Introduction to Functions

Size: px
Start display at page:

Download "Introduction to Functions"

Transcription

1 Introduction to Functions Motivation to use function notation For the line y = 2x, when x=1, y=2; when x=2, y=4; when x=3, y=6;... We can see the relationship: the y value is always twice of the x value. There is an easier way to write this relationship. First, we give this relationship a name, say f. Next, instead of writing f ( x) = 2x. Now, instead of writing the above lines, we can write: f ( 1) = 2, f ( 2) = 4, f ( 3) = 6,... y = 2x, we write This is easier than writing "when...,..." This is one of the motivations to introduce functions. If you are new to function notation, simply treat f (x) in the same way as y. Another motivation is that we can differentiate functions. Say we have say "y", it's hard to tell which function we are referring to. With would be no confusion. y = 2x and y = 3x. When we f ( x) = 2x and g( x) = 3x, there Evaluate Functions Evaluating a function at a certain value uses the same concept as evaluating an expression, which we learned earlier. [Example 1] If f x = 2x + 3, evaluate f 1 and f 2. [Solution] Evaluating f 1 is the same as asking: When x=1, y=? In function notation, we don't use the letter y, and instead use f x. If f x = 2x + 3, then f 1 = = 5, and f 2 = = 1. This is similar to: If y = 2x + 3, then when x = 1, y = 5; and that when x = 2, y = 1. For beginners, simply treat f(x) as y.

2 The solutions f 1 = 5 and f 2 = 1 imply that the points (1,5) and (- 2,- 1) are on the graph of f x. Be careful when squares are involved. If g x = x!, then g 1 = ( 1)! = 1. If h x = x!, then h 2 = ( 2)! = 4. What relationship qualifies as a function? A relationship qualifies as a function if it gives one and only one output for each input. Look at Figure 1. Figure 1: a function and a non- function In Figure 1, there are two relationships. For f (x), we have f ( 2) = 4, f (4) = 8, f (5) = 7. This is a function, because for each input, there is one and only one output. For g (x), we have g ( 1) = 2, g(2) = 3, g(2) = 4. This is not a function because when 2 is the input, there are two different outputs. This disqualifies g (x) as a function. We can also write f (x) as a set of ordered pairs: {(2, 4), (5, 7), (4, 8)}, and g (x) as {(1, 2), (2, 3), (2, 4)}. In this situation, the symbol { } means a set of objects; the symbol ( ) means an ordered pair. Let's look at the graphs of f (x) and g (x) :

3 Figure 2: graphs of f(x) and g(x) For the graph of g (x), notice that the vertical line passes two points. This disqualifies g (x) as a function, because it has two output values for the input value x=2. We call this test Vertical Line Test. If a vertical line passes two points in the graph of a relationship, this relationship is disqualified as a function. As a comparison, the graph of f (x) passes the vertical line test, so f (x) qualifies as a function. [Example 2] Tell whether m (x) and n (x) are functions if m (x) ={(- 1, 3), (0, 3), (1, 3)}, and n (x) ={(3, - 1), (3, 0), (3, 1)}. [Solution] m (x) is a function because for each input, there is one and only one output. In other words, for input x=- 1, there is one and only one output value y=3; for input x=0, there is one and only one output value y=3; for input x=1, there is one and only one output value y=3. n (x) is not a function, because for input x=3, there are 3 different output values. We can also tell whether a relationship is a function by looking at its graph.

4 [Example 3] Tell whether h (x) and p (x) are functions based on their graphs. Figure 3: Graphs of two relationships, h(x) and p(x) [Solution] h (x) is a function because it passes vertical line test. p (x) is not a function because it fails vertical line test. Terms about Functions Assume d r = 2r models the length of a circle s diameter (value of d), given the length of the circle s radius (value of r). We say d(r) is a function of r. We call r the input value, and d(r) the output value. For example, when the input value is r = 3 cm, the output value would be d 3 = 6 cm. The variable r is also called the independent variable, and d(r) is called the dependent variable. This is because the value of d(r) depends on the value of r. Domain and Range All input values of a function make up the function's domain, and all output values of a function make up the function's range. For function m (x) = {(- 1, 3), (0, 3), (1, 3)}, the domain is {- 1, 0, 1} and the range is {3}. Note that there is no need to write duplicate values in a set. If a function's domain and range are continuous data sets, we use interval notation. See Example 4 below.

