815338A Principles of Programming Languages. Exercise 7 answers

Size: px
Start display at page:

Download "815338A Principles of Programming Languages. Exercise 7 answers"

Transcription

1 815338A Principles of Programming Languages. Exercise 7 answers The topic of this exercise is logic programming in Prolog. Prolog programs can be executed at or Task 1. At first we explore making queries in Prolog. We model the following graph consisting of nodes a,b,c,d,e,f,g a f b e c d g by inputting the following facts that define the edges of the graph: edge(a,b). edge(a,e). edge(b,c). edge(b,e). edge(a,f). edge(c,d). edge(d,g). edge(e,f). Write and perform thereafter the queries edge(a,x),write(x),write(' '),fail. edge(x,f),write(x),write(' '),fail. edge(x,y),write(x),write(' '),write(y),nl,fail. The first query prints the nodes that are end nodes of the edges starting from the node a. The second query prints the nodes that are the start nodes of the edges that end to the node f and the third query prints all the edges of the graph. Write a rule path(x,y) to check, whether there is a path from the node X to the node Y in the graph. Test your rule by making queries path(a,x),write(x),write(' '),fail. path(x,f),write(x),write(' '),fail.

2 Answer. When the three first-mentioned queries are made, the following outputs are obtained: b e f // odes that are end nodes of edges from a a e // odes that are start nodes of edges to f a b a e b c b e a f e f c d d g // All the edges We can start determining a rule for path, when we observe that the simplest path is an edge. Thereafter the rule can be defined such that a path consists of an edge and a path from the end node of this edge to the goal node. Hence we get path(x,y):-edge(x,y). path(x,y):-edge(x,z),path(z,y). When we apply this rule by making a query path(a,x), write(x), fail. we get as an answer the nodes b e f c e d g f f. The same node can thus occur several times in the result. Lists are an important part of Prolog programming; the following tasks concern list processing on Prolog. A list is represented with square brackets, the elements separated with commas, as [1,2,3,4], for instance. List can be processed by separating its head and tail as in Haskell denoting [H T]. A couple of examples follow. Prolog contains a built-in function append that appends two lists. A corresponding function could be written as follows: catenate([],x,x). catenate([h T],X,[H L]):- catenate(t,x,l). Appending an empty list to another list does not change the list; this is represented as a fact. The other line defines a rule, according to which the head of the first list is inserted to the result list after the tail has been appended. We could print the result of an example by making a query catenate([1,2,3],[4,5],x),write(x). The next predicate finds out, whether a term is a member of list or not

3 mmber(x,[x T]). mmber(x,[h T]):- mmber(x,t). A negation of a predicate can be produced by using the operator \+ : not_mmber(x,l):- \+ mmber(x,l). Prolog s unification can be used when processing lists; for example the following predicate returns true if the first parameter list is a sublist of the second parameter list and false otherwise: sub_list(s,l):-append(l1,l2,l),append(s,l3,l2). The previous predicate uses Prolog s a built-in function append. Task 2. The following Prolog function partitions2 prints all partitions into two sublists of its parameter list: partition2(x):-append(a,b,x),write(a),write(' '),write(b),nl. partitions2(x):-partition2(x),fail. Test the function and write a function partitions3 that prints all the partitions into three sublists. Answer. In a similar fashion as with partition to two sub lists, we can write a function that partitions a list into three sub lists partition3(x):-append(a,z,x),append(b,c,z),write(a), write(' '),write(b),write(c),nl. partitions3(x):-partition3(x),fail. At first we find two lists A and Z, whose combination results to X. Thereafter, we find two lists B and C, whose combinations results to Z. Hence the lists A,B, and C combined give the list X. If the function partitions3 would be given in the form partitions3(x):-partition3(x). the interpreter would give the first correct triple. When the rule ends with fail, the interpreter is forced to continue applying the rule and we obtain all the possible triples.

4 Task 3. Write a Prolog predicate palindrome that tests if a given list is a palindrome, i.e. the same list when it is read from beginning to end or from end to beginning. (For example [1,2,3,2,1] is a palindrome.) Hint: It might be easiest to write a helper operation to reverse the list and a helper predicate that compares whether two lists are identical. Answer. A list can be reversed with the rule ( käännä is revert in Finnish) kaanna([],[]). kaanna([x Y],Rev):-kaanna(Y,Z),append(Z,[X],Rev). Empty list remains empty when reversed and otherwise a list can be reversed by adding its head to the tail of the reversed list without the head. The unification of Prolog makes the list Rev original list reversed. Following predicate checks, whether two lists contain the same elements ( samat is the same in plural in Finnish): samat([],[]). samat([h T],[H U]):-samat(T,U). Two empty lists are the sama and if the heads of the lists are the same, we compare the tails of the lists. ow we finally can write a predicate to check if a list is a palindrome: palindromi(x):-kaanna(x,y),samat(x,y). Task 4. This task considers lists as sets; hence you can assume that an element appears only once in the list. Write a function intersection(x,y,z) after whose call, the set Z will contain the common elements of lists X and Y. Hint: You can use as a fact that an intersection between any list and an empty list is an empty list. Then you can use the previously presented function mmber to check if the head of the first list is in the second list. According to its result, you obtain two cases to consider. Answer. This task is somewhat more challenging than the previous ones. First we write a predicate to check if X is a member in a list: mmber(x,[x T]). mmber(x,[_ T]):- mmber(x,t). If X is the head of the list, the predicate is true. Otherwise we check the tail of the list. This predicate can be used to form the intersection function: intersection([],x,[]). intersection([x T],Y,[X C]):-mmber(X,Y), intersection(t,y,c). intersection([x T],Y,C):- \+ mmber(x,y), intersection(t,y,c). The first fact tells that the intersection of an empty list with any list is empty. Thereafter, we divide the situation into two cases: If the head of the first list is a member of the

