Competition => Collaboration a runtime-centric view of parallel computation

Size: px
Start display at page:

Download "Competition => Collaboration a runtime-centric view of parallel computation"

Transcription

1 Competition => Collaboration a runtime-centric view of parallel computation Simon Kahan skahan@cs.washington.edu

2 Competition Multiple entities in contention for limited, indivisible resources or opportunities

3 Direct Mitigation Techniques Take turns Share Find more dolls

4 Direct Mitigation Techniques Take turns Mutual Exclusion Share Transactions Find more dolls Replication (eg, of Data Structures)

5 Direct Mitigation Techniques Take turns Mutual exclusion Delay is linear in concurrency: does not scale Share Transactions Aborted work is up to quadratic in concurrency: does not scale Find more dolls Replication (eg, of Data Structures) Cost ~ maximum concurrency sustained + coherency overheads: does not scale

6 Collaboration Entities align to reduce contention, increase throughput.

7 Transform competition to collaboration? Why won t these people collaborate?!

8 Are computers better collaborators?

9 MTA-2 Processor Every clock cycle, a ready instruction may begin execution I n s t r u c t i o n s Stream1 Stream2... Stream128 (M A C) + - * /, etc. Arithmetic Pipeline load, store, int_fetch_add 9

10 Simplified Cray/Tera MTA-2 System Architecture 4,000 Active Threads CPU CPU CPU Memory Be Parallel or Die. 10

11 Memory Allocation OS sbreak() Heap malloc(), free() Application

12 Parallel Memory Allocation OS sbreak() Heap malloc(), malloc(), free() malloc(), free() malloc(), free() free() Application

13 Replication for Concurrency OS sbreak() sbreak() sbreak() Heap Heap Heap Application

14 Increase heap size to lower sbreak rate OS Heap Heap Heap sbreak() Application Q: What s wrong with this picture? A: O(P 2 ) wasted space!

15 Can collaboration help? Idea: apply the ticket line trick! tasks need to find each other aggregate their requests into one one master task continues; other waits until master finds heap uncontended, repeat process master locks heap, fulfills request, unlocks heap master recursively splits and awakens waiters Simon Kahan and Petr Konecny "MAMA!": a memory allocator for multithreaded architectures. PPoPP '06. 15

16 Combining Funnels Concurrent Asynchronous Individual Malloc and Free Requests Concurrency: F Time: lg F Funnel : combining data structure Aggregate Requests of Size at most F served serially. (Output rate is at most a constant.) See: Combining Funnels: a Dynamic Approach to Software Combining, Nir Shavit, Asaph Zemach, 1999

17 Aggregates: Pennants for speed Single requests (Pennants of order 0) Combine Combine Combine Merge is 2 ops: T2.left = T1.right T1.right = T2 Balanced Unlike linked lists, supports parallel traversal Unique representation

18 Tree-Heap while (int_fetch_add(&sem, 1)) try_combine(); heap_op(); sem = 0; NULL NULL NULL Allocate tries for corresponding slot; if empty, marches to right. Free tries for corresponding slot; if full, combines and carries. It s just binary arithmetic! Worst-case O(log N); Average O(1)

19 Instructions vs Delay MTA Malloc 10 cpu highest (instructions) MAMA! 1 cpu is highest

20 Original MTA malloc vs MAMA 220 MHz MTA-40, 100 streams per processor MTA 40 5 MAMA 5 40

21 General Combining Scheme Asynchronous (Competitive) Arbitrary # computations Any number of threads Timing of interaction arbitrary Chaos! Synchronous (Collaborative) Single computation Number of threads is explicit Synchronized, exclusive access to data Order! Asynchronous threads make requests annihilate (or void fn). combine in funnel aggregate tries lock got lock! if fail, circulate... re-enter funnel and try again de-aggregate, returning results in parallel to requesting threads. Satisfy aggregate in parallel synchronously release lock Data Structure

22 Conclusion Concurrency often creates competition. Competition indicates duplication in need. Serializing, transacting, replicating -- may only mitigate competition Consider transforming competition to collaboration, aligning common need to get there faster. 22

