRAMMING PARADIGMS GROUP = Isabelle λ β HOL α 1 KIT 9University Oct 2012 of the Andreas State of Lochbihler: Baden-Wuerttemberg Quis Custodiet andipsos Custodes? PROGRAMMING PARADIGMS GROUP National Research Center of the Helmholtz Association

2 Quis custodiet ipsos custodes? Joana IFC leak Joana: information flow control for Java 2 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

3 Quis custodiet ipsos custodes? Joana IFC leak Joana: information flow control for Java non-interference program slicing control flow graph formal semantics for Java Quis custodiet: verify IFC algorithm λ = Isabelle β HOL α 2 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

4 Quis custodiet ipsos custodes? Joana IFC leak Joana: information flow control for Java non-interference program slicing control flow graph formal semantics for Java Quis custodiet: verify IFC algorithm λ = Isabelle β HOL α How can we include Java concurrency? 2 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

5 The Java memory model (JMM): beyond interleaving semantics initially: x = y = 0; 3 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

6 The Java memory model (JMM): beyond interleaving semantics interleaving semantics initially: x = y = 0; i == 0 i == 1 j == 0 j == Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

7 The Java memory model (JMM): beyond interleaving semantics interleaving semantics initially: x = y = 0; i == 0 i == 1 j == 0 j == Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

8 The Java memory model (JMM): beyond interleaving semantics interleaving semantics initially: x = y = 0; i == 0 i == 1 j == 0 j == Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

9 The Java memory model (JMM): beyond interleaving semantics interleaving semantics initially: x = y = 0; i == 0 i == 1 j == 0 j == Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

10 The Java memory model (JMM): beyond interleaving semantics interleaving semantics initially: x = y = 0; i == 0 i == 1 j == 0 j == 2 X 3 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

11 The Java memory model (JMM): beyond interleaving semantics interleaving semantics initially: x = y = 0; i == 0 i == 1 j == 0 j == 2 X compiler and hardware reorder statements i == 0 i == 1 j == 0 j == Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

12 The Java memory model (JMM): beyond interleaving semantics Java memory model initially: x = y = 0; i == 0 i == 1 j == 0 j == 2 compiler and hardware reorder statements i == 0 i == 1 j == 0 j == Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

13 The Java memory model (JMM): beyond interleaving semantics data races initially: x = y = 0; Java memory model i == 0 i == 1 j == 0 j == 2 compiler and hardware reorder statements i == 0 i == 1 j == 0 j == Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

14 Problems with data races under the JMM 1. Data races allow time travel. public = x; y = secret; x = y; r1 may contain input(). Time-sensitive analyses do not cover that. 4 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

15 Problems with data races under the JMM 1. Data races allow time travel. public = x; y = secret; x = y; r1 may contain input(). Time-sensitive analyses do not cover that. 4 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

16 Problems with data races under the JMM 1. Data races allow time travel. public = x; y = secret; x = y; r1 may contain input(). Time-sensitive analyses do not cover that. 2. Values appear out of thin air. r1 = y; x = r1; initially: x = y = null; b = false; r2 = null; r3 = x; if (b) r2 = new A(); else r3 = new A(); y = r3; r2 and r3 may alias, but typical points-to analyses compute: They never alias. b = true; 4 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

17 Results Unified model of Java and the JMM First formal link between Java and the Java memory model Proofs about the JMM DRF guarantee: Programs without data races behave as if executed under interleaving semantics Most program analyses assume interleaving semantics Sound for DRF programs Type safety: Java s type safety extends to the JMM, even if there are data races. Crucial for CFG construction (no undefined behaviour) 5 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

18 What is a data race? Data race: In an interleaved (sequentially consistent) executions, two accesses (at least one read) to the same non-volatile location that are unrelated in hb 6 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

19 What is a data race? Data race: In an interleaved (sequentially consistent) executions, two accesses (at least one read) to the same non-volatile location that are unrelated in hb Synchronisation via by spawning threads: y = 1; x.start(); initially: x = new Thread(); y = 0; try { x.start(); } catch (IllegalThreadStateException _) { r = y; } 6 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

20 What is a data race? Data race: In an interleaved (sequentially consistent) executions, two accesses (at least one read) to the same non-volatile location that are unrelated in hb Synchronisation via by spawning threads: y = 1; x.start(); initially: x = new Thread(); y = 0; try { x.start(); } catch (IllegalThreadStateException _) { r = y; } data race? 6 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

21 What is a data race? Data race: In an interleaved (sequentially consistent) executions, two accesses (at least one read) to the same non-volatile location that are unrelated in hb Synchronisation via by spawning threads: y = 1; x.start(); initially: x = new Thread(); y = 0; try { x.start(); } catch (IllegalThreadStateException _) { r = y; } intuition: no data race? JMM: yes 6 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

