Conservative Concurrency in Haskell

Size: px
Start display at page:

Download "Conservative Concurrency in Haskell"

Transcription

1 Conservative Concurrency in Haskell David Sabel and Manfred Schmidt-Schauß Goethe-University, Frankfurt am Main, Germany LICS 12, Dubrovnik, Croatia

2 Motivation a View on Haskell Purely functional core language call-by-need lambda-calculus with letrec, seq, data constructors + Monadic I/O Haskell + concurrent threads & MVars Concurrent Haskell + lazy I/O unsafeperformio, unsafeinterleaveio Real implementations of Haskell semantically well-understood & extensively investigated a lot of correct of program transformations & compiler optimizations are known David Sabel Conservative Concurrency in Haskell 2/10

3 Issues Is the compiler still correct after extending the language? In short: Are these extensions safe? Safety = Conservativity An extension is conservative if it preserves program equalitites e 1 L e 2 = e 1 L e 2 L extension L = correct program transformations of L are also correct in L David Sabel Conservative Concurrency in Haskell 3/10

4 Our Setting Concurrent Haskell (Peyton Jones, Gordon, Finne 1996) extends Haskell by concurrency The process calculus CHF (Sabel, Schmidt-Schauß 2011) models Concurrent Haskell with Futures operational semantics inspired by (Peyton Jones, 2001) Future = variable whose value is computed concurrently by a monadic computation allow implicit synchronisation by data dependency Concurrent Haskell + unsafeinterleaveio can encode CHF (CHF is a sublanguage of Concurrent Haskell + unsafeinterleaveio) David Sabel Conservative Concurrency in Haskell 4/10

5 The Process Calculus CHF Processes P, P i Proc ::= P 1 P 2 νx.p x }{{ e } future x A process has a main thread: x main = e P x = e x m e x m }{{} filled & empty MVar Expressions e, e i Expr CHF ::= x λx.e (e 1 e 2 ) seq e 1 e 2 c e 1... e ar(c) case T e of... (c T,i x 1... x ar(ct,i ) e i )... letrec x 1 = e 1... x n = e n in e return e e 1 >>= e 2 future e takemvar e newmvar e putmvar e 1 e 2 Types: standard monomorphic type system David Sabel Conservative Concurrency in Haskell 5/10

6 Semantics & Program Equivalence Operational semantics: Small-step reduction relation CHF Process P is successful if P well-formed P ν x i (x main = return e P ) May-Convergence: (a successful process can be reached by reduction) P iff P is w.-f. and P : P CHF, P P successful Should-Convergence: (every successor is may-convergent) P iff P is w.-f. and P : P CHF, P = P Contextual Equivalence c,chf On processes: P 1 c,chf P 2 iff D : (D[P 1 ] D[P 2 ] ) (D[P 1 ] D[P 2 ] ) On expressions: e 1, e 2 :: τ e 1 c,chf e 2 iff C : (C[e 1 ] C[e 2 ] ) (C[e 1 ] C[e 2 ] ) David Sabel Conservative Concurrency in Haskell 6/10

7 Conservativity PF = Pure, deterministic sublanguage of CHF, no futures, no I/O e, e i Expr PF ::= x λx.e (e 1 e 2 ) seq e 1 e 2 c e 1... e ar(c) case T e of... (c T,i x 1... x ar(ct,i ) e i )... letrec x 1 = e 1... x n = e n in e Main Theorem CHF extends PF conservatively I.e., for all e 1, e 2 :: τ Expr PF : e 1 c,pf e 2 = e 1 c,chf e 2. = correct transformations of the pure core are still valid in CHF David Sabel Conservative Concurrency in Haskell 7/10

8 Outline of the Proof e 1 c,chf e 2 CHF? PF e 1 c,pf e 2 David Sabel Conservative Concurrency in Haskell 8/10

9 Introduction CHF Conservativity Conclusion Outline of the Proof e 1 c,chf e 2 finite syntax CHF infinite trees CHFI (e 1 ) c,chfi (e 2 )?? PF PFI e 1 c,pf e 2 (e 1 ) c,pfi (e 2 ) Step 1: transport the problem to calculi with infinite trees: unfolds all bindings, CHFI = (CHF ) and PFI = (PF ) e.g. x = 1 : x : 1 : 1 : 1... David Sabel Conservative Concurrency in Haskell 8/10

10 Outline of the Proof e 1 c,chf e 2 finite syntax CHF infinite trees CHFI (e 1 ) c,chfi (e 2 )? PF PFI (e 1 ) b,pfi (e 2 ) e 1 c,pf e 2 Step 2: define bisimilarity b,pfi in PFI Howe s method shows b,pfi = c,pfi (e 1 ) c,pfi (e 2 ) David Sabel Conservative Concurrency in Haskell 8/10