Grappa: A latency tolerant runtime for large-scale irregular applications

Grappa: A latency tolerant runtime for large-scale irregular applications Grappa: A latency tolerant runtime for large-scale irregular applications Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin Computer Science & Engineering, University

More information

Dynamic Memory Allocation. Basic Concepts. Computer Organization 4/3/2012. CSC252 - Spring The malloc Package. Kai Shen

Dynamic Memory Allocation. Basic Concepts. Computer Organization 4/3/2012. CSC252 - Spring The malloc Package. Kai Shen Dynamic Memory Allocation: Basic Concepts Kai Shen Dynamic Memory Allocation Programmers use dynamic memory allocators (such as malloc) to acquire memory at run time. For data structures whose size is

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

Process s Address Space. Dynamic Memory. Backing the Heap. Dynamic memory allocation 3/29/2013. When a process starts the heap is empty

Process s Address Space. Dynamic Memory. Backing the Heap. Dynamic memory allocation 3/29/2013. When a process starts the heap is empty /9/01 Process s Address Space Dynamic Memory 0x7fffffff Stack Data (Heap) Data (Heap) 0 Text (Code) Backing the Heap When a process starts the heap is empty The process is responsible for requesting memory

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation CS61, Lecture 10 Prof. Stephen Chong October 4, 2011 Announcements 1/2 Assignment 4: Malloc Will be released today May work in groups of one or two Please go to website and enter

More information

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019 CS 31: Introduction to Computer Systems 22-23: Threads & Synchronization April 16-18, 2019 Making Programs Run Faster We all like how fast computers are In the old days (1980 s - 2005): Algorithm too slow?

More information

Dynamic Memory Allocation: Basic Concepts

Dynamic Memory Allocation: Basic Concepts Dynamic Memory Allocation: Basic Concepts 15-213: Introduction to Computer Systems 19 th Lecture, March 30, 2017 Instructor: Franz Franchetti & Seth Copen Goldstein 1 Today Basic concepts Implicit free

More information

High Performance Computing Course Notes Shared Memory Parallel Programming

High Performance Computing Course Notes Shared Memory Parallel Programming High Performance Computing Course Notes 2009-2010 2010 Shared Memory Parallel Programming Techniques Multiprocessing User space multithreading Operating system-supported (or kernel) multithreading Distributed

More information

Virtual Machine Design

Virtual Machine Design Virtual Machine Design Lecture 4: Multithreading and Synchronization Antero Taivalsaari September 2003 Session #2026: J2MEPlatform, Connected Limited Device Configuration (CLDC) Lecture Goals Give an overview

More information

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package Today Dynamic Memory Allocation: Basic Concepts Basic concepts Performance concerns Approach 1: implicit free lists CSci 01: Machine Architecture and Organization October 17th-nd, 018 Your instructor:

More information

Synchronization I. Jo, Heeseung

Synchronization I. Jo, Heeseung Synchronization I Jo, Heeseung Today's Topics Synchronization problem Locks 2 Synchronization Threads cooperate in multithreaded programs To share resources, access shared data structures Also, to coordinate

More information

Dynamic Memory Allocation: Basic Concepts

Dynamic Memory Allocation: Basic Concepts Dynamic Memory Allocation: Basic Concepts CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides 1 Today Basic concepts Implicit free lists

More information

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018 SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T 2. 3. 8 A N D 2. 3. 1 0 S P R I N G 2018 INTER-PROCESS COMMUNICATION 1. How a process pass information to another process

More information

From Processes to Threads

From Processes to Threads From Processes to Threads 1 Processes, Threads and Processors Hardware can interpret N instruction streams at once Uniprocessor, N==1 Dual-core, N==2 Sun s Niagra T2 (2007) N == 64, but 8 groups of 8 An

More information

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package

Today. Dynamic Memory Allocation: Basic Concepts. Dynamic Memory Allocation. Dynamic Memory Allocation. malloc Example. The malloc Package Today Dynamic Memory Allocation: Basic Concepts Basic concepts Performance concerns Approach 1: implicit free lists CSci 01: Machine Architecture and Organization Lecture #9, April th, 016 Your instructor:

More information

Parallelism Marco Serafini

Parallelism Marco Serafini Parallelism Marco Serafini COMPSCI 590S Lecture 3 Announcements Reviews First paper posted on website Review due by this Wednesday 11 PM (hard deadline) Data Science Career Mixer (save the date!) November

More information

Introduction to Computer Systems /18 243, fall th Lecture, Oct. 22 th

Introduction to Computer Systems /18 243, fall th Lecture, Oct. 22 th Introduction to Computer Systems 15 213/18 243, fall 2009 16 th Lecture, Oct. 22 th Instructors: Gregory Kesden and Markus Püschel Today Dynamic memory allocation Process Memory Image %esp kernel virtual

More information

Parallel Processing SIMD, Vector and GPU s cont.

Parallel Processing SIMD, Vector and GPU s cont. Parallel Processing SIMD, Vector and GPU s cont. EECS4201 Fall 2016 York University 1 Multithreading First, we start with multithreading Multithreading is used in GPU s 2 1 Thread Level Parallelism ILP

More information

POSIX Threads: a first step toward parallel programming. George Bosilca

POSIX Threads: a first step toward parallel programming. George Bosilca POSIX Threads: a first step toward parallel programming George Bosilca bosilca@icl.utk.edu Process vs. Thread A process is a collection of virtual memory space, code, data, and system resources. A thread

More information

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules Brief Preview of Scheduling Concurrency Control Nan Niu (nn@cs.toronto.edu) CSC309 -- Summer 2008 Multiple threads ready to run Some mechanism for switching between them Context switches Some policy for

More information

CPSC 261 Midterm 2 Thursday March 17 th, 2016

CPSC 261 Midterm 2 Thursday March 17 th, 2016 CPSC 261 Midterm 2 Thursday March 17 th, 2016 [9] 1. Multiple choices [5] (a) Among the following terms, circle all of those that refer to a responsibility of a thread scheduler: Solution : Avoiding deadlocks

More information

Dynamic Memory Allocation

Dynamic Memory Allocation 1 Dynamic Memory Allocation Anne Bracy CS 3410 Computer Science Cornell University Note: these slides derive from those by Markus Püschel at CMU 2 Recommended Approach while (TRUE) { code a little; test

More information

PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES

PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES PERFORMANCE ANALYSIS AND OPTIMIZATION OF SKIP LISTS FOR MODERN MULTI-CORE ARCHITECTURES Anish Athalye and Patrick Long Mentors: Austin Clements and Stephen Tu 3 rd annual MIT PRIMES Conference Sequential

More information

SmartHeap for Multi-Core

SmartHeap for Multi-Core SmartHeap for Multi-Core Getting Started and Platform Guide for Linux Version 11.2 SmartHeap and HeapAgent are trademarks of Compuware Corporation. All other trademarks are the property of their respective

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 17 Shared-memory Programming 1 Outline n OpenMP n Shared-memory model n Parallel for loops n Declaring private variables n Critical

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

CSCI-GA Operating Systems Lecture 3: Processes and Threads -Part 2 Scheduling Hubertus Franke

CSCI-GA Operating Systems Lecture 3: Processes and Threads -Part 2 Scheduling Hubertus Franke CSCI-GA.2250-001 Operating Systems Lecture 3: Processes and Threads -Part 2 Scheduling Hubertus Franke frankeh@cs.nyu.edu Processes Vs Threads The unit of dispatching is referred to as a thread or lightweight

More information

Multithreading and the Tera MTA. Multithreading for Latency Tolerance

Multithreading and the Tera MTA. Multithreading for Latency Tolerance Multithreading and the Tera MTA Krste Asanovic krste@lcs.mit.edu http://www.cag.lcs.mit.edu/6.893-f2000/ 6.893: Advanced VLSI Computer Architecture, October 31, 2000, Lecture 6, Slide 1. Krste Asanovic

More information

User Space Multithreading. Computer Science, University of Warwick

User Space Multithreading. Computer Science, University of Warwick User Space Multithreading 1 Threads Thread short for thread of execution/control B efore create Global During create Global Data Data Executing Code Code Stack Stack Stack A fter create Global Data Executing

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

Multi-Core Computing with Transactional Memory. Johannes Schneider and Prof. Roger Wattenhofer