5 second list, the head remains in the result list, and the tail of the result list is attached to the intersection of the tail of the first parameter list and the second parameter list. If, on the other hand, the head of the first parameter list is not a member of the second list, the head does not remain in the result list, and the tail of the result list is attached to the intersection of the tail of the first parameter list and the second parameter list. Task 5. Write Quicksort algorithm q_sort(x,sorted) in Prolog to sort a list. After calling the function, the list Sorted will be the list X sorted. One way to implement the algorithm is to write helper functions to fetch elements smaller than the pivot element from X to one list and elements greater (and equal) than the pivot element from X to another list. These lists can be sorted and appended such that the pivot element comes in between them. Answer. At first we construct the mentioned helper functions: bigger(x,[],[]). bigger(x,[h T],[H T2]):- X<H, bigger(x,t,t2). bigger(x,[h T],T2):- X>=H, bigger(x,t,t2). smaller(x,[],[]). smaller(x,[h T],[H T2]):- X>=H, smaller(x,t,t2). smaller(x,[h T],T2):- X<H, smaller(x,t,t2). The functions take three parameters: the first parameter is the pivot element, the second parameter is the list to be sorted. The third parameter is the result list. The function bigger finds the elements greater or equal to pivot from the list. The head of the parameter list is included if it is greater or equal to the pivot; otherwise it is excluded. The function smaller similarly finds the elements that are smaller than the pivot. When previous operations have been performed, Quicksort can be implemented by the rule: q_sort([],[]). q_sort([h T],Sorted):- smaller(h,t,pieni), bigger(h,t,suuri),q_sort(pieni,vp), q_sort(suuri,op),append(vp,[h],vpp),append(vpp,op,sorted). Empty list is automatically sorted. Otherwise we use the head of the list as the pivot. First, the elements smaller than pivot are gathered into the list Pieni, the elements greater or equal to pivot are gathered into the ist Suuri. The lists are sorted, the pivot is appended to the list of smaller elements, and the lists are combined. The unification mechanism ensures that the sorted list is associated with the result list. You can also find other implementations of Quicksort in Prolog from the Internet.

6 Task 6. Finally we will investigate arithmetic in Prolog by implementing Euclid s algorithm to find the greatest common factor of two positive integers. The algorithm is following: euclid(x,y) 1. if X==Y return X 2. else if X > Y return euclid(x-y,y) 3. else return euclid(y,x) Write a function euclid(x,y,z), after whose call Z is the greatest common factor of X and Y. ote that to bind a result of an arithmetic operation to a variable, one writes X is 5+6. Test your function to compute the greatest common factor of integers and Answer. Algorithm can be implemented in a straight-forward fashion. Write a rule for each alternative case of the algorithm: euclid(x,x,x). euclid(x,y,z):-x>y,x1 is X-Y, euclid(x1,y,z). euclid(x,y,z):-x<y, euclid(y,x,z). When we write the query euclid( , ,x), write(x). we find out that the greatest common factor of the mentioned integers is 22. The linked file H7_Prolog.pl contains the code for the answers.

PROGRAMMING IN HASKELL. CS Chapter 6 - Recursive Functions

PROGRAMMING IN HASKELL. CS Chapter 6 - Recursive Functions PROGRAMMING IN HASKELL CS-205 - Chapter 6 - Recursive Functions 0 Introduction As we have seen, many functions can naturally be defined in terms of other functions. factorial :: Int Int factorial n product

More information

Functional Programming in Haskell Part I : Basics

Functional Programming in Haskell Part I : Basics Functional Programming in Haskell Part I : Basics Madhavan Mukund Chennai Mathematical Institute 92 G N Chetty Rd, Chennai 600 017, India madhavan@cmi.ac.in http://www.cmi.ac.in/ madhavan Madras Christian

More information

Topic B: Backtracking and Lists

Topic B: Backtracking and Lists Topic B: Backtracking and Lists 1 Recommended Exercises and Readings From Programming in Prolog (5 th Ed.) Readings: Chapter 3 2 Searching for the Answer In order for a Prolog program to report the correct