11 Outline of the Proof e 1 c,chf e 2? finite syntax CHF PF infinite trees CHFI PFMI PFI (e 1 ) c,chfi (e 2 ) (e 1 ) b,pfmi (e 2 ) (e 1 ) b,pfi (e 2 ) e 1 c,pf e 2 (e 1 ) c,pfi (e 2 ) Step 3: add monadic operators (interpreted like constants) = PFMI bisimilarity is unchanged: b,pfi = b,pfmi David Sabel Conservative Concurrency in Haskell 8/10

12 Outline of the Proof e 1 c,chf e 2 finite syntax CHF infinite trees CHFI PFMI (e 1 ) c,chfi (e 2 ) (e 1 ) b,pfmi (e 2 ) PF PFI (e 1 ) b,pfi (e 2 ) e 1 c,pf e 2 (e 1 ) c,pfi (e 2 ) Step 4: show e 1 b,pfmi e 2 = e 1 c,chfi e 2 syntactical proof by cases David Sabel Conservative Concurrency in Haskell 8/10

13 Non-Conservativity Results CHFL = CHF + lazy futures lazy future = concurrent computation starts only if the value is demanded CHFL is not a conservative extension of PF Counterexample: seq e 2 (seq e 1 e 1 ) PF (seq e 1 e 2 ) Since lazy futures are encodable with unsafeinterleaveio: CHF +unsafeinterleaveio is also not a conservative extension of PF David Sabel Conservative Concurrency in Haskell 9/10

14 Conclusion & Further Work Conclusion CHF (and also Concurrent Haskell) are conservative extensions of the pure core language result shown w.r.t. contextual equivalence based on may- and should-convergence adding unsafeinterleaveio (or even lazy futures) breaks conservativity Future Work CHF with polymorphic typing other primitives like exceptions David Sabel Conservative Concurrency in Haskell 10/10

An Abstract Machine for Concurrent Haskell with Futures

An Abstract Machine for Concurrent Haskell with Futures An Abstract Machine for Concurrent Haskell with Futures David Sabel Goethe-University, Frankfurt am Main, Germany ATPS 12, Berlin, Germany Motivation Concurrent Haskell (Peyton Jones, Gordon, Finne 1996)

More information

Conservative Concurrency in Haskell

Conservative Concurrency in Haskell Conservative Concurrency in Haskell David Sabel and Manfred Schmidt-Schauß Computer Science Institute, Goethe-University, Frankfurt am Main, Germany Email: {sabel,schauss}@ki.informatik.uni-frankfurt.de

More information

Implementing Concurrent Futures in Concurrent Haskell

Implementing Concurrent Futures in Concurrent Haskell Implementing Concurrent Futures in Concurrent Haskell Working Draft David Sabel Institut für Informatik Johann Wolfgang Goethe-Universität Postfach 11 19 32 D-60054 Frankfurt, Germany sabel@ki.informatik.uni-frankfurt.de

More information

Lambda Calculus and Extensions as Foundation of Functional Programming

Lambda Calculus and Extensions as Foundation of Functional Programming Lambda Calculus and Extensions as Foundation of Functional Programming David Sabel and Manfred Schmidt-Schauß 29. September 2015 Lehrerbildungsforum Informatik Last update: 30. September 2015 Overview

More information

International School on Rewriting (ISR 2015) Rewriting Techniques for Correctness of Program Transformations

International School on Rewriting (ISR 2015) Rewriting Techniques for Correctness of Program Transformations International School on Rewriting (ISR 2015) Rewriting Techniques for Correctness of Program Transformations David Sabel and Manfred Schmidt-Schauß Computer Science Institute Goethe-University Frankfurt

More information

Observational Program Calculi and the Correctness of Translations

Observational Program Calculi and the Correctness of Translations Observational Program Calculi and the Correctness of Translations Manfred Schmidt-Schauß a, David Sabel a, Joachim Niehren b, Jan Schwinghammer a Goethe-University Frankfurt am Main, Germany b INRIA Lille,

More information

COMP3151/9151 Foundations of Concurrency Lecture 8

COMP3151/9151 Foundations of Concurrency Lecture 8 1 COMP3151/9151 Foundations of Concurrency Lecture 8 Liam O Connor CSE, UNSW (and data61) 8 Sept 2017 2 Shared Data Consider the Readers and Writers problem from Lecture 6: Problem We have a large data

More information

Safety of Nöcker s strictness analysis

Safety of Nöcker s strictness analysis JFP 18 (4): 503 551, 2008. c 2007 Cambridge University Press doi:10.1017/s0956796807006624 First published online 8 November 2007 Printed in the United Kingdom 503 Safety of Nöcker s strictness analysis

More information

Urmas Tamm Tartu 2013

Urmas Tamm Tartu 2013 The implementation and optimization of functional languages Urmas Tamm Tartu 2013 Intro The implementation of functional programming languages, Simon L. Peyton Jones, 1987 Miranda fully lazy strict a predecessor

More information

Graph reduction. Simple graph reduction with visualisation

Graph reduction. Simple graph reduction with visualisation Simple graph reduction with visualisation Outline The minifp language Graph representation of terms Tying the knot The compiler The reduction engine Literature The minifp language Small functional language,