Multi-Core Computing with Transactional Memory. Johannes Schneider and Prof. Roger Wattenhofer Multi-Core Computing with Transactional Memory Johannes Schneider and Prof. Roger Wattenhofer 1 Overview Introduction Difficulties with parallel (multi-core) programming A (partial) solution: Transactional

More information

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

Mergesort again. 1. Split the list into two equal parts

Mergesort again. 1. Split the list into two equal parts Quicksort Mergesort again 1. Split the list into two equal parts 5 3 9 2 8 7 3 2 1 4 5 3 9 2 8 7 3 2 1 4 Mergesort again 2. Recursively mergesort the two parts 5 3 9 2 8 7 3 2 1 4 2 3 5 8 9 1 2 3 4 7 Mergesort

More information

Table ADT and Sorting. Algorithm topics continuing (or reviewing?) CS 24 curriculum

Table ADT and Sorting. Algorithm topics continuing (or reviewing?) CS 24 curriculum Table ADT and Sorting Algorithm topics continuing (or reviewing?) CS 24 curriculum A table ADT (a.k.a. Dictionary, Map) Table public interface: // Put information in the table, and a unique key to identify

More information

COMP 346 WINTER Tutorial 2 SHARED DATA MANIPULATION AND SYNCHRONIZATION

COMP 346 WINTER Tutorial 2 SHARED DATA MANIPULATION AND SYNCHRONIZATION COMP 346 WINTER 2018 1 Tutorial 2 SHARED DATA MANIPULATION AND SYNCHRONIZATION REVIEW - MULTITHREADING MODELS 2 Some operating system provide a combined user level thread and Kernel level thread facility.

More information

Lecture 19: Synchronization. CMU : Parallel Computer Architecture and Programming (Spring 2012)

Lecture 19: Synchronization. CMU : Parallel Computer Architecture and Programming (Spring 2012) Lecture 19: Synchronization CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012) Announcements Assignment 4 due tonight at 11:59 PM Synchronization primitives (that we have or will

More information

PROCESSES AND THREADS

PROCESSES AND THREADS PROCESSES AND THREADS A process is a heavyweight flow that can execute concurrently with other processes. A thread is a lightweight flow that can execute concurrently with other threads within the same

More information

CS 31: Intro to Systems Threading & Parallel Applications. Kevin Webb Swarthmore College November 27, 2018

CS 31: Intro to Systems Threading & Parallel Applications. Kevin Webb Swarthmore College November 27, 2018 CS 31: Intro to Systems Threading & Parallel Applications Kevin Webb Swarthmore College November 27, 2018 Reading Quiz Making Programs Run Faster We all like how fast computers are In the old days (1980

More information

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Synchronization I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Synchronization problem Locks 2 Synchronization Threads cooperate

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 17 Shared-memory Programming 1 Outline n OpenMP n Shared-memory model n Parallel for loops n Declaring private variables n Critical

More information

Synchronization 1. Synchronization

Synchronization 1. Synchronization Synchronization 1 Synchronization key concepts critical sections, mutual exclusion, test-and-set, spinlocks, blocking and blocking locks, semaphores, condition variables, deadlocks reading Three Easy Pieces:

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Threading and Synchronization. Fahd Albinali

Threading and Synchronization. Fahd Albinali Threading and Synchronization Fahd Albinali Parallelism Parallelism and Pseudoparallelism Why parallelize? Finding parallelism Advantages: better load balancing, better scalability Disadvantages: process/thread

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #7 2/5/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline From last class

More information

Slide 6-1. Processes. Operating Systems: A Modern Perspective, Chapter 6. Copyright 2004 Pearson Education, Inc.

Slide 6-1. Processes. Operating Systems: A Modern Perspective, Chapter 6. Copyright 2004 Pearson Education, Inc. Slide 6-1 6 es Announcements Slide 6-2 Extension til Friday 11 am for HW #1 Previous lectures online Program Assignment #1 online later today, due 2 weeks from today Homework Set #2 online later today,

More information

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful?