5 [Example 4] Write the domain and range of f (x) and g (x) based on their graphs. Figure 4: graphs of f(x) and g(x) [Solution] Recall that an open circle in a graph means "not including" or "exclusive", and a closed circle in a graph means "including" or "inclusive". For f (x), the domain is (2, 5], and the range is (3, 6]. For g (x), the domain is [2, 5], and the range is [3, 6]. We use set notation to write non- continuous data set, like {- 1, 0, 1}; we use interval notation to write continuous data set, like (2, 5].

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}.

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}. September 8, 208 62B Math Test Chapter Name: Part : Objective Questions [ mark each, total 2 marks]. State whether each of the following statements is TRUE or FALSE a) The mapping rule (x, y) (-x, y) represents

More information

Lesson 24 - Exploring Graphical Transformations and Composite Functions

Lesson 24 - Exploring Graphical Transformations and Composite Functions (A) Lesson Objectives a. Review composite functions and how it can be represented numerically, algebraically and graphically. b. Introduce graphical transformations c. Understand that graphical transformations

More information

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2.

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2. November 5, 2008 Name The total number of points available is 139 work Throughout this test, show your 1 (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2 (a) Use the product rule to find f (x)

More information

Sect Graphing Techniques: Transformations

Sect Graphing Techniques: Transformations Sect. - Graphing Techniques: Transformations Recall the general shapes of each of the following basic functions and their properties: Identity Function Square Function f(x) = x f(x) = x - - - - - - - -

More information

Standard Boolean Forms

Standard Boolean Forms Standard Boolean Forms In this section, we develop the idea of standard forms of Boolean expressions. In part, these forms are based on some standard Boolean simplification rules. Standard forms are either

More information

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket Unit 3b Remediation Ticket Question: Which function increases faster, f(x) or g(x)? f(x) = 5x + 8; two points from g(x): (-2, 4) and (3, 10) Answer: In order to compare the rate of change (roc), you must

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Aleandre Bouchard Announcements New webwork will be release by end of day today, due one week later. Plan for today

More information

Math 370 Exam 1 Review Name. Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x.

Math 370 Exam 1 Review Name. Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x. Math 370 Exam 1 Review Name Determine whether the relation is a function. 1) {(-6, 6), (-6, -6), (1, 3), (3, -8), (8, -6)} Not a function The x-value -6 corresponds to two different y-values, so this relation

More information

2D Geometry Part 2: Area

2D Geometry Part 2: Area Slide 1 / 81 Slide 2 / 81 2D Geometry Part 2: Area Rectangles Parallelograms Triangles Trapezoids Circles Mixed Review Irregular Shapes Shaded Regions Click on a topic to go to that section Slide 3 / 81

More information

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry.

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry. HW Worksheet Name: Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of smmetr..) f(x)= x + - - - - x - - - - Vertex: Max or min? Axis of smmetr:.)

More information

2D Geometry Part 2: Area

2D Geometry Part 2: Area Slide 1 / 81 2D Geometry Part 2: Area Table of Contents Slide 2 / 81 Rectangles Parallelograms Triangles Trapezoids Circles Mixed Review Irregular Shapes Shaded Regions Click on a topic to go to that section

More information

Year 6 programme of study

Year 6 programme of study Year 6 programme of study Number number and place value read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to a required degree of accuracy

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Math 124 Final Examination Winter 2016 !!! READ...INSTRUCTIONS...READ!!!

Math 124 Final Examination Winter 2016 !!! READ...INSTRUCTIONS...READ!!! Math 124 Final Examination Winter 2016 Print Your Name Signature Student ID Number Quiz Section Professor s Name TA s Name!!! READ...INSTRUCTIONS...READ!!! 1. Your exam contains 7 problems and 9 pages;

More information

(f) Find an interval over which f is concave upwards.

(f) Find an interval over which f is concave upwards. April 4, 2005 Name The total number of points available is 157. work. Throughout this test, show your 1. (24 points) Consider the function f(x) = 2x+9. For this function there are two 6x+3 important intervals:

More information

MATHEMATICS Key Stage 2 Year 6

MATHEMATICS Key Stage 2 Year 6 MATHEMATICS Key Stage 2 Year 6 Key Stage Strand Objective Child Speak Target Greater Depth Target [EXS] [KEY] Read, write, order and compare numbers up to 10 000 000 and determine the value of each digit.