More information

On the Expressiveness of Polyadicity in Higher-Order Process Calculi

On the Expressiveness of Polyadicity in Higher-Order Process Calculi On the Expressiveness of Polyadicity in Higher-Order Process Calculi Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi (Univ. di Bologna) Alan Schmitt (INRIA Grenoble - Rhône Alpes) ICTCS 09 Cremona, September

More information

Correctness of Copy in Calculi with Letrec, Case and Constructors

Correctness of Copy in Calculi with Letrec, Case and Constructors Correctness of Copy in Calculi with Letrec, Case and Constructors Manfred Schmidt-Schauß FB Informatik und Mathematik, Institut für Informatik, J.W.Goethe-Universität, obert-mayer-str 11-15, Postfach 11

More information

A short introduction to concurrency and parallelism in Haskell

A short introduction to concurrency and parallelism in Haskell A short introduction to concurrency and parallelism in Haskell Matteo Pradella matteo.pradella@polimi.it DEIB, Politecnico di Milano 2012-2015 Explicit (classical) concurrency: Threads and MVars As in

More information

Haskell Introduction Lists Other Structures Data Structures. Haskell Introduction. Mark Snyder

Haskell Introduction Lists Other Structures Data Structures. Haskell Introduction. Mark Snyder Outline 1 2 3 4 What is Haskell? Haskell is a functional programming language. Characteristics functional non-strict ( lazy ) pure (no side effects*) strongly statically typed available compiled and interpreted

More information

Once Upon a Polymorphic Type

Once Upon a Polymorphic Type Once Upon a Polymorphic Type Keith Wansbrough Computer Laboratory University of Cambridge kw217@cl.cam.ac.uk http://www.cl.cam.ac.uk/users/kw217/ Simon Peyton Jones Microsoft Research Cambridge 20 January,

More information

COMP 1130 Lambda Calculus. based on slides by Jeff Foster, U Maryland

COMP 1130 Lambda Calculus. based on slides by Jeff Foster, U Maryland COMP 1130 Lambda Calculus based on slides by Jeff Foster, U Maryland Motivation Commonly-used programming languages are large and complex ANSI C99 standard: 538 pages ANSI C++ standard: 714 pages Java

More information

Meta-programming with Names and Necessity p.1

Meta-programming with Names and Necessity p.1 Meta-programming with Names and Necessity Aleksandar Nanevski Carnegie Mellon University ICFP, Pittsburgh, 05 October 2002 Meta-programming with Names and Necessity p.1 Meta-programming Manipulation of

More information

Structural polymorphism in Generic Haskell

Structural polymorphism in Generic Haskell Structural polymorphism in Generic Haskell Andres Löh andres@cs.uu.nl 5 February 2005 Overview About Haskell Genericity and other types of polymorphism Examples of generic functions Generic Haskell Overview

More information

Static Contract Checking for Haskell

Static Contract Checking for Haskell Static Contract Checking for Haskell Dana N. Xu INRIA France Work done at University of Cambridge Simon Peyton Jones Microsoft Research Cambridge Joint work with Koen Claessen Chalmers University of Technology

More information

LiU-FP2010 Part II: Lecture 7 Concurrency

LiU-FP2010 Part II: Lecture 7 Concurrency LiU-FP2010 Part II: Lecture 7 Concurrency Henrik Nilsson University of Nottingham, UK LiU-FP2010 Part II: Lecture 7 p.1/36 This Lecture A concurrency monad (adapted from Claessen (1999)) Basic concurrent

More information

CS-XXX: Graduate Programming Languages. Lecture 9 Simply Typed Lambda Calculus. Dan Grossman 2012

CS-XXX: Graduate Programming Languages. Lecture 9 Simply Typed Lambda Calculus. Dan Grossman 2012 CS-XXX: Graduate Programming Languages Lecture 9 Simply Typed Lambda Calculus Dan Grossman 2012 Types Major new topic worthy of several lectures: Type systems Continue to use (CBV) Lambda Caluclus as our

More information

Demonstrating Lambda Calculus Reduction

Demonstrating Lambda Calculus Reduction Electronic Notes in Theoretical Computer Science 45 (2001) URL: http://www.elsevier.nl/locate/entcs/volume45.html 9 pages Demonstrating Lambda Calculus Reduction Peter Sestoft 1 Department of Mathematics

More information

Lecture 5: The Untyped λ-calculus

Lecture 5: The Untyped λ-calculus Lecture 5: The Untyped λ-calculus Syntax and basic examples Polyvios Pratikakis Computer Science Department, University of Crete Type Systems and Static Analysis Pratikakis (CSD) Untyped λ-calculus I CS49040,

More information

Featherweight Java (FJ)

Featherweight Java (FJ) x = 1 let x = 1 in... x(1).!x(1) x.set(1) Programming Language Theory Featherweight Java (FJ) Ralf Lämmel This lecture is based on David Walker s lecture: Computer Science 441, Programming Languages, Princeton