22 What is a data race? Data race: In an interleaved (sequentially consistent) executions, two accesses (at least one read) to the same non-volatile location that are unrelated in hb Synchronisation via by spawning threads: y = 1; x.start(); initially: x = new Thread(); y = 0; try { x.start(); } catch (IllegalThreadStateException _) { r = y; } disallowed synchronisation data race? 6 9 Oct 2012 Andreas Lochbihler: Quis Custodiet Ipsos Custodes? PROGRAMMING PARADIGMS GROUP

A unified machine-checked model for multithreaded Java

A unified machine-checked model for multithreaded Java A unified machine-checked model for multithreaded Java Andre Lochbihler IPD, PROGRAMMING PARADIGMS GROUP, COMPUTER SCIENCE DEPARTMENT KIT - University of the State of Baden-Wuerttemberg and National Research

More information

Verifying a Compiler for Java Threads

Verifying a Compiler for Java Threads Verifying a Compiler for Java Threads Andreas Lochbihler IPD, PROGRAMMING PARADIGMS GROUP, COMPUTER SCIENCE DEPARTMENT KIT - University of the State of aden-wuerttemberg and National Research Center of

More information

Mechanising a type-safe model of multithreaded Java with a verified compiler

Mechanising a type-safe model of multithreaded Java with a verified compiler Mechanising a type-safe model of multithreaded Java with a verified compiler Andreas Lochbihler Digital Asset (Switzerland) GmbH Andreas Lochbihler 2 = Isabelle λ β HOL α Andreas Lochbihler 3 Timeline

More information

The Java Memory Model

The Java Memory Model Jeremy Manson 1, William Pugh 1, and Sarita Adve 2 1 University of Maryland 2 University of Illinois at Urbana-Champaign Presented by John Fisher-Ogden November 22, 2005 Outline Introduction Sequential

More information

The Java Memory Model

The Java Memory Model The Java Memory Model Presented by: Aaron Tomb April 10, 2007 1 Introduction 1.1 Memory Models As multithreaded programming and multiprocessor systems gain popularity, it is becoming crucial to define

More information

Speeding up context-, object- and field-sensitive SDG generation

Speeding up context-, object- and field-sensitive SDG generation Speeding up context-, object- and field-sensitive SDG generation Jürgen Graf IPD, PROGRAMMING PARADIGMS GROUP, COMPUTER SCIENCE DEPARTMENT KIT - University of the State of Baden-Wuerttemberg and National

More information

Lock-sensitive Interference Analysis for Java: Combining Program Dependence Graphs with Dynamic Pushdown Networks

Lock-sensitive Interference Analysis for Java: Combining Program Dependence Graphs with Dynamic Pushdown Networks Lock-sensitive Interference Analysis for Java: Combining Program Dependence Graphs with Dynamic Pushdown Networks Jürgen Graf 1, Martin Hecker 1, Martin Mohr 1, and Benedikt Nordhoff 2 1 Karlsruhe Institute

More information

Safe Optimisations for Shared-Memory Concurrent Programs. Tomer Raz

Safe Optimisations for Shared-Memory Concurrent Programs. Tomer Raz Safe Optimisations for Shared-Memory Concurrent Programs Tomer Raz Plan Motivation Transformations Semantic Transformations Safety of Transformations Syntactic Transformations 2 Motivation We prove that

More information

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016 Java Memory Model Jian Cao Department of Electrical and Computer Engineering Rice University Sep 22, 2016 Content Introduction Java synchronization mechanism Double-checked locking Out-of-Thin-Air violation

More information

X-Rays, not Passport Checks Information Flow Control Using JOANA

X-Rays, not Passport Checks Information Flow Control Using JOANA X-Rays, not Passport Checks Information Flow Control Using JOANA Gregor Snelting Presentation at SAP, 14.5.2014 KIT Universita t des Landes Baden-Wu rttemberg und nationales Großforschungszentrum in der

More information

Multicore Programming Java Memory Model

Multicore Programming Java Memory Model p. 1 Multicore Programming Java Memory Model Peter Sewell Jaroslav Ševčík Tim Harris University of Cambridge MSR with thanks to Francesco Zappa Nardelli, Susmit Sarkar, Tom Ridge, Scott Owens, Magnus O.