More information

Expected Standards for Year 6: Mathematics Curriculum (taken from ncetm progression maps)

Expected Standards for Year 6: Mathematics Curriculum (taken from ncetm progression maps) Expected Standards for Year 6: Mathematics Curriculum (taken from ncetm progression maps) Place Value Addition and Subtraction Multiplication and Division Fractions Ratio and Proportion Measurement Geometry

More information

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents Slide 1 / 181 Algebra II Slide 2 / 181 Conic Sections 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 181 Review of Midpoint and Distance Formulas Introduction

More information

Boolean Algebra & Digital Logic

Boolean Algebra & Digital Logic Boolean Algebra & Digital Logic Boolean algebra was developed by the Englishman George Boole, who published the basic principles in the 1854 treatise An Investigation of the Laws of Thought on Which to

More information

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions 2 Graphs and Functions 2 Graphs and Functions 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions Sections 2.1 2.4 2008 Pearson Addison-Wesley. All rights reserved Copyright

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions 6 Chapter 1 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) x 3 5x 2 4x + 20.

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

Number- Algebra. Problem solving Statistics Investigations

Number- Algebra. Problem solving Statistics Investigations Place Value Addition, Subtraction, Multiplication and Division Fractions Position and Direction Decimals Percentages Algebra Converting units Perimeter, Area and Volume Ratio Properties of Shapes Problem

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.3 New Functions from Old Functions In this section, we will learn: How to obtain new functions from old functions and how to combine pairs of functions. NEW

More information

Section 3.2 Properties of a Function s Graph

Section 3.2 Properties of a Function s Graph Section 3. Properties of a Function s Graph Objectives Find the intercepts of a function given its formula. Given the graph of a function, identify the domain and range of the function. Approximate relative

More information

AP CALCULUS BC 2013 SCORING GUIDELINES

AP CALCULUS BC 2013 SCORING GUIDELINES AP CALCULUS BC 2013 SCORING GUIDELINES Question 4 The figure above shows the graph of f, the derivative of a twice-differentiable function f, on the closed interval 0 x 8. The graph of f has horizontal

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

UC Davis MAT 012, Summer Session II, Midterm Examination

UC Davis MAT 012, Summer Session II, Midterm Examination UC Davis MAT 012, Summer Session II, 2018 Midterm Examination Name: Student ID: DATE: August 24, 2018 TIME ALLOWED: 100 minutes INSTRUCTIONS 1. This examination paper contains SEVEN (7) questions and comprises

More information

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit Slide 1 / 180 Slide 2 / 180 P alculus Review Unit 2015-10-20 www.njctl.org Table of ontents lick on the topic to go to that section Slide 3 / 180 Slopes Equations of Lines Functions Graphing Functions

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation Math 2 Spring 2017 Unit 5 Bundle Transformational Graphing and Inverse Variation 1 Contents Transformations of Functions Day 1... 3 Transformations with Functions Day 1 HW... 10 Transformations with Functions

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

Solve the following system of equations. " 2x + 4y = 8 # $ x 3y = 1. 1 cont d. You try:

Solve the following system of equations.  2x + 4y = 8 # $ x 3y = 1. 1 cont d. You try: 1 Solve the following system of equations. " 2x + 4y = 8 # $ x 3y = 1 Method 1: Substitution 1. Solve for x in the second equation. 1 cont d Method 3: Eliminate y 1. Multiply first equation by 3 and second

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.5 Exponential Functions In this section, we will learn about: Exponential functions and their applications. EXPONENTIAL FUNCTIONS The function f(x) = 2 x is

More information

Answers. (1) Parallelogram. Remember: A four-sided flat shape where the opposite sides are parallel is called a parallelogram. Here, AB DC and BC AD.

Answers. (1) Parallelogram. Remember: A four-sided flat shape where the opposite sides are parallel is called a parallelogram. Here, AB DC and BC AD. Answers (1) Parallelogram Remember: A four-sided flat shape where the opposite sides are parallel is called a parallelogram. Here, AB DC and BC AD. (2) straight angle The angle whose measure is 180 will

More information

Mini-Project 1: The Library of Functions and Piecewise-Defined Functions

Mini-Project 1: The Library of Functions and Piecewise-Defined Functions Name Course Days/Start Time Mini-Project 1: The Library of Functions and Piecewise-Defined Functions Part 2: Piecewise-Defined Functions A piecewise-defined function is two or more functions combined into

More information

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved.