More information

Functional Languages. Hwansoo Han

Functional Languages. Hwansoo Han Functional Languages Hwansoo Han Historical Origins Imperative and functional models Alan Turing, Alonzo Church, Stephen Kleene, Emil Post, etc. ~1930s Different formalizations of the notion of an algorithm

More information

Monads. Mark Hills 6 August Department of Computer Science University of Illinois at Urbana-Champaign

Monads. Mark Hills 6 August Department of Computer Science University of Illinois at Urbana-Champaign Monads Mark Hills mhills@cs.uiuc.edu Department of Computer Science University of Illinois at Urbana-Champaign 6 August 2009 Hills Monads 1 / 19 Overview Overview Hills Monads 2 / 19 Why Monads? Overview

More information

Realising nondeterministic I/O in the Glasgow Haskell Compiler

Realising nondeterministic I/O in the Glasgow Haskell Compiler Realising nondeterministic I/O in the Glasgow Haskell Compiler Technical Report Frank-17 David Sabel Institut für Informatik Johann Wolfgang Goethe-Universität Frankfurt, Germany Email: sabel@informatik.uni-frankfurt.de

More information

CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008

CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008 CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008 Contents 1 Solution to the Exercise 1 1.1 Semantics for lambda calculus.......................

More information

JVM ByteCode Interpreter

JVM ByteCode Interpreter JVM ByteCode Interpreter written in Haskell (In under 1000 Lines of Code) By Louis Jenkins Presentation Schedule ( 15 Minutes) Discuss and Run the Virtual Machine first

More information

SAFE HASKELL. David Terei David Mazières. Simon Marlow Simon Peyton Jones

SAFE HASKELL. David Terei David Mazières. Simon Marlow Simon Peyton Jones SAFE HASKELL David Terei David Mazières Stanford University Simon Marlow Simon Peyton Jones Microsoft Research MOTIVATION Haskell is a great language for building secure systems in: Information flow control

More information

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi

On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi On the Expressiveness of Infinite Behavior and Name Scoping in Process Calculi Pablo Giambiagi (KTH, Sweden) Gerardo Schneider (IRISA/INRIA) Speaker: Frank D. Valencia (Uppsala Univ., Sweden) FOSSACS 04,

More information

Denotational Semantics. Domain Theory

Denotational Semantics. Domain Theory Denotational Semantics and Domain Theory 1 / 51 Outline Denotational Semantics Basic Domain Theory Introduction and history Primitive and lifted domains Sum and product domains Function domains Meaning

More information

Handout 10: Imperative programs and the Lambda Calculus

Handout 10: Imperative programs and the Lambda Calculus 06-02552 Princ of Progr Languages (and Extended ) The University of Birmingham Spring Semester 2016-17 School of Computer Science c Uday Reddy2016-17 Handout 10: Imperative programs and the Lambda Calculus

More information

Last class. CS Principles of Programming Languages. Introduction. Outline

Last class. CS Principles of Programming Languages. Introduction. Outline Last class CS6848 - Principles of Programming Languages Principles of Programming Languages V. Krishna Nandivada IIT Madras Interpreters A Environment B Cells C Closures D Recursive environments E Interpreting

More information

Programming Languages

Programming Languages CSE 230: Winter 2008 Principles of Programming Languages Ocaml/HW #3 Q-A Session Push deadline = Mar 10 Session Mon 3pm? Lecture 15: Type Systems Ranjit Jhala UC San Diego Why Typed Languages? Development

More information

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen COP4020 Programming Languages Functional Programming Prof. Robert van Engelen Overview What is functional programming? Historical origins of functional programming Functional programming today Concepts

More information

An experiment with variable binding, denotational semantics, and logical relations in Coq. Adam Chlipala University of California, Berkeley

An experiment with variable binding, denotational semantics, and logical relations in Coq. Adam Chlipala University of California, Berkeley A Certified TypePreserving Compiler from Lambda Calculus to Assembly Language An experiment with variable binding, denotational semantics, and logical relations in Coq Adam Chlipala University of California,

More information

n n Try tutorial on front page to get started! n spring13/ n Stack Overflow!

n   n Try tutorial on front page to get started! n   spring13/ n Stack Overflow! Announcements n Rainbow grades: HW1-6, Quiz1-5, Exam1 n Still grading: HW7, Quiz6, Exam2 Intro to Haskell n HW8 due today n HW9, Haskell, out tonight, due Nov. 16 th n Individual assignment n Start early!