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads!! How is a thread different from a process?!! Why are threads useful?!! How can OSIX threads be useful?!! What are user-level and kernel-level

More information

CSCI-UA /2. Computer Systems Organization Lecture 19: Dynamic Memory Allocation: Basics

CSCI-UA /2. Computer Systems Organization Lecture 19: Dynamic Memory Allocation: Basics Slides adapted (and slightly modified) from: Clark Barrett Jinyang Li Randy Bryant Dave O Hallaron CSCI-UA.0201-001/2 Computer Systems Organization Lecture 19: Dynamic Memory Allocation: Basics Mohamed

More information

Networks and distributed computing

Networks and distributed computing Networks and distributed computing Abstractions provided for networks network card has fixed MAC address -> deliver message to computer on LAN -> machine-to-machine communication -> unordered messages

More information

CSE Traditional Operating Systems deal with typical system software designed to be:

CSE Traditional Operating Systems deal with typical system software designed to be: CSE 6431 Traditional Operating Systems deal with typical system software designed to be: general purpose running on single processor machines Advanced Operating Systems are designed for either a special

More information

Recitation 9. Prelim Review

Recitation 9. Prelim Review Recitation 9 Prelim Review 1 Heaps 2 Review: Binary heap min heap 1 2 99 4 3 PriorityQueue Maintains max or min of collection (no duplicates) Follows heap order invariant at every level Always balanced!

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II Synchronization in Java Department of Computer Science University of Maryland, College Park Multithreading Overview Motivation & background Threads Creating Java

More information

Scalable Locking. Adam Belay

Scalable Locking. Adam Belay Scalable Locking Adam Belay Problem: Locks can ruin performance 12 finds/sec 9 6 Locking overhead dominates 3 0 0 6 12 18 24 30 36 42 48 Cores Problem: Locks can ruin performance the locks

More information

CS2506 Quick Revision

CS2506 Quick Revision CS2506 Quick Revision OS Structure / Layer Kernel Structure Enter Kernel / Trap Instruction Classification of OS Process Definition Process Context Operations Process Management Child Process Thread Process

More information

Claude TADONKI. MINES ParisTech PSL Research University Centre de Recherche Informatique

Claude TADONKI. MINES ParisTech PSL Research University Centre de Recherche Informatique Got 2 seconds Sequential 84 seconds Expected 84/84 = 1 second!?! Got 25 seconds MINES ParisTech PSL Research University Centre de Recherche Informatique claude.tadonki@mines-paristech.fr Séminaire MATHEMATIQUES

More information

Processes, Threads and Processors

Processes, Threads and Processors 1 Processes, Threads and Processors Processes and Threads From Processes to Threads Don Porter Portions courtesy Emmett Witchel Hardware can execute N instruction streams at once Ø Uniprocessor, N==1 Ø

More information

The Art and Science of Memory Allocation

The Art and Science of Memory Allocation Logical Diagram The Art and Science of Memory Allocation Don Porter CSE 506 Binary Formats RCU Memory Management Memory Allocators CPU Scheduler User System Calls Kernel Today s Lecture File System Networking

More information

Monitors; Software Transactional Memory

Monitors; Software Transactional Memory Monitors; Software Transactional Memory Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 18, 2012 CPD (DEI / IST) Parallel and

More information

Multithreading Processors and Static Optimization Review. Adapted from Bhuyan, Patterson, Eggers, probably others

Multithreading Processors and Static Optimization Review. Adapted from Bhuyan, Patterson, Eggers, probably others Multithreading Processors and Static Optimization Review Adapted from Bhuyan, Patterson, Eggers, probably others Schedule of things to do By Wednesday the 9 th at 9pm Please send a milestone report (as

More information

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10)

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) Synchronization CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) 1 Outline Critical region and mutual exclusion Mutual exclusion using busy waiting Sleep and

More information

Introduction to Real-Time Operating Systems

Introduction to Real-Time Operating Systems Introduction to Real-Time Operating Systems GPOS vs RTOS General purpose operating systems Real-time operating systems GPOS vs RTOS: Similarities Multitasking Resource management OS services to applications

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Memory allocation within a process What happens when you declare a variable? Allocating a page for every variable wouldn t be efficient

More information

Online Course Evaluation. What we will do in the last week?