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with a Graphing Calculator Graphing Piecewise Defined Functions

More information

Oral and Mental calculation

Oral and Mental calculation Oral and Mental calculation Read and write any integer and know what each digit represents. Read and write decimal notation for tenths, hundredths and thousandths and know what each digit represents. Order

More information

hp calculators HP 33S Using the HP Solver Part 2 Using the HP Solver Practice Example: Solving an Expression in a Program

hp calculators HP 33S Using the HP Solver Part 2 Using the HP Solver Practice Example: Solving an Expression in a Program Using the HP Solver Practice Example: Solving an Expression in a Program Practice Example: Solving a Program with Several Variables Practice Example: Using the Solver in a Program Using the HP Solver Part

More information

Number Mulitplication and Number and Place Value Addition and Subtraction Division

Number Mulitplication and Number and Place Value Addition and Subtraction Division Number Mulitplication and Number and Place Value Addition and Subtraction Division read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to

More information

Math 124 Final Examination Winter 2015 !!! READ...INSTRUCTIONS...READ!!!

Math 124 Final Examination Winter 2015 !!! READ...INSTRUCTIONS...READ!!! 1 Math 124 Final Examination Winter 2015 Print Your Name Signature Student ID Number Quiz Section Professor s Name TA s Name!!! READ...INSTRUCTIONS...READ!!! 1. Your exam contains 7 problems and 11 pages;

More information

New Swannington Primary School 2014 Year 6

New Swannington Primary School 2014 Year 6 Number Number and Place Value Number Addition and subtraction, Multiplication and division Number fractions inc decimals & % Ratio & Proportion Algebra read, write, order and compare numbers up to 0 000

More information

Y6 MATHEMATICS TERMLY PATHWAY NUMBER MEASURE GEOMETRY STATISTICS

Y6 MATHEMATICS TERMLY PATHWAY NUMBER MEASURE GEOMETRY STATISTICS Autumn Number & Place value read, write, order and compare numbers up to 10 000 000 and determine the value of each digit round any whole number to a required degree of accuracy use negative numbers in

More information

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Supplemental 1.5 Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Interval Notation Many times in this class we will only want to talk about what

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit Slide 1 / 180 Slide 2 / 180 P alculus Review Unit 2015-10-20 www.njctl.org Table of ontents lick on the topic to go to that section Slide 3 / 180 Slopes Equations of Lines Functions Graphing Functions

More information

. As x gets really large, the last terms drops off and f(x) ½x

. As x gets really large, the last terms drops off and f(x) ½x Pre-AP Algebra 2 Unit 8 -Lesson 3 End behavior of rational functions Objectives: Students will be able to: Determine end behavior by dividing and seeing what terms drop out as x Know that there will be

More information

Maths - Knowledge Key Performance Indicator Milestones Milestones Year 5 Year 6

Maths - Knowledge Key Performance Indicator Milestones Milestones Year 5 Year 6 Addition and Subtraction Number and Place Value Maths - Knowledge Key Performance Indicator Milestones Milestones Year 5 Year 6 I can read numbers to at least 1 000 000 I can write numbers to at least

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

3. Solve the following. Round to the nearest thousandth.

3. Solve the following. Round to the nearest thousandth. This review does NOT cover everything! Be sure to go over all notes, homework, and tests that were given throughout the semester. 1. Given g ( x) i, h( x) x 4x x, f ( x) x, evaluate the following: a) f

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section 1.5 Transformation of Functions 61 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

MEI Desmos Tasks for AS Pure

MEI Desmos Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x² 4x + 1 2. Add a line, e.g. y = x 3 3. Select the points of intersection of the line and the curve. What

More information

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES 7 CALCULUS II DR. YOU 98 LECTURE 3- AREA OF A REGION BOUNDED BY CURVES If y = f(x) and y = g(x) are continuous on an interval [a, b] and f(x) g(x) for all x in [a, b], then the area of the region between

More information

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Number Number system and counting Fractions and decimals

More information

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas

Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Year 6 Step 1 Step 2 Step 3 End of Year Expectations Using and Applying I can solve number problems and practical problems involving a range of ideas Number Number system and counting Fractions and decimals

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Math 2 Final Exam Study Guide. Translate down 2 units (x, y-2)

Math 2 Final Exam Study Guide. Translate down 2 units (x, y-2) Math 2 Final Exam Study Guide Name: Unit 2 Transformations Translation translate Slide Moving your original point to the left (-) or right (+) changes the. Moving your original point up (+) or down (-)

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

5.7 Solving Linear Inequalities

5.7 Solving Linear Inequalities 5.7 Solving Linear Inequalities Objectives Inequality Symbols Graphing Inequalities both simple & compound Understand a solution set for an inequality Solving & Graphing a Simple Linear Inequality Solving

More information

Functions. Copyright Cengage Learning. All rights reserved.