More information

PROGRAMMING IN HASKELL. Chapter 5 - List Comprehensions

PROGRAMMING IN HASKELL. Chapter 5 - List Comprehensions PROGRAMMING IN HASKELL Chapter 5 - List Comprehensions 0 Set Comprehensions In mathematics, the comprehension notation can be used to construct new sets from old sets. {x 2 x {1...5}} The set {1,4,9,16,25}

More information

Shell CSCE 314 TAMU. Functions continued

Shell CSCE 314 TAMU. Functions continued 1 CSCE 314: Programming Languages Dr. Dylan Shell Functions continued 2 Outline Defining Functions List Comprehensions Recursion 3 A Function without Recursion Many functions can naturally be defined in

More information

Bachelor/Master Exam Version V3B

Bachelor/Master Exam Version V3B Prof. aadr. Jürgen Giesl Carsten Otto Bachelor/Master Exam Version V3B First Name: Last Name: Course of Studies (please mark exactly one): Informatik Bachelor TK Master Mathematik Master Other: Maximal

More information

Lecture 11: Feb. 10, 2016

Lecture 11: Feb. 10, 2016 CS323: AI (Hands on with Prolog) Spring 2016 Lecturer: K.R. Chowdhary Lecture 11: Feb. 10, 2016 : Professor of CS (VF) Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book)

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book) COMP2411 Lecture 20: Logic Programming Examples (This material not in the book) There are several distinct but often equivalent ways to think about logic programs 1. As computing logical consequences of

More information

Chapter 15. Functional Programming Languages

Chapter 15. Functional Programming Languages Chapter 15 Functional Programming Languages Copyright 2009 Addison-Wesley. All rights reserved. 1-2 Chapter 15 Topics Introduction Mathematical Functions Fundamentals of Functional Programming Languages

More information

Bachelor/Master Exam Version V3B

Bachelor/Master Exam Version V3B Prof aadr Jürgen Giesl Carsten Otto Bachelor/Master Exam Version V3B First Name: Last Name: Immatriculation Number: Course of Studies (please mark exactly one): Informatik Bachelor TK Master Mathematik

More information

CPS 506 Comparative Programming Languages. Programming Language Paradigm

CPS 506 Comparative Programming Languages. Programming Language Paradigm CPS 506 Comparative Programming Languages Functional Programming Language Paradigm Topics Introduction Mathematical Functions Fundamentals of Functional Programming Languages The First Functional Programming

More information

Solution sheet 1. Introduction. Exercise 1 - Types of values. Exercise 2 - Constructors

Solution sheet 1. Introduction. Exercise 1 - Types of values. Exercise 2 - Constructors Solution sheet 1 Introduction Please note that there can be other solutions than those listed in this document. This is a literate Haskell file which is available as PDF, as well as literate Haskell source

More information

Shell CSCE 314 TAMU. Haskell Functions

Shell CSCE 314 TAMU. Haskell Functions 1 CSCE 314: Programming Languages Dr. Dylan Shell Haskell Functions 2 Outline Defining Functions List Comprehensions Recursion 3 Conditional Expressions As in most programming languages, functions can

More information

Programming Language Concepts: Lecture 22

Programming Language Concepts: Lecture 22 Programming Language Concepts: Lecture 22 Madhavan Mukund Chennai Mathematical Institute madhavan@cmi.ac.in http://www.cmi.ac.in/~madhavan/courses/pl2009 PLC 2009, Lecture 22, 15 April 2009 Logic programming

More information

Programming Paradigms Written Exam

Programming Paradigms Written Exam Programming Paradigms Written Exam 17.06.2014 First name Student number Last name Signature Instructions for Students Write your name and student number on the exam sheet and on every solution sheet you

More information

Programming Paradigms Written Exam (6 CPs)

Programming Paradigms Written Exam (6 CPs) Programming Paradigms Written Exam (6 CPs) 31.01.2017 First name Student number Last name Signature Instructions for Students Write your name and student number on the exam sheet and on every solution

More information

CSCE 314 TAMU Fall CSCE 314: Programming Languages Dr. Flemming Andersen. Haskell Functions

CSCE 314 TAMU Fall CSCE 314: Programming Languages Dr. Flemming Andersen. Haskell Functions 1 CSCE 314: Programming Languages Dr. Flemming Andersen Haskell Functions 2 Outline Defining Functions List Comprehensions Recursion 3 Conditional Expressions As in most programming languages, functions

More information

Advanced Prolog Programming

Advanced Prolog Programming 1 Introduction CIS335, Assignment 4 Advanced Prolog Programming Geraint Wiggins November 12, 2004 This practical is the second self-assessed exercise for MSc students on the Prolog module. It is intended

More information

April 2 to April 4, 2018

April 2 to April 4, 2018 MORE SCHEME COMPUTER SCIENCE MENTORS 61A April 2 to April 4, 2018 1 Scheme 1. What will Scheme output? Draw box-and-pointer diagrams to help determine this. (a) (cons (cons 1 nil) (cons 2 (cons (cons 3

More information

Programming Systems in Artificial Intelligence Introduction

Programming Systems in Artificial Intelligence Introduction Click to add Text Programming Systems in Artificial Intelligence Introduction Siegfried Nijssen 23/02/16 Discover thediscover world at the Leiden world University at Leiden University Programming Paradigms

More information

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy Topics Chapter 16 Logic Programming Summary (resolution, unification, Prolog search strategy ) Disjoint goals The cut operator Negative goals Predicate fail Debugger / tracer Lists 2 Resolution Resolution

More information

Logic Programming and PROLOG (III)

Logic Programming and PROLOG (III) Logic Programming and PROLOG (III) Dr. Antonio L. Bajuelos Note: The most of the information of these slides was extracted and adapted from Bratko s book, Prolog Programming for Artificial Intelligence".