More information

Relaxed Memory: The Specification Design Space

Relaxed Memory: The Specification Design Space Relaxed Memory: The Specification Design Space Mark Batty University of Cambridge Fortran meeting, Delft, 25 June 2013 1 An ideal specification Unambiguous Easy to understand Sound w.r.t. experimentally

More information

The Java Memory Model

The Java Memory Model The Java Memory Model The meaning of concurrency in Java Bartosz Milewski Plan of the talk Motivating example Sequential consistency Data races The DRF guarantee Causality Out-of-thin-air guarantee Implementation

More information

Advanced MEIC. (Lesson #18)

Advanced MEIC. (Lesson #18) Advanced Programming @ MEIC (Lesson #18) Last class Data races Java Memory Model No out-of-thin-air values Data-race free programs behave as expected Today Finish with the Java Memory Model Introduction

More information

Foundations of the C++ Concurrency Memory Model

Foundations of the C++ Concurrency Memory Model Foundations of the C++ Concurrency Memory Model John Mellor-Crummey and Karthik Murthy Department of Computer Science Rice University johnmc@rice.edu COMP 522 27 September 2016 Before C++ Memory Model

More information

An introduction to weak memory consistency and the out-of-thin-air problem

An introduction to weak memory consistency and the out-of-thin-air problem An introduction to weak memory consistency and the out-of-thin-air problem Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS) CONCUR, 7 September 2017 Sequential consistency 2 Sequential

More information

Reasoning about the C/C++ weak memory model

Reasoning about the C/C++ weak memory model Reasoning about the C/C++ weak memory model Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS) 13 October 2014 Talk outline I. Introduction Weak memory models The C11 concurrency model

More information

Program logics for relaxed consistency

Program logics for relaxed consistency Program logics for relaxed consistency UPMARC Summer School 2014 Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS) 1st Lecture, 28 July 2014 Outline Part I. Weak memory models 1. Intro

More information

11/19/2013. Imperative programs

11/19/2013. Imperative programs if (flag) 1 2 From my perspective, parallelism is the biggest challenge since high level programming languages. It s the biggest thing in 50 years because industry is betting its future that parallel programming

More information

Threads and Java Memory Model

Threads and Java Memory Model Threads and Java Memory Model Oleg Šelajev @shelajev oleg@zeroturnaround.com October 6, 2014 Agenda Threads Basic synchronization Java Memory Model Concurrency Concurrency - several computations are executing

More information

Taming release-acquire consistency

Taming release-acquire consistency Taming release-acquire consistency Ori Lahav Nick Giannarakis Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS) POPL 2016 Weak memory models Weak memory models provide formal sound semantics

More information

Theoretical Corner: The Non-Interference Property

Theoretical Corner: The Non-Interference Property Theoretical Corner: The Non-Interference Property Marwan Burelle marwan.burelle@lse.epita.fr http://wiki-prog.infoprepa.epita.fr Outline 1 Introduction 2 Theory And Security Models And Policies Non-Interference

More information

Weak Memory Models: an Operational Theory

Weak Memory Models: an Operational Theory Opening Weak Memory Models: an Operational Theory INRIA Sophia Antipolis 9th June 2008 Background on weak memory models Memory models, what are they good for? Hardware optimizations Contract between hardware

More information

Timing Analysis of Parallel Software Using Abstract Execution

Timing Analysis of Parallel Software Using Abstract Execution Timing Analysis of Parallel Software Using Abstract Execution Björn Lisper School of Innovation, Design, and Engineering Mälardalen University bjorn.lisper@mdh.se 2014-09-10 EACO Workshop 2014 Motivation

More information

RELAXED CONSISTENCY 1

RELAXED CONSISTENCY 1 RELAXED CONSISTENCY 1 RELAXED CONSISTENCY Relaxed Consistency is a catch-all term for any MCM weaker than TSO GPUs have relaxed consistency (probably) 2 XC AXIOMS TABLE 5.5: XC Ordering Rules. An X Denotes

More information

Formalising Java s Data Race Free Guarantee

Formalising Java s Data Race Free Guarantee Formalising Java s Data Race Free Guarantee David Aspinall and Jaroslav Ševčík LFCS, School of Informatics, University of Edinburgh Abstract. We formalise the data race free (DRF) guarantee provided by

More information

Program Transformations in Weak Memory Models

Program Transformations in Weak Memory Models Program Transformations in Weak Memory Models Jaroslav Ševčík Doctor of Philosophy Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh 2008 Abstract We analyse

More information

The Java Memory Model

The Java Memory Model The Java Memory Model What is it and why would I want one? Jörg Domaschka. ART Group, Institute for Distributed Systems Ulm University, Germany December 14, 2009 public class WhatDoIPrint{ static int x

More information

Security for Multithreaded Programs under Cooperative Scheduling

Security for Multithreaded Programs under Cooperative Scheduling Security for Multithreaded Programs under Cooperative Scheduling Alejandro Russo and Andrei Sabelfeld Dept. of Computer Science and Engineering, Chalmers University of Technology 412 96 Göteborg, Sweden,