More information

Programming Languages Lecture 15: Recursive Types & Subtyping

Programming Languages Lecture 15: Recursive Types & Subtyping CSE 230: Winter 2008 Principles of Programming Languages Lecture 15: Recursive Types & Subtyping Ranjit Jhala UC San Diego News? Formalize first-order type systems Simple types (integers and booleans)

More information

Functional Logic Programming Language Curry

Functional Logic Programming Language Curry Functional Logic Programming Language Curry Xiang Yin Department of Computer Science McMaster University November 9, 2010 Outline Functional Logic Programming Language 1 Functional Logic Programming Language

More information

The design of a programming language for provably correct programs: success and failure

The design of a programming language for provably correct programs: success and failure The design of a programming language for provably correct programs: success and failure Don Sannella Laboratory for Foundations of Computer Science School of Informatics, University of Edinburgh http://homepages.inf.ed.ac.uk/dts

More information

Graphical Untyped Lambda Calculus Interactive Interpreter

Graphical Untyped Lambda Calculus Interactive Interpreter Graphical Untyped Lambda Calculus Interactive Interpreter (GULCII) Claude Heiland-Allen https://mathr.co.uk mailto:claude@mathr.co.uk Edinburgh, 2017 Outline Lambda calculus encodings How to perform lambda

More information

Let Arguments Go First

Let Arguments Go First Let Arguments Go First Ningning Xie and Bruno C. d. S. Oliveira The University of Hong Kong {nnxie,bruno}@cs.hku.hk Abstract. Bi-directional type checking has proved to be an extremely useful and versatile

More information

Type Driven Development in Idris

Type Driven Development in Idris Type Driven Development in Idris Edwin Brady (ecb10@st-andrews.ac.uk) University of St Andrews, Scotland, UK @edwinbrady Kats Workshop, Dublin, 21st May 2016 Scotland, Home of Functional Programming Welcome

More information

Outline. Introduction Concepts and terminology The case for static typing. Implementing a static type system Basic typing relations Adding context

Outline. Introduction Concepts and terminology The case for static typing. Implementing a static type system Basic typing relations Adding context Types 1 / 15 Outline Introduction Concepts and terminology The case for static typing Implementing a static type system Basic typing relations Adding context 2 / 15 Types and type errors Type: a set of

More information

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics National Institute of Informatics May 31, June 7, June 14, 2010 All Right Reserved. Outline I 1 Parser Type 2 Monad Parser Monad 3 Derived Primitives 4 5 6 Outline Parser Type 1 Parser Type 2 3 4 5 6 What

More information

Chalmers University of Technology. Without adding any primitives to the language, we dene a concurrency monad transformer

Chalmers University of Technology. Without adding any primitives to the language, we dene a concurrency monad transformer J. Functional Programming 1 (1): 1{000, January 1993 c 1993 Cambridge University Press 1 F U N C T I O N A L P E A R L S A Poor Man's Concurrency Monad Koen Claessen Chalmers University of Technology email:

More information

CLF: A logical framework for concurrent systems

CLF: A logical framework for concurrent systems CLF: A logical framework for concurrent systems Thesis Proposal Kevin Watkins Carnegie Mellon University Committee: Frank Pfenning, CMU (Chair) Stephen Brookes, CMU Robert Harper, CMU Gordon Plotkin, University

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 18 Thursday, March 29, 2018 In abstract algebra, algebraic structures are defined by a set of elements and operations

More information

Programming Languages

Programming Languages Programming Languages Tevfik Koşar Lecture - XIII March 2 nd, 2006 1 Roadmap Functional Languages Lambda Calculus Intro to Scheme Basics Functions Bindings Equality Testing Searching 2 1 Functional Languages

More information

CSE 505: Concepts of Programming Languages

CSE 505: Concepts of Programming Languages CSE 505: Concepts of Programming Languages Dan Grossman Fall 2003 Lecture 6 Lambda Calculus Dan Grossman CSE505 Fall 2003, Lecture 6 1 Where we are Done: Modeling mutation and local control-flow Proving

More information

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic 3.4 Deduction and Evaluation: Tools 3.4.1 Conditional-Equational Logic The general definition of a formal specification from above was based on the existence of a precisely defined semantics for the syntax

More information

Quick announcement. Midterm date is Wednesday Oct 24, 11-12pm.

Quick announcement. Midterm date is Wednesday Oct 24, 11-12pm. Quick announcement Midterm date is Wednesday Oct 24, 11-12pm. The lambda calculus = ID (λ ID. ) ( ) The lambda calculus (Racket) = ID (lambda (ID) ) ( )

More information

Towards a Safe Partial Evaluation of Lazy Functional Logic Programs

Towards a Safe Partial Evaluation of Lazy Functional Logic Programs WFLP 2007 Towards a Safe Partial Evaluation of Lazy Functional Logic Programs Sebastian Fischer 1 Department of Computer Science, University of Kiel Olshausenstr. 40, D-24098, Kiel, Germany Josep Silva

More information

Chapter 11 :: Functional Languages

Chapter 11 :: Functional Languages Chapter 11 :: Functional Languages Programming Language Pragmatics Michael L. Scott Copyright 2016 Elsevier 1 Chapter11_Functional_Languages_4e - Tue November 21, 2017 Historical Origins The imperative

More information

Semantics for core Concurrent ML using computation types

Semantics for core Concurrent ML using computation types Semantics for core Concurrent ML using computation types Alan Jeffrey Abstract This paper presents two typed higherorder concurrent functional programming languages based on Reppy s Concurrent ML. The