More information

Lecture 19: Functions, Types and Data Structures in Haskell

Lecture 19: Functions, Types and Data Structures in Haskell The University of North Carolina at Chapel Hill Spring 2002 Lecture 19: Functions, Types and Data Structures in Haskell Feb 25 1 Functions Functions are the most important kind of value in functional programming

More information

Overview. Declarative Languages. operation of del. Deleting an element from a list. functions using del. inserting elements with del

Overview. Declarative Languages. operation of del. Deleting an element from a list. functions using del. inserting elements with del Overview Declarative Languages D7012E: Arithmetic and Backtracking Fredrik Bengtsson Some standard functions Operators Arithmetic The eight queens problem Controlling backtracking cut Deleting an element

More information

The List Datatype. CSc 372. Comparative Programming Languages. 6 : Haskell Lists. Department of Computer Science University of Arizona

The List Datatype. CSc 372. Comparative Programming Languages. 6 : Haskell Lists. Department of Computer Science University of Arizona The List Datatype CSc 372 Comparative Programming Languages 6 : Haskell Lists Department of Computer Science University of Arizona collberg@gmail.com All functional programming languages have the ConsList

More information

SML A F unctional Functional Language Language Lecture 19

SML A F unctional Functional Language Language Lecture 19 SML A Functional Language Lecture 19 Introduction to SML SML is a functional programming language and acronym for Standard d Meta Language. SML has basic data objects as expressions, functions and list

More information

Functional Programming. Pure Functional Programming

Functional Programming. Pure Functional Programming Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

More information

A general introduction to Functional Programming using Haskell

A general introduction to Functional Programming using Haskell A general introduction to Functional Programming using Haskell Matteo Rossi Dipartimento di Elettronica e Informazione Politecnico di Milano rossi@elet.polimi.it 1 Functional programming in a nutshell

More information

CSEN403 Concepts of Programming Languages. Topics: Logic Programming Paradigm: PROLOG Search Tree Recursion Arithmetic

CSEN403 Concepts of Programming Languages. Topics: Logic Programming Paradigm: PROLOG Search Tree Recursion Arithmetic CSEN403 Concepts of Programming Languages Topics: Logic Programming Paradigm: PROLOG Search Tree Recursion Arithmetic Prof. Dr. Slim Abdennadher 8.2.2015 c S. Abdennadher 1 Logic Programming versus Prolog

More information

What s the problem? fib(1,1). fib(2,1). fib(n,x) :- N>2, N1 is N-1, N2 is N-2, fib(n1,x2), fib(n2,x2).

What s the problem? fib(1,1). fib(2,1). fib(n,x) :- N>2, N1 is N-1, N2 is N-2, fib(n1,x2), fib(n2,x2). 39 What s the problem? A Fibonacci Implementation fib(1,1). fib(2,1). fib(n,x) :- N>2, N1 is N-1, N2 is N-2, fib(n1,x2), fib(n2,x2). List Concatenation conc([],l,l). conc([x L1], L2, [X L3]) :- conc(l1,l2,l3).

More information

Haskell: From Basic to Advanced. Part 2 Type Classes, Laziness, IO, Modules

Haskell: From Basic to Advanced. Part 2 Type Classes, Laziness, IO, Modules Haskell: From Basic to Advanced Part 2 Type Classes, Laziness, IO, Modules Qualified types In the types schemes we have seen, the type variables were universally quantified, e.g. ++ :: [a] -> [a] -> [a]

More information

MORE SCHEME. 1 What Would Scheme Print? COMPUTER SCIENCE MENTORS 61A. October 30 to November 3, Solution: Solutions begin on the following page.

MORE SCHEME. 1 What Would Scheme Print? COMPUTER SCIENCE MENTORS 61A. October 30 to November 3, Solution: Solutions begin on the following page. MORE SCHEME COMPUTER SCIENCE MENTORS 61A October 30 to November 3, 2017 1 What Would Scheme Print? Solutions begin on the following page. 1. What will Scheme output? Draw box-and-pointer diagrams to help

More information

Introduction to Programming: Lecture 6

Introduction to Programming: Lecture 6 Introduction to Programming: Lecture 6 K Narayan Kumar Chennai Mathematical Institute http://www.cmi.ac.in/~kumar 28 August 2012 Example: initial segments Write a Haskell function initsegs which returns

More information

Data Types The ML Type System

Data Types The ML Type System 7 Data Types 7.2.4 The ML Type System The following is an ML version of the tail-recursive Fibonacci function introduced Fibonacci function in ML in Section 6.6.1: EXAMPLE 7.96 1. fun fib (n) = 2. let

