2. (18 points) Suppose that the following definitions are made (same as in Question 1):

Size: px
Start display at page:

Download "2. (18 points) Suppose that the following definitions are made (same as in Question 1):"

Transcription

1 1. (18 points) Suppose that the following definitions are made: import Data.Char data Field = Pasture Char Lawn Integer Float Meadow String [Integer] gaze :: Integer -> Bool gaze m = odd m && m < 10 wonder :: (Char -> Bool) -> String -> Float wonder h (c:cs) h c = 6.0 otherwise = wonder h cs wonder h [] = plow :: Field -> Integer plow (Lawn s t) = s plow (Meadow cs (d:e:rest)) = e + plow (Pasture G ) plow _ = 70 Give the values of the following expressions. (a) (\ m -> [m+20]) 5 [25] (b) [3,5..12] [3,5,7,9,11] (c) unzip [(2,3),(9,1),(6,8)] ([2,9,6],[3,1,8]) (d) map gaze [6,3,7,11,2] [False,True,True,False,False] (e) [2,9,3]:[] [[2,9,3]] (f) plow (Lawn ) 21 (g) plow (Meadow "tractor" [5,9,2]) 79 (h) takewhile even [4,2,1,8,6,7,3] [4,2] (i) wonder islower "SYRacUsE" (18 points) Suppose that the following definitions are made (same as in Question 1):

2 import Data.Char data Field = Pasture Char Lawn Integer Float Meadow String [Integer] gaze :: Integer -> Bool gaze m = odd m && m < 10 wonder :: (Char -> Bool) -> String -> Float wonder h (c:cs) h c = 6.0 otherwise = wonder h cs wonder h [] = plow :: Field -> Integer plow (Lawn s t) = s plow (Meadow cs (d:e:rest)) = e + plow (Pasture G ) plow _ = 70 Give the types of the following expressions. (a) fst (plow,gaze) Field -> Integer (b) Pasture e Field (c) (\ (w,z) -> w + length z) (Int,[a]) -> Int (d) [ gaze k k <- [1..4] ] [Bool] (e) filter isalpha [] [Char] (f) Meadow String -> [Integer] -> Field (g) uncurry (&&) (Bool,Bool) -> Bool (h) zip "code" [b] -> [(Char,b)] (i) [toupper, tolower] [Char -> Char] 3. (12 points) For each of the following, fill in the blank with a pattern that gives the function the indicated behavior.

3 (a) one "apple" should return a and one [3,1,4,1,5,9] should return 3: (r:_) one = r (b) two [6,4,2,3,5] should return [2,4] and two "spring" should return "rp": (_:b:a:_) two = [a,b] (c) three (3, g,7) should return 4, and three ( m,true,5) should return 2: (_,_,c) three = c-3 (d) four [(10,20),(30,40)] should return 40, and four [(5,6),(7,8),(9,0)] should return 8: (_:(_,d):_) four = d 4. (6 points) Consider the following Haskell function: quibble :: Int -> [(Char,Int)] -> [Int] quibble j ps = [ m-j (d,m) <- ps, isalpha d ] Fill in the blanks below to write an equivalent function using map and filter: (\ (d,m) -> m-j) (\ (d,m) -> isalpha d) quibble j ps = map (filter ps)

4 5. (34 points) A small burrito shop offers a very limited menu: Drinks are available for $3.00 each. A large order of nachos costs $12.95, and a small order of nachos costs $8.50. There are three styles of burritos: chicken burritos, shrimp burritos, and bean burritos. The bean burritos costs $9.25 apiece; all other burritos cost $11.00 each. There are four fillings that can be added to burritos in any combination and any amount: rice, cheese, salsa, and onions. Each unit of filling adds $0.50 to the cost of a burrito, so (for example) adding two units of salsa and one unit of cheese increases a burrito s cost by $1.50. These menu options can be represented with the following Haskell types (note that none of the types belong to the Eq class, so you cannot use == or /= on values of these types): data Style = Chicken Shrimp Bean data Filling = Rice Cheese Salsa Onions data Size = Small Large data MenuItem = Drink Nachos Size Burrito Style [Filling] (a) (15 points) Write a Haskell function price :: MenuItem -> Float such that price item calculates the price (in dollars) of item. For example: *Main> price (Nachos Large) *Main> price (Burrito Bean [Rice, Onions, Rice, Cheese]) *Main> price (Burrito Shrimp []) 11.0 Sample solution #1: price Drink = 3.00 price (Nachos Large) = price (Nachos Small) = 8.50 price (Burrito Bean fs) = sum [ 0.5 _ <- fs] price (Burrito _ fs) = sum [ 0.5 _ <- fs] Sample solution #2:

5 price Drink = 3.00 price (Nachos Large) = price (Nachos Small) = 8.50 price (Burrito st fs) = cost st + sum [0.5 _ <- fs] cost :: Style -> Float cost Bean = 9.25 cost _ = (b) (12 points) Write a Haskell function cutcalories :: MenuItem -> MenuItem such that cutcalories item returns a menu item that is similar to item except that (i) large orders are replaced by small orders and (ii) any cheese is removed. For example: *Main> cutcalories (Nachos Large) Nachos Small *Main> cutcalories (Burrito Shrimp [Rice,Cheese,Salsa,Onions,Cheese]) Burrito Shrimp [Rice,Salsa,Onions] *Main> cutcalories Drink Drink Sample solution #1: cutcalories (Nachos _) = Nachos Small cutcalories Drink = Drink cutcalories (Burrito st fs) = Burrito st (filter notcheese fs) notcheese :: Filling -> Bool notcheese Cheese = False notcheese _ = True Sample solution #2: cutcalories (Nachos _) = Nachos Small cutcalories Drink = Drink cutcalories (Burrito st fs) = Burrito st (helper fs) helper :: [Filling] -> [Filling] helper [] = [] helper (Cheese:rest) = helper rest helper (item:rest) = item : helper rest (c) (7 points) Write a Haskell function withrice :: [MenuItem] -> Int such that withrice items computes the number of burritos in items that contain Rice. For example: *Main> withrice [Burrito Bean [Rice, Salsa, Rice], Burrito Shrimp []]

6 1 *Main> withrice [Drink, Nachos Small, Burrito Bean [Cheese]] 0 Sample solution #1: withrice items = sum [ 1 Burrito _ fs <- items, not (null [ 1 Rice <- fs])] Sample solution #2: withrice items = sum [ 1 Burrito _ fs <- items, hasrice :: [Filling] -> Bool hasrice [] = False hasrice (Rice:_) = True hasrice (_:rest) = hasrice rest hasrice fs] 6. (12 points) Write a Haskell function changefirst :: (a -> Bool) -> a -> [a] -> [a] such that changefirst p val xs returns a list that looks like xs except that the leftmost item in xs that satisfies predicate p is replaced by val. (If none of the elements of xs satisfy p, then xs is returned.) For example: *Main> changefirst even 33 [1,7,4,8,2] [1,7,33,8,2] *Main> changefirst even 33 [1,7,9,5] [1,7,9,5] *Main> changefirst islower! "Syracuse" "S!racuse" changefirst p val [] = [] changefirst p val (x:xs) p x = val:xs otherwise = x: changefirst p val xs

CIS 252 Introduction to Computer Science Section M013: Exam 2 (Green) March 29, Points Possible

CIS 252 Introduction to Computer Science Section M013: Exam 2 (Green) March 29, Points Possible Name: CIS 252 Introduction to Computer Science Section M013: March 29, 2018 Question Points Possible Points Received 1 18 2 18 3 12 4 6 5 34 6 12 Total 100 Instructions: 1. This exam is a closed-book (and

More information

2. (18 points) Suppose that the following definitions are made (same as in Question 1):

2. (18 points) Suppose that the following definitions are made (same as in Question 1): 1. (18 points) Suppose that the following definitions are made: import Data.Char data Avenue = Court Char Road String [Integer] Street Int Float snooze :: Int -> Bool snooze m = even m m < 5 slumber ::

More information

2. (18 points) Suppose that the following definitions are made (same as in Question 1):

2. (18 points) Suppose that the following definitions are made (same as in Question 1): 1. (18 points) Suppose that the following definitions are made: import Data.Char data Roadway = Avenue Char Lane [Integer] String Parkway Float Int doze :: Integer -> Bool doze m = even m m > 10 dream

More information

CIS 252 Introduction to Computer Science Section M019: Exam 1 (Yellow) February 22, Points Possible

CIS 252 Introduction to Computer Science Section M019: Exam 1 (Yellow) February 22, Points Possible Name: CIS 252 Introduction to Computer Science Section M019: February 22, 2018 Question Points Possible Points Received 1 34 2 16 3 16 4 10 5 12 6 12 Total 100 Instructions: 1. This exam is a closed-book

More information

1. (34 points) Suppose that the following definitions are made: (a) (22 points) Give the values of the following expressions.