More information

Motivation & examples Threads, shared memory, & synchronization

Motivation & examples Threads, shared memory, & synchronization 1 Motivation & examples Threads, shared memory, & synchronization How do locks work? Data races (a lower level property) How do data race detectors work? Atomicity (a higher level property) Concurrency

More information

The Java Memory Model: a Formal Explanation 1

The Java Memory Model: a Formal Explanation 1 The Java Memory Model: a Formal Explanation 1 M. Huisman 2 G. Petri 3 INRIA Sophia Antipolis, France Abstract This paper discusses the new Java Memory Model (JMM), introduced for Java 1.5. The JMM specifies

More information

C++ Memory Model. Don t believe everything you read (from shared memory)

C++ Memory Model. Don t believe everything you read (from shared memory) C++ Memory Model Don t believe everything you read (from shared memory) The Plan Why multithreading is hard Warm-up example Sequential Consistency Races and fences The happens-before relation The DRF guarantee

More information

Hoare logic. A proof system for separation logic. Introduction. Separation logic

Hoare logic. A proof system for separation logic. Introduction. Separation logic Introduction Hoare logic Lecture 6: Examples in separation logic In the previous lecture, we saw how reasoning about pointers in Hoare logic was problematic, which motivated introducing separation logic.

More information

CSE 160 Lecture 7. C++11 threads C++11 memory model

CSE 160 Lecture 7. C++11 threads C++11 memory model CSE 160 Lecture 7 C++11 threads C++11 memory model Today s lecture C++ threads The C++11 Memory model 2013 Scott B. Baden / CSE 160 / Winter 2013 2 C++11 Threads Via , C++ supports a threading

More information

High-Level Small-Step Operational Semantics for Software Transactions

High-Level Small-Step Operational Semantics for Software Transactions High-Level Small-Step Operational Semantics for Software Transactions Katherine F. Moore Dan Grossman The University of Washington Motivating Our Approach Operational Semantics Model key programming-language

More information

CSE 403: Software Engineering, Fall courses.cs.washington.edu/courses/cse403/16au/ Static Analysis. Emina Torlak

CSE 403: Software Engineering, Fall courses.cs.washington.edu/courses/cse403/16au/ Static Analysis. Emina Torlak CSE 403: Software Engineering, Fall 2016 courses.cs.washington.edu/courses/cse403/16au/ Static Analysis Emina Torlak emina@cs.washington.edu Outline What is static analysis? How does it work? Free and

More information

Static Analysis of Embedded C Code

Static Analysis of Embedded C Code Static Analysis of Embedded C Code John Regehr University of Utah Joint work with Nathan Cooprider Relevant features of C code for MCUs Interrupt-driven concurrency Direct hardware access Whole program

More information

7/6/2015. Motivation & examples Threads, shared memory, & synchronization. Imperative programs

7/6/2015. Motivation & examples Threads, shared memory, & synchronization. Imperative programs Motivation & examples Threads, shared memory, & synchronization How do locks work? Data races (a lower level property) How do data race detectors work? Atomicity (a higher level property) Concurrency exceptions

More information

Parallel Computer Architecture Spring Memory Consistency. Nikos Bellas

Parallel Computer Architecture Spring Memory Consistency. Nikos Bellas Parallel Computer Architecture Spring 2018 Memory Consistency Nikos Bellas Computer and Communications Engineering Department University of Thessaly Parallel Computer Architecture 1 Coherence vs Consistency

More information

Static Detection of Access Anomalies in Ada95

Static Detection of Access Anomalies in Ada95 Static Detection of Access Anomalies in Ada95 Bernd Burgstaller, University of Sydney Johann Blieberger, Vienna University of Technology Robert Mittermayr, ARC Seibersdorf research GmbH Static Detection

More information

High-level languages

High-level languages High-level languages High-level languages are not immune to these problems. Actually, the situation is even worse: the source language typically operates over mixed-size values (multi-word and bitfield);

More information

Formalization of Incremental Simplex Algorithm by Stepwise Refinement

Formalization of Incremental Simplex Algorithm by Stepwise Refinement Formalization of Incremental Simplex Algorithm by Stepwise Refinement Mirko Spasić, Filip Marić Faculty of Mathematics, University of Belgrade FM2012, 30. August 2012. Overview 1 Introduction 2 Approach

More information

More Lambda Calculus and Intro to Type Systems

More Lambda Calculus and Intro to Type Systems More Lambda Calculus and Intro to Type Systems Plan Heavy Class Participation Thus, wake up! Lambda Calculus How is it related to real life? Encodings Fixed points Type Systems Overview Static, Dyamic

More information

Language- Level Memory Models

Language- Level Memory Models Language- Level Memory Models A Bit of History Here is a new JMM [5]! 2000 Meyers & Alexandrescu DCL is not portable in C++ [3]. Manson et. al New shiny C++ memory model 2004 2008 2012 2002 2006 2010 2014