More information

3 Lists. List Operations (I)

3 Lists. List Operations (I) 3 Lists. List Operations (I) The list is the simplest yet the most useful Prolog structure. A list is a sequence of any number of objects. Example 3.1: L = [1, 2, 3], R = [a, b, c], T = [john, marry, tim,

More information

Programming Paradigms

Programming Paradigms PP 2017/18 Unit 11 Functional Programming with Haskell 1/37 Programming Paradigms Unit 11 Functional Programming with Haskell J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE

More information

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 Why this document? Did you ever feel frustrated because of a nasty bug in your code? Did you spend hours looking at the

More information

Programming Languages. Tail Recursion. CSE 130: Winter Lecture 8: NOT TR. last thing function does is a recursive call

Programming Languages. Tail Recursion. CSE 130: Winter Lecture 8: NOT TR. last thing function does is a recursive call CSE 130: Winter 2010 News Programming Languages Lecture 8: Higher-Order Od Functions Ranjit Jhala UC San Diego Today s Plan Finish Static Scoping Tail Recursion last thing function does is a recursive

More information

Introductory Scheme. Revision 1

Introductory Scheme. Revision 1 Introductory Scheme Revision 1 Joseph W. Lavinus and James D. Arthur (lavinus@cs.vt.edu and arthur@cs.vt.edu) Department of Computer Science Virginia Polytechnic Institute and State University Blacksburg,

More information

Programming Paradigms Written Exam (6 CPs)

Programming Paradigms Written Exam (6 CPs) Programming Paradigms Written Exam (6 CPs) 06.07.2016 First name Student number Last name Signature Instructions for Students Write your name and student number on the exam sheet and on every solution

More information

CSE 452: Programming Languages. Prolog Statements. Loading the Knowledge Base. Logical Programming Languages Part 2

CSE 452: Programming Languages. Prolog Statements. Loading the Knowledge Base. Logical Programming Languages Part 2 CSE 452: Programming Languages Logical Programming Languages Part 2 Prolog Statements Prolog statements consist of facts, rules, and queries. Example of facts (written as headless Horn clauses) male(tony).

More information

Chapter 15. Functional Programming Languages ISBN

Chapter 15. Functional Programming Languages ISBN Chapter 15 Functional Programming Languages ISBN 0-321-49362-1 Chapter 15 Topics Introduction Mathematical Functions Fundamentals of Functional Programming Languages The First Functional Programming Language:

More information

CSE3322 Programming Languages and Implementation

CSE3322 Programming Languages and Implementation Monash University School of Computer Science & Software Engineering Sample Exam 2003 CSE3322 Programming Languages and Implementation Total Time Allowed: 3 Hours 1. Reading time is of 10 minutes duration.

More information

Scheme Quick Reference

Scheme Quick Reference Scheme Quick Reference COSC 18 Winter 2003 February 10, 2003 1 Introduction This document is a quick reference guide to common features of the Scheme language. It is by no means intended to be a complete

More information

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog CS 360: Programming Languages Lecture 10: Logic Programming with Prolog Geoffrey Mainland Drexel University Section 1 Administrivia Midterm Tuesday Midterm is Tuesday, February 14! Study guide is on the

More information

CS 320: Concepts of Programming Languages

CS 320: Concepts of Programming Languages CS 320: Concepts of Programming Languages Wayne Snyder Computer Science Department Boston University Lecture 04: Basic Haskell Continued o Polymorphic Types o Type Inference with Polymorphism o Standard

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

Chapter 5. Pure PROLOG. Foundations of Logic Programming

Chapter 5. Pure PROLOG. Foundations of Logic Programming Chapter 5 1 Outline vs. logic programming Lists in Adding Arithmetics to Adding the Cut to 2 Syntax of Pure Prolog p(x,a) :- q(x), r(x,yi). p(x, a) q(x), r(x,y i ) % Comment Ambivalent syntax: p(p(a,b),

More information

CSc 372 Comparative Programming Languages

CSc 372 Comparative Programming Languages CSc 372 Comparative Programming Languages 8 : Haskell Function Examples Christian Collberg collberg+372@gmail.com Department of Computer Science University of Arizona Copyright c 2005 Christian Collberg

More information

CSc 372. Comparative Programming Languages. 8 : Haskell Function Examples. Department of Computer Science University of Arizona

CSc 372. Comparative Programming Languages. 8 : Haskell Function Examples. Department of Computer Science University of Arizona 1/43 CSc 372 Comparative Programming Languages 8 : Haskell Function Examples Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2013 Christian Collberg Functions over Lists

More information

CSE 2123 Recursion. Jeremy Morris

CSE 2123 Recursion. Jeremy Morris CSE 2123 Recursion Jeremy Morris 1 Past Few Weeks For the past few weeks we have been focusing on data structures Classes & Object-oriented programming Collections Lists, Sets, Maps, etc. Now we turn our