Functions. Copyright Cengage Learning. All rights reserved. Functions Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with

More information

6.1 Evaluate Roots and Rational Exponents

6.1 Evaluate Roots and Rational Exponents VOCABULARY:. Evaluate Roots and Rational Exponents Radical: We know radicals as square roots. But really, radicals can be used to express any root: 0 8, 8, Index: The index tells us exactly what type of

More information

Unit 6 Part I. Quadratic Functions 2/9/2017 2/23/2017

Unit 6 Part I. Quadratic Functions 2/9/2017 2/23/2017 Unit 6 Part I Quadratic Functions 2/9/2017 2/23/2017 By DeviantArt user MagicFiretrucks Name: By the end of this unit, you will be able to Analyze the characteristics of graphs of quadratic functions Graph

More information

Area of Polygons And Circles

Area of Polygons And Circles Name: Date: Geometry 2011-2012 Area of Polygons And Circles Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the area and perimeter of Parallelograms and Triangles Pgs: 1-5 HW: Pgs: 6-7 DAY

More information

1-3 Continuity, End Behavior, and Limits

1-3 Continuity, End Behavior, and Limits Determine whether each function is continuous at the given x-value(s). Justify using the continuity test. If discontinuous, identify the type of discontinuity as infinite, jump, or removable. 1. f (x)

More information

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS 11 5 ARE TO BE DONE WITHOUT A CALCULATOR Name 2 CALCULATOR MAY BE USED FOR 1-10 ONLY Use the table to find the following. x -2 2 5-0 7 2 y 12 15 18

More information

MAT 1475 Final Exam Review Problems

MAT 1475 Final Exam Review Problems MAT1475 Final Review Spring 2016 Spring 2016 MAT 1475 Final Exam Review Problems Revised by Prof. Kostadinov, Fall 2015, Fall 2014, Fall 2013, Fall 2012, Fall 2011, Fall 2010 Revised by Prof. Africk and

More information

Mr. Whelan Name: Block:

Mr. Whelan Name: Block: Mr. Whelan Name: Block: Geometry/Trig Unit 10 Area and Volume of Solids Notes Packet Day 1 Notes - Prisms Rectangular Prism: How do we find Total Area? Example 1 6cm Find the area of each face: Front:

More information

Year 6 Term 1 and

Year 6 Term 1 and Year 6 Term 1 and 2 2016 Points in italics are either where statements have been moved from other year groups or to support progression where no statement is given Oral and Mental calculation Read and

More information

CS149: Elements of Computer Science. Fundamental C++ objects

CS149: Elements of Computer Science. Fundamental C++ objects Fundamental C++ objects 1. Compiler needs to know in advance how to store different data types 2. Variable name + type, e.g. (price, integer) 3. Types: (a) Integers: short, long, signed (b) Floating Points:

More information

Determine whether the relation represents a function. If it is a function, state the domain and range. 1)

Determine whether the relation represents a function. If it is a function, state the domain and range. 1) MAT 103 TEST 2 REVIEW NAME Determine whether the relation represents a function. If it is a function, state the domain and range. 1) 3 6 6 12 9 18 12 24 Circle the correct response: Function Not a function

More information

1. Solve the following system of equations below. What does the solution represent? 5x + 2y = 10 3x + 5y = 2

1. Solve the following system of equations below. What does the solution represent? 5x + 2y = 10 3x + 5y = 2 1. Solve the following system of equations below. What does the solution represent? 5x + 2y = 10 3x + 5y = 2 2. Given the function: f(x) = a. Find f (6) b. State the domain of this function in interval

More information

TeeJay Publishers Homework for Level D book Ch 10-2 Dimensions

TeeJay Publishers Homework for Level D book Ch 10-2 Dimensions Chapter 10 2 Dimensions Exercise 1 1. Name these shapes :- a b c d e f g 2. Identify all the 2 Dimensional mathematical shapes in these figures : (d) (e) (f) (g) (h) 3. Write down the special name for

More information

Year 6 Maths Long Term Plan

Year 6 Maths Long Term Plan Week & Focus 1 Number and Place Value Unit 1 2 Subtraction Value Unit 1 3 Subtraction Unit 3 4 Subtraction Unit 5 5 Unit 2 6 Division Unit 4 7 Fractions Unit 2 Autumn Term Objectives read, write, order

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

GCSE Maths: Formulae you ll need to know not

GCSE Maths: Formulae you ll need to know not GCSE Maths: Formulae you ll need to know As provided by AQA, these are the formulae required for the new GCSE These will not be given in the exam, so you will need to recall as well as use these formulae.