More information

The C/C++ Memory Model: Overview and Formalization

The C/C++ Memory Model: Overview and Formalization The C/C++ Memory Model: Overview and Formalization Mark Batty Jasmin Blanchette Scott Owens Susmit Sarkar Peter Sewell Tjark Weber Verification of Concurrent C Programs C11 / C++11 In 2011, new versions

More information

Fully Automatic and Precise Detection of Thread Safety Violations

Fully Automatic and Precise Detection of Thread Safety Violations Fully Automatic and Precise Detection of Thread Safety Violations Michael Pradel and Thomas R. Gross Department of Computer Science ETH Zurich 1 Motivation Thread-safe classes: Building blocks for concurrent

More information

Review of last lecture. Peer Quiz. DPHPC Overview. Goals of this lecture. Lock-based queue

Review of last lecture. Peer Quiz. DPHPC Overview. Goals of this lecture. Lock-based queue Review of last lecture Design of Parallel and High-Performance Computing Fall 2016 Lecture: Linearizability Motivational video: https://www.youtube.com/watch?v=qx2driqxnbs Instructor: Torsten Hoefler &

More information

Simple and Efficient Construction of Static Single Assignment Form

Simple and Efficient Construction of Static Single Assignment Form Simple and Efficient Construction of Static Single Assignment Form saarland university Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mallon and Andreas Zwinkau computer science

More information

Weak memory models. Mai Thuong Tran. PMA Group, University of Oslo, Norway. 31 Oct. 2014

Weak memory models. Mai Thuong Tran. PMA Group, University of Oslo, Norway. 31 Oct. 2014 Weak memory models Mai Thuong Tran PMA Group, University of Oslo, Norway 31 Oct. 2014 Overview 1 Introduction Hardware architectures Compiler optimizations Sequential consistency 2 Weak memory models TSO

More information

Safe Reactive Programming: the FunLoft Proposal

Safe Reactive Programming: the FunLoft Proposal Safe Reactive Programming: the FunLoft Proposal Frédéric Boussinot MIMOSA Project, Inria Sophia-Antipolis (Joint work with Frédéric Dabrowski) http://www.inria.fr/mimosa/rp With support from ALIDECS SYNCHRON

More information

Formal methods for software security

Formal methods for software security Formal methods for software security Thomas Jensen, INRIA Forum "Méthodes formelles" Toulouse, 31 January 2017 Formal methods for software security Formal methods for software security Confidentiality

More information

Efficient Processor Support for DRFx, a Memory Model with Exceptions

Efficient Processor Support for DRFx, a Memory Model with Exceptions Efficient Processor Support for DRFx, a Memory Model with Exceptions Abhayendra Singh Daniel Marino Satish Narayanasamy Todd Millstein Madanlal Musuvathi University of Michigan, Ann Arbor University of

More information

Review of last lecture. Goals of this lecture. DPHPC Overview. Lock-based queue. Lock-based queue

Review of last lecture. Goals of this lecture. DPHPC Overview. Lock-based queue. Lock-based queue Review of last lecture Design of Parallel and High-Performance Computing Fall 2013 Lecture: Linearizability Instructor: Torsten Hoefler & Markus Püschel TA: Timo Schneider Cache-coherence is not enough!

More information

Pre- and post- CS protocols. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7. Other requirements for a mutual exclusion algorithm

Pre- and post- CS protocols. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7. Other requirements for a mutual exclusion algorithm CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce

More information

Coherence and Consistency

Coherence and Consistency Coherence and Consistency 30 The Meaning of Programs An ISA is a programming language To be useful, programs written in it must have meaning or semantics Any sequence of instructions must have a meaning.

More information

Thread Synchronization: Too Much Milk

Thread Synchronization: Too Much Milk Thread Synchronization: Too Much Milk 1 Implementing Critical Sections in Software Hard The following example will demonstrate the difficulty of providing mutual exclusion with memory reads and writes

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages 1 / 18 CSE 307: Principles of Programming Languages Statements and Control Flow R. Sekar 2 / 18 Topics If-Then-Else 1. If-Then-Else 3 / 18 Control Statements Structured Control Statements: Case Statements:

More information

EECS 570 Lecture 13. Directory & Optimizations. Winter 2018 Prof. Satish Narayanasamy

EECS 570 Lecture 13. Directory & Optimizations. Winter 2018 Prof. Satish Narayanasamy Directory & Optimizations Winter 2018 Prof. Satish Narayanasamy http://www.eecs.umich.edu/courses/eecs570/ Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin, Narayanasamy, Nowatzyk,