More information

Logic Programming: Lecture 1

Logic Programming: Lecture 1 Logic Programming: Lecture 1 Madhavan Mukund Chennai Mathematical Institute madhavan@cmi.ac.in PLC, 3 April 2017 Logic programming Programming with relations Variables Names starting with a capital letter

More information

Logic Programming: The Prolog Language

Logic Programming: The Prolog Language Logic Programming: The Prolog Language Stephen A. Edwards Columbia University Fall 2012 Logic All Caltech graduates are nerds. Stephen is a Caltech graduate. Is Stephen a nerd? Logic All Caltech graduates

More information

Scheme Quick Reference

Scheme Quick Reference Scheme Quick Reference COSC 18 Fall 2003 This document is a quick reference guide to common features of the Scheme language. It is not intended to be a complete language reference, but it gives terse summaries

More information

1 / Types and Programming Languages

1 / Types and Programming Languages 1 / 65 263-2200 Types and Programming Languages 2 / 65 Outline Control Flow During Execution Tree Traversal A Detailed Trace Search Space Analysis Modelling Equations and Operations Lists 3 / 65 Outline

More information

Extended Static Checking for Haskell (ESC/Haskell)

Extended Static Checking for Haskell (ESC/Haskell) Extended Static Checking for Haskell (ESC/Haskell) Dana N. Xu University of Cambridge advised by Simon Peyton Jones Microsoft Research, Cambridge Program Errors Give Headache! Module UserPgm where f ::

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Example Scheme Function: equal

Example Scheme Function: equal ICOM 4036 Programming Languages Functional Programming Languages Mathematical Functions Fundamentals of Functional Programming Languages The First Functional Programming Language: LISP Introduction to

More information

Programming Paradigms Written Exam (6 CPs)

Programming Paradigms Written Exam (6 CPs) Programming Paradigms Written Exam (6 CPs) 22.06.2017 First name Student number Last name Signature Instructions for Students Write your name and student number on the exam sheet and on every solution

More information

CSc 372. Comparative Programming Languages. 15 : Haskell List Comprehension. Department of Computer Science University of Arizona

CSc 372. Comparative Programming Languages. 15 : Haskell List Comprehension. Department of Computer Science University of Arizona 1/20 CSc 372 Comparative Programming Languages 15 : Haskell List Comprehension Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2013 Christian Collberg 2/20 List Comprehensions

More information

OCaml. ML Flow. Complex types: Lists. Complex types: Lists. The PL for the discerning hacker. All elements must have same type.

OCaml. ML Flow. Complex types: Lists. Complex types: Lists. The PL for the discerning hacker. All elements must have same type. OCaml The PL for the discerning hacker. ML Flow Expressions (Syntax) Compile-time Static 1. Enter expression 2. ML infers a type Exec-time Dynamic Types 3. ML crunches expression down to a value 4. Value

More information

Plan (next 4 weeks) 1. Fast forward. 2. Rewind. 3. Slow motion. Rapid introduction to what s in OCaml. Go over the pieces individually

Plan (next 4 weeks) 1. Fast forward. 2. Rewind. 3. Slow motion. Rapid introduction to what s in OCaml. Go over the pieces individually Plan (next 4 weeks) 1. Fast forward Rapid introduction to what s in OCaml 2. Rewind 3. Slow motion Go over the pieces individually History, Variants Meta Language Designed by Robin Milner @ Edinburgh Language

More information

CAP 5602 Summer, Lesson 5: Lists. The topics 1. updating a counter 2. the list structure 3. some useful built-in predicates for lists

CAP 5602 Summer, Lesson 5: Lists. The topics 1. updating a counter 2. the list structure 3. some useful built-in predicates for lists CAP 5602 Summer, 20 Lesson 5: Lists The topics. updating a counter 2. the list structure 3. some useful built-in predicates for lists. Updating a counter Let us try to implement the increse the counter

More information

Richard Feynman, Lectures on Computation

Richard Feynman, Lectures on Computation Chapter 8 Sorting and Sequencing If you keep proving stuff that others have done, getting confidence, increasing the complexities of your solutions for the fun of it then one day you ll turn around and

More information

An introduction introduction to functional functional programming programming using usin Haskell

An introduction introduction to functional functional programming programming using usin Haskell An introduction to functional programming using Haskell Anders Møller amoeller@cs.au.dkau Haskell The most popular p purely functional, lazy programming g language Functional programming language : a program

More information

Lecture 9. Exercises. Theory. Solutions to exercises LPN 8.1 & 8.2. Patrick Blackburn, Johan Bos & Kristina Striegnitz

Lecture 9. Exercises. Theory. Solutions to exercises LPN 8.1 & 8.2. Patrick Blackburn, Johan Bos & Kristina Striegnitz Lecture 9 Exercises Solutions to exercises LPN 8.1 & 8.2 Theory Solution to Exercise 8.1 Suppose we add the noun ``men'' (which is plural) and the verb ``shoot''. Then we would want a DCG which says that

More information

Programming Paradigms Written Exam (6 CPs)