More information

Mechanising a type-safe model of multithreaded Java with a verified compiler

Mechanising a type-safe model of multithreaded Java with a verified compiler Mechanising a type-safe model of multithreaded Java with a verified compiler Andreas Lochbihler Digital Asset (Switzerland) GmbH Andreas Lochbihler 2 = Isabelle λ β HOL α Andreas Lochbihler 3 Timeline

More information

PARALLEL AND CONCURRENT PROGRAMMING IN HASKELL

PARALLEL AND CONCURRENT PROGRAMMING IN HASKELL Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References PARALLEL AND CONCURRENT PROGRAMMING IN HASKELL AN OVERVIEW Eva Burrows BLDL-Talks Department of Informatics, University of

More information

Simply-Typed Lambda Calculus

Simply-Typed Lambda Calculus #1 Simply-Typed Lambda Calculus #2 Back to School What is operational semantics? When would you use contextual (small-step) semantics? What is denotational semantics? What is axiomatic semantics? What

More information

Introduction to the Lambda Calculus

Introduction to the Lambda Calculus Introduction to the Lambda Calculus Overview: What is Computability? Church s Thesis The Lambda Calculus Scope and lexical address The Church-Rosser Property Recursion References: Daniel P. Friedman et

More information

CS 4110 Programming Languages & Logics. Lecture 28 Recursive Types

CS 4110 Programming Languages & Logics. Lecture 28 Recursive Types CS 4110 Programming Languages & Logics Lecture 28 Recursive Types 7 November 2014 Announcements 2 Foster office hours 11-12pm Guest lecture by Fran on Monday Recursive Types 3 Many languages support recursive

More information

Programming Languages Lecture 14: Sum, Product, Recursive Types

Programming Languages Lecture 14: Sum, Product, Recursive Types CSE 230: Winter 200 Principles of Programming Languages Lecture 4: Sum, Product, Recursive Types The end is nigh HW 3 No HW 4 (= Final) Project (Meeting + Talk) Ranjit Jhala UC San Diego Recap Goal: Relate

More information

Type Inference with Inequalities

Type Inference with Inequalities Type Inference with Inequalities Michael I. Schwartzbach mis@daimi.aau.dk Computer Science Department Aarhus University Ny Munkegade DK-8000 Århus C, Denmark Abstract Type inference can be phrased as constraint-solving

More information

(Refer Slide Time: 4:00)

(Refer Slide Time: 4:00) Principles of Programming Languages Dr. S. Arun Kumar Department of Computer Science & Engineering Indian Institute of Technology, Delhi Lecture - 38 Meanings Let us look at abstracts namely functional

More information

Kent Dybvig, Will Clinger, Matthew Flatt, Mike Sperber, and Anton van Straaten

Kent Dybvig, Will Clinger, Matthew Flatt, Mike Sperber, and Anton van Straaten R6RS Status Report Kent Dybvig, Will Clinger, Matthew Flatt, Mike Sperber, and Anton van Straaten February 24, 2006 1. Overview This status report describes the current state of the R 6 RS standardization

More information

Contextual Equivalence in Lambda-Calculi extended with letrec and with a Parametric Polymorphic Type System

Contextual Equivalence in Lambda-Calculi extended with letrec and with a Parametric Polymorphic Type System Contextual Equivalence in Lambda-Calculi extended with letrec and with a Parametric Polymorphic Type System Manfred Schmidt-Schauß and David Sabel and Frederik Harwath Technical Report Frank-36 Research

More information

Programming with Dependent Types Interactive programs and Coalgebras

Programming with Dependent Types Interactive programs and Coalgebras Programming with Dependent Types Interactive programs and Coalgebras Anton Setzer Swansea University, Swansea, UK 14 August 2012 1/ 50 A Brief Introduction into ML Type Theory Interactive Programs in Dependent

More information

Programming Safe Agents in Blueprint. Alex Muscar University of Craiova

Programming Safe Agents in Blueprint. Alex Muscar University of Craiova Programming Safe Agents in Blueprint Alex Muscar University of Craiova Programmers are craftsmen, and, as such, they are only as productive as theirs tools allow them to be Introduction Agent Oriented

More information

Running Probabilistic. Programs Backwards

Running Probabilistic. Programs Backwards Running Probabilistic Programs Backwards Neil Toronto * Jay McCarthy David Van Horn * * University of Maryland Vassar College ESOP 2015 2015/04/14 Roadmap Probabilistic inference, and why it s hard 1 Roadmap

More information

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Toby Murray, June Andronick, Gerwin Klein λ 1 Last time... λ calculus syntax free variables, substitution β reduction α and η conversion

More information

CPM: A Declarative Package Manager with Semantic Versioning

CPM: A Declarative Package Manager with Semantic Versioning Michael Hanus (CAU Kiel) CPM: A Declarative Package Manager with Semantic Versioning CICLOPS 2017 1 CPM: A Declarative Package Manager with Semantic Versioning Michael Hanus University of Kiel Programming