More information

JSR-133: Java TM Memory Model and Thread Specification

JSR-133: Java TM Memory Model and Thread Specification JSR-133: Java TM Memory Model and Thread Specification Proposed Final Draft April 12, 2004, 6:15pm This document is the proposed final draft version of the JSR-133 specification, the Java Memory Model

More information

Simply-Typed Lambda Calculus

Simply-Typed Lambda Calculus #1 Simply-Typed Lambda Calculus #2 Back to School What is operational semantics? When would you use contextual (small-step) semantics? What is denotational semantics? What is axiomatic semantics? What

More information

On-the-Fly Data Race Detection in MPI One-Sided Communication

On-the-Fly Data Race Detection in MPI One-Sided Communication On-the-Fly Data Race Detection in MPI One-Sided Communication Presentation Master Thesis Simon Schwitanski (schwitanski@itc.rwth-aachen.de) Joachim Protze (protze@itc.rwth-aachen.de) Prof. Dr. Matthias

More information

Formal Verification Techniques for GPU Kernels Lecture 1

Formal Verification Techniques for GPU Kernels Lecture 1 École de Recherche: Semantics and Tools for Low-Level Concurrent Programming ENS Lyon Formal Verification Techniques for GPU Kernels Lecture 1 Alastair Donaldson Imperial College London www.doc.ic.ac.uk/~afd

More information

Formalising FinFuns Generating Code for Functions as Data from Isabelle/HOL

Formalising FinFuns Generating Code for Functions as Data from Isabelle/HOL Formalising FinFuns Generating Code for Functions as Data from Isabelle/HOL Andreas Lochbihler Universität Karlsruhe (TH) 17.8.2009, TPHOLs 2009 Motivation I Quickcheck Andreas Lochbihler (Univ. Karlsruhe

More information

Reinhard v. Hanxleden 1, Michael Mendler 2, J. Aguado 2, Björn Duderstadt 1, Insa Fuhrmann 1, Christian Motika 1, Stephen Mercer 3 and Owen Brian 3

Reinhard v. Hanxleden 1, Michael Mendler 2, J. Aguado 2, Björn Duderstadt 1, Insa Fuhrmann 1, Christian Motika 1, Stephen Mercer 3 and Owen Brian 3 Sequentially Constructive Concurrency * A conservative extension of the Synchronous Model of Computation Reinhard v. Hanxleden, Michael Mendler 2, J. Aguado 2, Björn Duderstadt, Insa Fuhrmann, Christian

More information

From IMP to Java. Andreas Lochbihler. parts based on work by Gerwin Klein and Tobias Nipkow ETH Zurich

From IMP to Java. Andreas Lochbihler. parts based on work by Gerwin Klein and Tobias Nipkow ETH Zurich From IMP to Java Andreas Lochbihler ETH Zurich parts based on work by Gerwin Klein and Tobias Nipkow 2015-07-14 1 Subtyping 2 Objects and Inheritance 3 Multithreading 1 Subtyping 2 Objects and Inheritance

More information

More Lambda Calculus and Intro to Type Systems

More Lambda Calculus and Intro to Type Systems #1 More Lambda Calculus and Intro to Type Systems #2 Plan Heavy Class Participation Thus, wake up! (not actually kidding) Lambda Calculus How is it related to real life? Encodings Fixed points Type Systems

More information

Hoare Logic and Model Checking

Hoare Logic and Model Checking Hoare Logic and Model Checking Kasper Svendsen University of Cambridge CST Part II 2016/17 Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft Introduction In the

More information

New description of the Unified Memory Model Proposal for Java

New description of the Unified Memory Model Proposal for Java New description of the Unified Memory Model Proposal for Java Jeremy Manson, William Pugh and Sarita Adve April 29, 2004, 9:35pm 0.1 Actions and Executions An action a is described by a tuple t, k, v,

More information

Sharing Objects Ch. 3

Sharing Objects Ch. 3 Sharing Objects Ch. 3 Visibility What is the source of the issue? Volatile Dekker s algorithm Publication and Escape Thread Confinement Immutability Techniques of safe publication Assignment 1 Visibility

More information

Operational Semantics 1 / 13

Operational Semantics 1 / 13 Operational Semantics 1 / 13 Outline What is semantics? Operational Semantics What is semantics? 2 / 13 What is the meaning of a program? Recall: aspects of a language syntax: the structure of its programs

More information

The New Java Technology Memory Model

The New Java Technology Memory Model The New Java Technology Memory Model java.sun.com/javaone/sf Jeremy Manson and William Pugh http://www.cs.umd.edu/~pugh 1 Audience Assume you are familiar with basics of Java technology-based threads (

More information

Semantics of programming languages

Semantics of programming languages Semantics of programming languages Informatics 2A: Lecture 28 Mary Cryan School of Informatics University of Edinburgh mcryan@inf.ed.ac.uk 21 November 2018 1 / 18 Two parallel pipelines A large proportion