Programming Paradigms Written Exam (6 CPs) Programming Paradigms Written Exam (6 CPs) 31.01.2018 First name Student number Last name Signature Instructions for Students Write your name and student number on the exam sheet and on every solution

More information

Programming Languages

Programming Languages CSE 130 : Fall 2008 Programming Languages Lecture 2: A Crash Course in ML Ranjit Jhala UC San Diego News On webpage: Suggested HW #1, sample for Quiz #1 on Thu PA #1 (due next Fri 10/10) No make-up quizzes

More information

Final Examination: Topics and Sample Problems

Final Examination: Topics and Sample Problems Computer Science 52 Final Examination: Topics and Sample Problems Spring Semester, 2015 In examinations the foolish ask questions that the wise cannot answer. Oscar Wilde, 1894 Time and Place Wednesday,

More information

Note that pcall can be implemented using futures. That is, instead of. we can use

Note that pcall can be implemented using futures. That is, instead of. we can use Note that pcall can be implemented using futures. That is, instead of (pcall F X Y Z) we can use ((future F) (future X) (future Y) (future Z)) In fact the latter version is actually more parallel execution

More information

Haskell: Lists. CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Friday, February 24, Glenn G.

Haskell: Lists. CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Friday, February 24, Glenn G. Haskell: Lists CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Friday, February 24, 2017 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter 2.1-2.7 p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Programming Languages

Programming Languages CSE 130: Spring 2010 Programming Languages Lecture 2: A Crash Course in ML Ranjit Jhala UC San Diego News On webpage: Suggested HW #1 PA #1 (due next Wed 4/9) Please post questions to WebCT Today: A crash

More information

(Func&onal (Programming (in (Scheme)))) Jianguo Lu

(Func&onal (Programming (in (Scheme)))) Jianguo Lu (Func&onal (Programming (in (Scheme)))) Jianguo Lu 1 Programming paradigms Func&onal No assignment statement No side effect Use recursion Logic OOP AOP 2 What is func&onal programming It is NOT what you

More information

CIS 194: Homework 7. Due Wednesday, 25 March. Preliminaries. Finger exercises

CIS 194: Homework 7. Due Wednesday, 25 March. Preliminaries. Finger exercises CIS 194: Homework 7 Due Wednesday, 25 March Figure 1: The Haskell logo is modelled after the bind function (>>=) in the Monad type class Preliminaries Just as Haskell Strings are not as efficient as ByteStrings,

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

There are four numeric types: 1. Integers, represented as a 32 bit (or longer) quantity. Digits sequences (possibly) signed are integer literals:

There are four numeric types: 1. Integers, represented as a 32 bit (or longer) quantity. Digits sequences (possibly) signed are integer literals: Numeric Types There are four numeric types: 1. Integers, represented as a 32 bit (or longer) quantity. Digits sequences (possibly) signed are integer literals: 1-123 +456 2. Long integers, of unlimited

More information

9. The Disorganized Handyman

9. The Disorganized Handyman 9. The Disorganized Handyman A bad handyman always blames his tools. Famous Proverb. What if my hammer is made of paper? Can I blame it then? Author Unknown. Programming constructs and algorithmic paradigms

More information

The current topic: Prolog. Announcements. Meaning of a Prolog rule. Prolog syntax. Reminder: The deadline for Lab 2 re-mark requests is Friday.

The current topic: Prolog. Announcements. Meaning of a Prolog rule. Prolog syntax. Reminder: The deadline for Lab 2 re-mark requests is Friday. The current topic: Prolog! Introduction! Object-oriented programming: Python! Functional programming: Scheme! Python GUI programming (Tkinter)! Types and values Logic programming: Prolog! Introduction

More information

An informal tutorial on Joy 1

An informal tutorial on Joy 1 An informal tutorial on Joy 1 Manfred von Thun Abstract: Joy is a functional programming language which is not based on the application of functions to arguments but on the composition of functions. It

More information

Baby Steps Toward an Implementation of Axiomatic Language

Baby Steps Toward an Implementation of Axiomatic Language Baby Steps Toward an Implementation of Axiomatic Language Extended Abstract Walter W. Wilson Lockheed Martin, P.O. Box 748, Fort Worth TX 76101, USA wwwilson@acm.org Abstract. This paper describes an initial

More information

Scheme Tutorial. Introduction. The Structure of Scheme Programs. Syntax

Scheme Tutorial. Introduction. The Structure of Scheme Programs. Syntax Scheme Tutorial Introduction Scheme is an imperative language with a functional core. The functional core is based on the lambda calculus. In this chapter only the functional core and some simple I/O is

More information

Chapter 16. Logic Programming Languages

Chapter 16. Logic Programming Languages Chapter 16 Logic Programming Languages Chapter 16 Topics Introduction A Brief Introduction to Predicate Calculus Predicate Calculus and Proving Theorems An Overview of Logic Programming The Origins of

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Foundations of Computation

Foundations of Computation The Australian National University Semester 2, 2018 Research School of Computer Science Tutorial 5 Dirk Pattinson Foundations of Computation The tutorial contains a number of exercises designed for the