Online Course Evaluation. What we will do in the last week? Online Course Evaluation Please fill in the online form The link will expire on April 30 (next Monday) So far 10 students have filled in the online form Thank you if you completed it. 1 What we will do

More information

Concurrency: Signaling and Condition Variables

Concurrency: Signaling and Condition Variables Concurrency: Signaling and Condition Variables Questions Answered in this Lecture: How do we make fair locks perform better? How do we notify threads of that some condition has been met? Hale CS450 Thanks

More information

CS140 Final Project. Nathan Crandall, Dane Pitkin, Introduction:

CS140 Final Project. Nathan Crandall, Dane Pitkin, Introduction: Nathan Crandall, 3970001 Dane Pitkin, 4085726 CS140 Final Project Introduction: Our goal was to parallelize the Breadth-first search algorithm using Cilk++. This algorithm works by starting at an initial

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

Introduction to Linked List: Review. Source:

Introduction to Linked List: Review. Source: Introduction to Linked List: Review Source: http://www.geeksforgeeks.org/data-structures/linked-list/ Linked List Fundamental data structures in C Like arrays, linked list is a linear data structure Unlike

More information

CSE 544 Principles of Database Management Systems

CSE 544 Principles of Database Management Systems CSE 544 Principles of Database Management Systems Alvin Cheung Fall 2015 Lecture 5 - DBMS Architecture and Indexing 1 Announcements HW1 is due next Thursday How is it going? Projects: Proposals are due

More information

Review: Easy Piece 1

Review: Easy Piece 1 CS 537 Lecture 10 Threads Michael Swift 10/9/17 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 1 Review: Easy Piece 1 Virtualization CPU Memory Context Switch Schedulers

More information

CS 261 Fall Mike Lam, Professor. Threads

CS 261 Fall Mike Lam, Professor. Threads CS 261 Fall 2017 Mike Lam, Professor Threads Parallel computing Goal: concurrent or parallel computing Take advantage of multiple hardware units to solve multiple problems simultaneously Motivations: Maintain

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 8: Semaphores, Monitors, & Condition Variables 8.0 Main Points: Definition of semaphores Example of use

More information

Portland State University ECE 588/688. Cray-1 and Cray T3E

Portland State University ECE 588/688. Cray-1 and Cray T3E Portland State University ECE 588/688 Cray-1 and Cray T3E Copyright by Alaa Alameldeen 2014 Cray-1 A successful Vector processor from the 1970s Vector instructions are examples of SIMD Contains vector

More information

Parallel Programming Multicore systems

Parallel Programming Multicore systems FYS3240 PC-based instrumentation and microcontrollers Parallel Programming Multicore systems Spring 2011 Lecture #9 Bekkeng, 4.4.2011 Introduction Until recently, innovations in processor technology have

More information

Ade Miller Senior Development Manager Microsoft patterns & practices

Ade Miller Senior Development Manager Microsoft patterns & practices Ade Miller (adem@microsoft.com) Senior Development Manager Microsoft patterns & practices Save time and reduce risk on your software development projects by incorporating patterns & practices, Microsoft's

More information

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Lecture 3: Processes Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Process in General 3.3 Process Concept Process is an active program in execution; process

More information

Foster B-Trees. Lucas Lersch. M. Sc. Caetano Sauer Advisor

Foster B-Trees. Lucas Lersch. M. Sc. Caetano Sauer Advisor Foster B-Trees Lucas Lersch M. Sc. Caetano Sauer Advisor 14.07.2014 Motivation Foster B-Trees Blink-Trees: multicore concurrency Write-Optimized B-Trees: flash memory large-writes wear leveling defragmentation

More information

Dynamic Memory Allocation I Nov 5, 2002

Dynamic Memory Allocation I Nov 5, 2002 15-213 The course that gives CMU its Zip! Dynamic Memory Allocation I Nov 5, 2002 Topics Simple explicit allocators Data structures Mechanisms Policies class21.ppt Harsh Reality Memory is not unbounded

More information

Last Class: Synchronization

Last Class: Synchronization Last Class: Synchronization Synchronization primitives are required to ensure that only one thread executes in a critical section at a time. Concurrent programs Low-level atomic operations (hardware) load/store