More information

Verifying Concurrent ML programs

Verifying Concurrent ML programs Verifying Concurrent ML programs a research proposal Gergely Buday Eszterházy Károly University Gyöngyös, Hungary Synchron 2016 Bamberg December 2016 Concurrent ML is a synchronous language a CML program

More information

CS510 Advanced Topics in Concurrency. Jonathan Walpole

CS510 Advanced Topics in Concurrency. Jonathan Walpole CS510 Advanced Topics in Concurrency Jonathan Walpole Threads Cannot Be Implemented as a Library Reasoning About Programs What are the valid outcomes for this program? Is it valid for both r1 and r2 to

More information

Applied Unified Ownership. Capabilities for Sharing Across Threads

Applied Unified Ownership. Capabilities for Sharing Across Threads Applied Unified Ownership or Capabilities for Sharing Across Threads Elias Castegren Tobias Wrigstad DRF transfer parallel programming AppliedUnified Ownership memory management placement in pools (previous

More information

Concurrency. State Models and Java Programs. Jeff Magee and Jeff Kramer. Concurrency: introduction 1. Magee/Kramer

Concurrency. State Models and Java Programs. Jeff Magee and Jeff Kramer. Concurrency: introduction 1. Magee/Kramer Concurrency State Models and Java Programs Jeff Magee and Jeff Kramer Concurrency: introduction 1 What is a Concurrent Program? A sequential program has a single thread of control. A concurrent program

More information

Dynamic Dependency Monitoring to Secure Information Flow

Dynamic Dependency Monitoring to Secure Information Flow Dynamic Dependency Monitoring to Secure Information Flow Mark Thober Joint work with Paritosh Shroff and Scott F. Smith Department of Computer Science Johns Hopkins University CSF 07 1 Motivation Information

More information

GPU Concurrency: Weak Behaviours and Programming Assumptions

GPU Concurrency: Weak Behaviours and Programming Assumptions GPU Concurrency: Weak Behaviours and Programming Assumptions Jyh-Jing Hwang, Yiren(Max) Lu 03/02/2017 Outline 1. Introduction 2. Weak behaviors examples 3. Test methodology 4. Proposed memory model 5.

More information

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory Lecture 21: Transactional Memory Topics: consistency model recap, introduction to transactional memory 1 Example Programs Initially, A = B = 0 P1 P2 A = 1 B = 1 if (B == 0) if (A == 0) critical section

More information

A Concurrency Semantics for Relaxed Atomics that Permits Optimisation and Avoids Thin-Air Executions

A Concurrency Semantics for Relaxed Atomics that Permits Optimisation and Avoids Thin-Air Executions A Concurrency Semantics for Relaxed Atomics that Permits Optimisation and Avoids Thin-Air Executions Jean Pichon-Pharabod Peter Sewell University of Cambridge, United Kingdom first.last@cl.cam.ac.uk Abstract

More information

Building Verified Program Analyzers in Coq

Building Verified Program Analyzers in Coq Building Verified Program Analyzers in Coq Lecture 1: Motivations and Examples David Pichardie - INRIA Rennes / Harvard University How do you trust your software? bug finders sound verifiers verified verifiers

More information

Hierarchical Pointer Analysis for Distributed Programs

Hierarchical Pointer Analysis for Distributed Programs Hierarchical Pointer Analysis for Distributed Programs Amir Kamil Computer Science Division, University of California, Berkeley kamil@cs.berkeley.edu April 14, 2006 1 Introduction Many distributed, parallel

More information

Advanced Programming Methods. Introduction in program analysis

Advanced Programming Methods. Introduction in program analysis Advanced Programming Methods Introduction in program analysis What is Program Analysis? Very broad topic, but generally speaking, automated analysis of program behavior Program analysis is about developing

More information

DRFx: A Simple and Efficient Memory Model for Concurrent Programming Languages

DRFx: A Simple and Efficient Memory Model for Concurrent Programming Languages DRFx: A Simple and Efficient Memory Model for Concurrent Programming Languages Daniel Marino Abhayendra Singh Todd Millstein Madanlal Musuvathi Satish Narayanasamy University of California, Los Angeles

More information

8. Static Single Assignment Form. Marcus Denker

8. Static Single Assignment Form. Marcus Denker 8. Static Single Assignment Form Marcus Denker Roadmap > Static Single Assignment Form (SSA) > Converting to SSA Form > Examples > Transforming out of SSA 2 Static Single Assignment Form > Goal: simplify

More information

Safety and liveness for critical sections

Safety and liveness for critical sections Safety and liveness for critical sections! At most k threads are concurrently in the critical section A. Safety B. Liveness C. Both! A thread that wants to enter the critical section will eventually succeed