More information

11.7 Exploring Similar Solids

11.7 Exploring Similar Solids 11.7 Exploring Similar Solids Learning Objectives Find the relationship between similar solids and their surface areas and volumes. Review Queue 1. We know that every circle is similar, is every sphere

More information

Year 6.1- Number and Place Value 2 weeks- Autumn 1 Read, write, order and compare numbers up to and determine the value of each digit.

Year 6.1- Number and Place Value 2 weeks- Autumn 1 Read, write, order and compare numbers up to and determine the value of each digit. Year 6.1- Number and Place Value 2 weeks- Autumn 1 Read, write, order and compare numbers up to 10 000 000 and determine the value of each digit. Round any whole number to a required degree of accuracy.

More information

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. Math 106/108 Final Exam Page 1 Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. 1. Factor completely. Do not solve. a) 2x

More information

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week14. Number- addition subtraction,

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week14. Number- addition subtraction, Year 6 Autumn Term NC Objectives Week 13 Week14 Number - Place Value Read, write, order and compare numbers up to 10,000,000 and determine the value of each digit. Round any whole number to a required

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Math 3 Coordinate Geometry Part 2 Graphing Solutions

Math 3 Coordinate Geometry Part 2 Graphing Solutions Math 3 Coordinate Geometry Part 2 Graphing Solutions 1 SOLVING SYSTEMS OF EQUATIONS GRAPHICALLY The solution of two linear equations is the point where the two lines intersect. For example, in the graph

More information

B.Stat / B.Math. Entrance Examination 2017

B.Stat / B.Math. Entrance Examination 2017 B.Stat / B.Math. Entrance Examination 017 BOOKLET NO. TEST CODE : UGA Forenoon Questions : 0 Time : hours Write your Name, Registration Number, Test Centre, Test Code and the Number of this Booklet in

More information

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) =

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) = 7.1 What is x cos x? 1. Fill in the right hand side of the following equation by taking the derivative: (x sin x = 2. Integrate both sides of the equation. Instructor: When instructing students to integrate

More information

Medium Term Plan Mathematics Year 6. The Medium Term Plan lists the objectives to be covered each half term for the teaching of Mathematics

Medium Term Plan Mathematics Year 6. The Medium Term Plan lists the objectives to be covered each half term for the teaching of Mathematics Medium Term Plan Mathematics Year 6 The Medium Term Plan lists the objectives to be covered each half term for the teaching of Mathematics problem, an appropriate degree of accuracy the four op s Solve

More information

Lesson 2b Functions and Function Operations

Lesson 2b Functions and Function Operations As we continue to work with more complex functions it is important that we are comfortable with Function Notation, opertions on Functions and opertions involving more than one function. In this lesson,

More information

1.2 Reflections and Stretches

1.2 Reflections and Stretches Chapter Part : Reflections.2 Reflections and Stretches Pages 6 3 Investigating a reflection in the x axis:. a) Complete the following table for and sketch on the axis provided. x 2 0 2 y b) Now sketch

More information

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value?

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value? We will work with the vertex, orientation, and x- and y-intercepts of these functions. Intermediate algebra Class notes More Graphs of Quadratic Functions (section 11.6) In the previous section, we investigated

More information

Parametric Surfaces and Surface Area

Parametric Surfaces and Surface Area Parametric Surfaces and Surface Area What to know: 1. Be able to parametrize standard surfaces, like the ones in the handout.. Be able to understand what a parametrized surface looks like (for this class,

More information

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines Spline Models Introduction to CS and NCS Regression splines Smoothing splines 3 Cubic Splines a knots: a< 1 < 2 < < m

More information

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth.

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth. Volume of Cylinders As with prisms, the area of the base of a cylinder tells the number of cubic units in one layer. The height tells how many layers there are in the cylinder. The volume V of a cylinder

More information

S56 (5.1) Graphs of Functions.notebook September 22, 2016

S56 (5.1) Graphs of Functions.notebook September 22, 2016 Daily Practice 8.9.2016 Q1. Write in completed square form y = 3x 2-18x + 4 Q2. State the equation of the line that passes through (2, 3) and is parallel to the x - axis Q1. If f(x) = 3x + k and g(x) =

More information

(6.6) Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles.

(6.6) Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles. (6.6) Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles. (6.6.a) Geometry and spatial reasoning. The student uses geometric vocabulary to describe

More information