More information

Programming Languages

Programming Languages CSE 130: Fall 2009 Programming Languages Lecture 2: A Crash Course in ML News On webpage: Suggested HW #1 PA #1 (due next Fri 10/9) Technical issues installing Ocaml - should be resolved soon! Ranjit Jhala

More information

Prolog (cont d) Remark. Using multiple clauses. Intelligent Systems and HCI D7023E

Prolog (cont d) Remark. Using multiple clauses. Intelligent Systems and HCI D7023E Intelligent Systems and HCI D703E Lecture : More Prolog Paweł Pietrzak Prolog (cont d) 1 Remark The recent version of SWI- Prolog displays true and false rather than and no Using multiple clauses Different

More information

User-defined Functions. Conditional Expressions in Scheme

User-defined Functions. Conditional Expressions in Scheme User-defined Functions The list (lambda (args (body s to a function with (args as its argument list and (body as the function body. No quotes are needed for (args or (body. (lambda (x (+ x 1 s to the increment

More information

INTRODUCTION TO FUNCTIONAL PROGRAMMING

INTRODUCTION TO FUNCTIONAL PROGRAMMING INTRODUCTION TO FUNCTIONAL PROGRAMMING Graham Hutton University of Nottingham adapted by Gordon Uszkay 1 What is Functional Programming? Opinions differ, and it is difficult to give a precise definition,

More information

F# - LISTS. In this method, you just specify a semicolon-delimited sequence of values in square brackets. For example

F# - LISTS. In this method, you just specify a semicolon-delimited sequence of values in square brackets. For example http://www.tutorialspoint.com/fsharp/fsharp_lists.htm F# - LISTS Copyright tutorialspoint.com In F#, a list is an ordered, immutable series of elements of the same type. It is to some extent equivalent

More information

Redefinition of an identifier is OK, but this is redefinition not assignment; Thus

Redefinition of an identifier is OK, but this is redefinition not assignment; Thus Redefinition of an identifier is OK, but this is redefinition not assignment; Thus val x = 100; val x = (x=100); is fine; there is no type error even though the first x is an integer and then it is a boolean.

More information

INTRODUCTION TO PROLOG

INTRODUCTION TO PROLOG INTRODUCTION TO PROLOG PRINCIPLES OF PROGRAMMING LANGUAGES Norbert Zeh Winter 2018 Dalhousie University 1/44 STRUCTURE OF A PROLOG PROGRAM Where, declaratively, Haskell expresses a computation as a system

More information

Question Score Points Out Of 25

Question Score Points Out Of 25 University of Texas at Austin 6 May 2005 Department of Computer Science Theory in Programming Practice, Spring 2005 Test #3 Instructions. This is a 50-minute test. No electronic devices (including calculators)

More information

\n is used in a string to indicate the newline character. An expression produces data. The simplest expression

\n is used in a string to indicate the newline character. An expression produces data. The simplest expression Chapter 1 Summary Comments are indicated by a hash sign # (also known as the pound or number sign). Text to the right of the hash sign is ignored. (But, hash loses its special meaning if it is part of

More information

Exam I Principles of Imperative Computation, Summer 2011 William Lovas. May 27, 2011

Exam I Principles of Imperative Computation, Summer 2011 William Lovas. May 27, 2011 Exam I 15-122 Principles of Imperative Computation, Summer 2011 William Lovas May 27, 2011 Name: Sample Solution Andrew ID: wlovas Instructions This exam is closed-book with one sheet of notes permitted.

More information

Unit-2 Divide and conquer 2016

Unit-2 Divide and conquer 2016 2 Divide and conquer Overview, Structure of divide-and-conquer algorithms, binary search, quick sort, Strassen multiplication. 13% 05 Divide-and- conquer The Divide and Conquer Paradigm, is a method of

More information

Haske k ll An introduction to Functional functional programming using Haskell Purely Lazy Example: QuickSort in Java Example: QuickSort in Haskell

Haske k ll An introduction to Functional functional programming using Haskell Purely Lazy Example: QuickSort in Java Example: QuickSort in Haskell Haskell An introduction to functional programming using Haskell Anders Møller amoeller@cs.au.dk The most popular purely functional, lazy programming language Functional programming language : a program

More information

Recursion, Structures, and Lists

Recursion, Structures, and Lists Recursion, Structures, and Lists Artificial Intelligence Programming in Prolog Lecturer: Tim Smith Lecture 4 04/10/04 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 1 The central ideas of Prolog

More information

EDAF40. 2nd June :00-19:00. WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/ odd pages will be read.

EDAF40. 2nd June :00-19:00. WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/ odd pages will be read. EDAF40 2nd June 2017 14:00-19:00 WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/ odd pages will be read. DO NOT WRITE WITH OTHER COLOUR THAN BLACK - coloured text

More information

Principles of Programming Languages (II)

Principles of Programming Languages (II) Principles of Programming Languages (II) Matteo Pradella April 2016 Matteo Pradella Principles of Programming Languages (II) April 2016 1 / 38 1 Logic Programming: Prolog 2 The Prolog Language Matteo Pradella

More information