More information

Threads and Locks. Chapter Introduction Locks

Threads and Locks. Chapter Introduction Locks Chapter 1 Threads and Locks 1.1 Introduction Java virtual machines support multiple threads of execution. Threads are represented in Java by the Thread class. The only way for a user to create a thread

More information

An Operational and Axiomatic Semantics for Non-determinism and Sequence Points in C

An Operational and Axiomatic Semantics for Non-determinism and Sequence Points in C An Operational and Axiomatic Semantics for Non-determinism and Sequence Points in C Robbert Krebbers Radboud University Nijmegen January 22, 2014 @ POPL, San Diego, USA 1 / 16 What is this program supposed

More information

Toward Efficient Strong Memory Model Support for the Java Platform via Hybrid Synchronization

Toward Efficient Strong Memory Model Support for the Java Platform via Hybrid Synchronization Toward Efficient Strong Memory Model Support for the Java Platform via Hybrid Synchronization Aritra Sengupta Man Cao Michael D. Bond Milind Kulkarni Ohio State University Purdue University {sengupta,caoma,mikebond}@cse.ohio-state.edu

More information

Using file systems at HC3

Using file systems at HC3 Using file systems at HC3 Roland Laifer STEINBUCH CENTRE FOR COMPUTING - SCC KIT University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association www.kit.edu Basic Lustre

More information

Static Analysis of Embedded C

Static Analysis of Embedded C Static Analysis of Embedded C John Regehr University of Utah Joint work with Nathan Cooprider Motivating Platform: TinyOS Embedded software for wireless sensor network nodes Has lots of SW components for

More information

More Lambda Calculus and Intro to Type Systems

More Lambda Calculus and Intro to Type Systems More Lambda Calculus and Intro to Type Systems #1 One Slide Summary The lambda calculus is a model of computation or a programming language that is as expressive as a Turing machine. The lambda calculus

More information

Concurrency and Parallelism. CS152: Programming Languages. Lecture 19 Shared-Memory Parallelism and Concurrency. Concurrency vs. Parallelism.

Concurrency and Parallelism. CS152: Programming Languages. Lecture 19 Shared-Memory Parallelism and Concurrency. Concurrency vs. Parallelism. CS152: Programming Languages Lecture 19 Shared-Memory Parallelism and Concurrency Dan Grossman Spring 2011 Concurrency and Parallelism PL support for concurrency/parallelism a huge topic Increasingly important

More information

CS152: Programming Languages. Lecture 19 Shared-Memory Parallelism and Concurrency. Dan Grossman Spring 2011

CS152: Programming Languages. Lecture 19 Shared-Memory Parallelism and Concurrency. Dan Grossman Spring 2011 CS152: Programming Languages Lecture 19 Shared-Memory Parallelism and Concurrency Dan Grossman Spring 2011 Concurrency and Parallelism PL support for concurrency/parallelism a huge topic Increasingly important

More information

C++ Concurrency - Formalised

C++ Concurrency - Formalised C++ Concurrency - Formalised Salomon Sickert Technische Universität München 26 th April 2013 Mutex Algorithms At most one thread is in the critical section at any time. 2 / 35 Dekker s Mutex Algorithm

More information

Pierce Ch. 3, 8, 11, 15. Type Systems

Pierce Ch. 3, 8, 11, 15. Type Systems Pierce Ch. 3, 8, 11, 15 Type Systems Goals Define the simple language of expressions A small subset of Lisp, with minor modifications Define the type system of this language Mathematical definition using

More information

Functional Programming with Isabelle/HOL

Functional Programming with Isabelle/HOL Functional Programming with Isabelle/HOL = Isabelle λ β HOL α Florian Haftmann Technische Universität München January 2009 Overview Viewing Isabelle/HOL as a functional programming language: 1. Isabelle/HOL

More information

Formal Semantics of Programming Languages

Formal Semantics of Programming Languages Formal Semantics of Programming Languages Mooly Sagiv Reference: Semantics with Applications Chapter 2 H. Nielson and F. Nielson http://www.daimi.au.dk/~bra8130/wiley_book/wiley.html Benefits of formal

More information

Shared Variables and Interference

Shared Variables and Interference Illinois Institute of Technology Lecture 24 Shared Variables and Interference CS 536: Science of Programming, Spring 2018 A. Why Parallel programs can coordinate their work using shared variables, but

More information

OOP and S-BPM an analogy observation PowerSpeech

OOP and S-BPM an analogy observation PowerSpeech OOP and an analogy observation PowerSpeech Karlsruhe, October 14th 2010 Hagen Buchwald, KIT, Institute AIFB INSTITUTE AIFB COMPLEXITY MANAGEMENT KIT University of the State of Baden-Wuerttemberg and National

More information