More information

Types and Programming Languages. Lecture 5. Extensions of simple types

Types and Programming Languages. Lecture 5. Extensions of simple types Types and Programming Languages Lecture 5. Extensions of simple types Xiaojuan Cai cxj@sjtu.edu.cn BASICS Lab, Shanghai Jiao Tong University Fall, 2016 Coming soon Simply typed λ-calculus has enough structure

More information

Informal Semantics of Data. semantic specification names (identifiers) attributes binding declarations scope rules visibility

Informal Semantics of Data. semantic specification names (identifiers) attributes binding declarations scope rules visibility Informal Semantics of Data semantic specification names (identifiers) attributes binding declarations scope rules visibility 1 Ways to Specify Semantics Standards Documents (Language Definition) Language

More information

COMP3151/9151 Foundations of Concurrency Lecture 8

COMP3151/9151 Foundations of Concurrency Lecture 8 1 COMP3151/9151 Foundations of Concurrency Lecture 8 Transactional Memory Liam O Connor CSE, UNSW (and data61) 8 Sept 2017 2 The Problem with Locks Problem Write a procedure to transfer money from one

More information

Multi-paradigm Declarative Languages

Multi-paradigm Declarative Languages Michael Hanus (CAU Kiel) Multi-paradigm Declarative Languages ICLP 2007 1 Multi-paradigm Declarative Languages Michael Hanus Christian-Albrechts-University of Kiel Programming Languages and Compiler Construction

More information

Polymorphism. Lecture 19 CS 565 4/17/08

Polymorphism. Lecture 19 CS 565 4/17/08 Polymorphism Lecture 19 CS 565 4/17/08 The Limitations of F 1 (simply-typed λ- calculus) In F 1 each function works exactly for one type Example: the identity function id = λx:τ. x : τ τ We need to write

More information

Lightweight Concurrency Primitives for GHC. Peng Li Simon Peyton Jones Andrew Tolmach Simon Marlow

Lightweight Concurrency Primitives for GHC. Peng Li Simon Peyton Jones Andrew Tolmach Simon Marlow Lightweight Concurrency Primitives for GHC Peng Li Simon Peyton Jones Andrew Tolmach Simon Marlow The Problem GHC has rich support for concurrency & parallelism: Lightweight threads (fast) Transparent

More information

Dependent types and program equivalence. Stephanie Weirich, University of Pennsylvania with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg

Dependent types and program equivalence. Stephanie Weirich, University of Pennsylvania with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg Dependent types and program equivalence Stephanie Weirich, University of Pennsylvania with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg Doing dependent types wrong without going wrong Stephanie Weirich,

More information

MPRI course 2-4 Functional programming languages Exercises

MPRI course 2-4 Functional programming languages Exercises MPRI course 2-4 Functional programming languages Exercises Xavier Leroy October 13, 2016 Part I: Interpreters and operational semantics Exercise I.1 (**) Prove theorem 2 (the unique decomposition theorem).

More information

1. Abstract syntax: deep structure and binding. 2. Static semantics: typing rules. 3. Dynamic semantics: execution rules.

1. Abstract syntax: deep structure and binding. 2. Static semantics: typing rules. 3. Dynamic semantics: execution rules. Introduction Formal definitions of programming languages have three parts: CMPSCI 630: Programming Languages Static and Dynamic Semantics Spring 2009 (with thanks to Robert Harper) 1. Abstract syntax:

More information

More Untyped Lambda Calculus & Simply Typed Lambda Calculus

More Untyped Lambda Calculus & Simply Typed Lambda Calculus Concepts in Programming Languages Recitation 6: More Untyped Lambda Calculus & Simply Typed Lambda Calculus Oded Padon & Mooly Sagiv (original slides by Kathleen Fisher, John Mitchell, Shachar Itzhaky,

More information

Programming language design and analysis

Programming language design and analysis Programming language design and analysis Introduction Marius Minea 25 September 2017 Why this course? Programming languages are fundamental and one of the oldest CS fields Language design is an important

More information

Part VI. Imperative Functional Programming

Part VI. Imperative Functional Programming Part VI Imperative Functional Programming Chapter 14 Mutable Storage MinML is said to be a pure language because the execution model consists entirely of evaluating an expression for its value. ML is

More information

CS The IO Monad. Slides from John Mitchell, K Fisher, and S. Peyton Jones

CS The IO Monad. Slides from John Mitchell, K Fisher, and S. Peyton Jones CS 242 2012 The IO Monad Slides from John Mitchell, K Fisher, and S. Peyton Jones Reading: Tackling the Awkward Squad, Sections 1-2 Real World Haskell, Chapter 7: I/O Beauty... Functional programming is

More information

CSE-505: Programming Languages. Lecture 20.5 Recursive Types. Zach Tatlock 2016

CSE-505: Programming Languages. Lecture 20.5 Recursive Types. Zach Tatlock 2016 CSE-505: Programming Languages Lecture 20.5 Recursive Types Zach Tatlock 2016 Where are we System F gave us type abstraction code reuse strong abstractions different from real languages (like ML), but

More information

Representing Cyclic Structures as Nested Datatypes. Makoto Hamana

Representing Cyclic Structures as Nested Datatypes. Makoto Hamana Representing Cyclic Structures as Nested Datatypes Makoto Hamana Department of Computer Science, Gunma University, Japan Joint work with Neil Ghani Tarmo Uustalu Varmo Vene U. Nottingham U. Tallinn U.