More information

Parallel Programming: Background Information

Parallel Programming: Background Information 1 Parallel Programming: Background Information Mike Bailey mjb@cs.oregonstate.edu parallel.background.pptx Three Reasons to Study Parallel Programming 2 1. Increase performance: do more work in the same

More information

Parallel Programming: Background Information

Parallel Programming: Background Information 1 Parallel Programming: Background Information Mike Bailey mjb@cs.oregonstate.edu parallel.background.pptx Three Reasons to Study Parallel Programming 2 1. Increase performance: do more work in the same

More information

Dynamic Memory Alloca/on: Basic Concepts

Dynamic Memory Alloca/on: Basic Concepts Dynamic Memory Alloca/on: Basic Concepts 15-213 / 18-213: Introduc2on to Computer Systems 18 th Lecture, March. 26, 2013 Instructors: Anthony Rowe, Seth Goldstein, and Gregory Kesden 1 Today Basic concepts

More information

Uni-Address Threads: Scalable Thread Management for RDMA-based Work Stealing

Uni-Address Threads: Scalable Thread Management for RDMA-based Work Stealing Uni-Address Threads: Scalable Thread Management for RDMA-based Work Stealing Shigeki Akiyama, Kenjiro Taura The University of Tokyo June 17, 2015 HPDC 15 Lightweight Threads Lightweight threads enable

More information

Concurrency: Deadlock and Starvation

Concurrency: Deadlock and Starvation Concurrency: Deadlock and Starvation Chapter 6 E&CE 354: Processes 1 Deadlock Deadlock = situation in which every process from a set is permanently blocked, i.e. cannot proceed with execution Common cause:

More information

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Pre-lab #2 tutorial. ECE 254 Operating Systems and Systems Programming. May 24, 2012

Pre-lab #2 tutorial. ECE 254 Operating Systems and Systems Programming. May 24, 2012 Pre-lab #2 tutorial ECE 254 Operating Systems and Systems Programming May 24, 2012 Content Concurrency Concurrent Programming Thread vs. Process POSIX Threads Synchronization and Critical Sections Mutexes

More information

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction : A Distributed Shared Memory System Based on Multiple Java Virtual Machines X. Chen and V.H. Allan Computer Science Department, Utah State University 1998 : Introduction Built on concurrency supported

More information

Non-blocking Array-based Algorithms for Stacks and Queues!

Non-blocking Array-based Algorithms for Stacks and Queues! Non-blocking Array-based Algorithms for Stacks and Queues! Niloufar Shafiei! Department of Computer Science and Engineering York University ICDCN 09 Outline! Introduction! Stack algorithm! Queue algorithm!

More information

Software MEIC. (Lesson 4)

Software MEIC. (Lesson 4) Software Architecture @ MEIC (Lesson 4)! Last class The Architecture Influence Cycle The AIC applied to Fénix Today Revisiting the definition of Software Architecture How to describe a Software Architecture

More information

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful?

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads! How is a thread different from a process?! Why are threads useful?! How can OSIX threads be useful?! What are user-level and kernel-level

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 OpenMP Multithreaded Programming 2 Parallel Programming using OpenMP OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard to perform shared-memory multithreading

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 Parallel Programming using OpenMP Mike Bailey mjb@cs.oregonstate.edu openmp.pptx OpenMP Multithreaded Programming 2 OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard

More information

Lecture 5: Synchronization w/locks

Lecture 5: Synchronization w/locks Lecture 5: Synchronization w/locks CSE 120: Principles of Operating Systems Alex C. Snoeren Lab 1 Due 10/19 Threads Are Made to Share Global variables and static objects are shared Stored in the static

More information

Operating Systems: Quiz2 December 15, Class: No. Name:

Operating Systems: Quiz2 December 15, Class: No. Name: Operating Systems: Quiz2 December 15, 2006 Class: No. Name: Part I (30%) Multiple Choice Each of the following questions has only one correct answer. Fill the correct one in the blank in front of each

More information

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8.

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8. Multiprocessor System Multiprocessor Systems Chapter 8, 8.1 We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than

More information