More information

Typed Lambda Calculus. Chapter 9 Benjamin Pierce Types and Programming Languages

Typed Lambda Calculus. Chapter 9 Benjamin Pierce Types and Programming Languages Typed Lambda Calculus Chapter 9 Benjamin Pierce Types and Programming Languages t ::= x x. t t t Call-by-value small step perational Semantics terms variable v ::= values abstraction x. t abstraction values

More information

λ calculus is inconsistent

λ calculus is inconsistent Content Rough timeline COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Gerwin Klein, June Andronick, Toby Murray λ Intro & motivation, getting started [1] Foundations & Principles

More information

Functional Programming in Embedded System Design

Functional Programming in Embedded System Design Functional Programming in Embedded System Design Al Strelzoff CTO, E-TrolZ Lawrence, Mass. al.strelzoff@e-trolz.com 1/19/2006 Copyright E-TrolZ, Inc. 1 of 20 Hard Real Time Embedded Systems MUST: Be highly

More information

Lambda Calculus and Type Inference

Lambda Calculus and Type Inference Lambda Calculus and Type Inference Björn Lisper Dept. of Computer Science and Engineering Mälardalen University bjorn.lisper@mdh.se http://www.idt.mdh.se/ blr/ August 17, 2007 Lambda Calculus and Type

More information

Value Recursion in Monadic Computations

Value Recursion in Monadic Computations Value Recursion in Monadic Computations Levent Erkök OGI School of Science and Engineering, OHSU Advisor: John Launchbury June 24th, 2002 Outline Recursion and effects Motivating examples Value recursion

More information

Refinement Types as Proof Irrelevance. William Lovas with Frank Pfenning

Refinement Types as Proof Irrelevance. William Lovas with Frank Pfenning Refinement Types as Proof Irrelevance William Lovas with Frank Pfenning Overview Refinement types sharpen existing type systems without complicating their metatheory Subset interpretation soundly and completely

More information

CSE505, Fall 2012, Midterm Examination October 30, 2012

CSE505, Fall 2012, Midterm Examination October 30, 2012 CSE505, Fall 2012, Midterm Examination October 30, 2012 Rules: The exam is closed-book, closed-notes, except for one side of one 8.5x11in piece of paper. Please stop promptly at Noon. You can rip apart

More information

One of a number of approaches to a mathematical challenge at the time (1930): Constructibility

One of a number of approaches to a mathematical challenge at the time (1930): Constructibility λ Calculus Church s λ Calculus: Brief History One of a number of approaches to a mathematical challenge at the time (1930): Constructibility (What does it mean for an object, e.g. a natural number, to

More information

(Refer Slide Time: 01:01)

(Refer Slide Time: 01:01) Principles of Programming Languages Dr. S. Arun Kumar Department of Computer Science & Engineering Indian Institute of Technology, Delhi Lecture - 32 Monomorphism Welcome to lecture 32. So today I will

More information

Pure (Untyped) λ-calculus. Andrey Kruglyak, 2010

Pure (Untyped) λ-calculus. Andrey Kruglyak, 2010 Pure (Untyped) λ-calculus Andrey Kruglyak, 2010 1 Pure (untyped) λ-calculus An example of a simple formal language Invented by Alonzo Church (1936) Used as a core language (a calculus capturing the essential

More information

Transformation and Analysis of Haskell Source Code

Transformation and Analysis of Haskell Source Code Transformation and Analysis of Haskell Source Code Neil Mitchell www.cs.york.ac.uk/~ndm λ Why Haskell? Functional programming language Short, beautiful programs Referential transparency Easier to reason

More information

Lambda Calculus. Type Systems, Lectures 3. Jevgeni Kabanov Tartu,

Lambda Calculus. Type Systems, Lectures 3. Jevgeni Kabanov Tartu, Lambda Calculus Type Systems, Lectures 3 Jevgeni Kabanov Tartu, 13.02.2006 PREVIOUSLY ON TYPE SYSTEMS Arithmetical expressions and Booleans Evaluation semantics Normal forms & Values Getting stuck Safety

More information

Type families and data kinds

Type families and data kinds Type families and data kinds AFP Summer School Wouter Swierstra 1 Today How do GADTs work? Kinds beyond * Programming with types 2 Calling functions on vectors Given two vectors xs : Vec a n and ys : Vec

More information

Introduction to Haskell

Introduction to Haskell Introduction to Haskell Matt Mullins Texas A&M Computing Society October 6, 2009 Matt Mullins (TACS) Introduction to Haskell October 6, 2009 1 / 39 Outline Introduction to Haskell Functional Programming

More information