1. (34 points) Suppose that the following definitions are made: (a) (22 points) Give the values of the following expressions. 1. (34 points) Suppose that the following definitions are made: import Data.Char ice :: [(Char,Integer)] ice = [( d,12), ( m,3), ( j,5),( f,2)] curl :: [a] -> String curl [] = "skip" curl (x:z) = "vice"

More information

Standard prelude. Appendix A. A.1 Classes

Standard prelude. Appendix A. A.1 Classes Appendix A Standard prelude In this appendix we present some of the most commonly used definitions from the standard prelude. For clarity, a number of the definitions have been simplified or modified from

More information

CIS 252 Introduction to Computer Science Section M013: Exam 1 (Pink) February 22, Points Possible

CIS 252 Introduction to Computer Science Section M013: Exam 1 (Pink) February 22, Points Possible Name: CIS 252 Introduction to Computer Science Section M013: February 22, 2018 Question Points Possible Points Received 1 34 2 16 3 16 4 10 5 12 6 12 Total 100 Instructions: 1. This exam is a closed-book

More information

CIS 252 Introduction to Computer Science Section M013: Exam 1 (Blue) February 22, Points Possible

CIS 252 Introduction to Computer Science Section M013: Exam 1 (Blue) February 22, Points Possible Name: CIS 252 Introduction to Computer Science Section M013: February 22, 2018 Question Points Possible Points Received 1 34 2 16 3 16 4 10 5 12 6 12 Total 100 Instructions: 1. This exam is a closed-book

More information

CIS 252 Introduction to Computer Science Exam 1 (Green) October 3, Points Possible

CIS 252 Introduction to Computer Science Exam 1 (Green) October 3, Points Possible Name: CIS 252 Introduction to Computer Science October 3, 2018 Question Points Possible Points Received 1 34 2 16 3 18 4 10 5 10 6 12 Total 100 Instructions: 1. This exam is a closed-book (and closed-notes)

More information

1. (34 points) Suppose that the following definitions are made: (a) (22 points) Give the values of the following expressions.

1. (34 points) Suppose that the following definitions are made: (a) (22 points) Give the values of the following expressions. 1. (34 points) Suppose that the following definitions are made: import Data.Char zone :: [(Int,Char)] zone = [(23, g ), (3, m ), (4, d ), (2, k ), (13, e )] poach :: [a] -> Float poach [] = 6.1 poach (x:z)

More information

1. (18 points) Suppose that the following definitions are made: Give the values of the following expressions.

1. (18 points) Suppose that the following definitions are made: Give the values of the following expressions. 1. (18 points) Suppose that the following definitions are made: data Thing = Pumpkin [Float] Bat (Bool,Int) Char trick :: Integer -> Thing -> Integer trick k (Pumpkin (a:_:cs)) = k + 500 trick k _ = 44

More information

EDAF40. 2nd June :00-19:00. WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/ odd pages will be read.

EDAF40. 2nd June :00-19:00. WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/ odd pages will be read. EDAF40 2nd June 2017 14:00-19:00 WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/ odd pages will be read. DO NOT WRITE WITH OTHER COLOUR THAN BLACK - coloured text

More information

CS 320: Concepts of Programming Languages

CS 320: Concepts of Programming Languages CS 320: Concepts of Programming Languages Wayne Snyder Computer Science Department Boston University Lecture 06: Useful Haskell Syntax, HO Programming Continued o Goodbye to Bare Bones Haskell: Built-in

More information

Haskell Programs. Haskell Fundamentals. What are Types? Some Very Basic Types. Types are very important in Haskell:

Haskell Programs. Haskell Fundamentals. What are Types? Some Very Basic Types. Types are very important in Haskell: Haskell Programs We re covering material from Chapters 1-2 (and maybe 3) of the textbook. Haskell Fundamentals Prof. Susan Older A Haskell program is a series of comments and definitions. Each comment

More information

CSCE 314 Programming Languages

CSCE 314 Programming Languages CSCE 314 Programming Languages Haskell: Higher-order Functions Dr. Hyunyoung Lee 1 Higher-order Functions A function is called higher-order if it takes a function as an argument or returns a function as

More information

Functional Programming TDA 452, DIT 142

Functional Programming TDA 452, DIT 142 Chalmers Göteborgs Universitet 2016-04-07 Examiner: David Sands dave@chalmers.se. Answering questions on the day of the exam (at approx 15.00): Gregoire Detrez (tel: 073 55 69 550) and at other times by

More information

1. (34 points) Suppose that the following definitions are made: (a) (22 points) Give the values of the following expressions.

1. (34 points) Suppose that the following definitions are made: (a) (22 points) Give the values of the following expressions. 1. (34 points) Suppose that the following definitions are made: import Data.Char field :: [(Char,Integer)] field = [( e,12), ( a,3), ( k,5),( t,2)] huck :: [a] -> Int huck [] = 55 huck (x:z) = 81 huck

More information

Shell CSCE 314 TAMU. Higher Order Functions

Shell CSCE 314 TAMU. Higher Order Functions 1 CSCE 314: Programming Languages Dr. Dylan Shell Higher Order Functions 2 Higher-order Functions A function is called higher-order if it takes a function as an argument or returns a function as a result.

More information

Haskell Overview II (2A) Young Won Lim 8/9/16

Haskell Overview II (2A) Young Won Lim 8/9/16 (2A) Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Haskell Overview II (2A) Young Won Lim 8/23/16

Haskell Overview II (2A) Young Won Lim 8/23/16 (2A) Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Lecture 2: List algorithms using recursion and list comprehensions

Lecture 2: List algorithms using recursion and list comprehensions Lecture 2: List algorithms using recursion and list comprehensions Søren Haagerup Department of Mathematics and Computer Science University of Southern Denmark, Odense September 12, 2017 Expressions, patterns

More information

PROGRAMMING IN HASKELL. Chapter 5 - List Comprehensions

PROGRAMMING IN HASKELL. Chapter 5 - List Comprehensions PROGRAMMING IN HASKELL Chapter 5 - List Comprehensions 0 Set Comprehensions In mathematics, the comprehension notation can be used to construct new sets from old sets. {x 2 x {1...5}} The set {1,4,9,16,25}

More information

Informatics 1 Functional Programming Lecture 5. Function properties. Don Sannella University of Edinburgh

Informatics 1 Functional Programming Lecture 5. Function properties. Don Sannella University of Edinburgh Informatics 1 Functional Programming Lecture 5 Function properties Don Sannella University of Edinburgh Part I Booleans and characters Boolean operators not :: Bool -> Bool (&&), ( ) :: Bool -> Bool ->

More information

It is better to have 100 functions operate one one data structure, than 10 functions on 10 data structures. A. Perlis

It is better to have 100 functions operate one one data structure, than 10 functions on 10 data structures. A. Perlis Chapter 14 Functional Programming Programming Languages 2nd edition Tucker and Noonan It is better to have 100 functions operate one one data structure, than 10 functions on 10 data structures. A. Perlis

More information

Functional Programming Mid-term exam Tuesday 3/10/2017

Functional Programming Mid-term exam Tuesday 3/10/2017 Functional Programming Mid-term exam Tuesday 3/10/2017 Name: Student number: Before you begin: Do not forget to write down your name and student number above. If necessary, explain your answers in English.

More information

Functional Programming TDA 452, DIT 142

Functional Programming TDA 452, DIT 142 Chalmers Göteborgs Universitet 2018-01-11 Examiner: Thomas Hallgren, D&IT, Answering questions at approx 15.00 (or by phone) Functional Programming TDA 452, DIT 142 2018-01-11 14.00 18.00 Samhällsbyggnad

More information

PROGRAMMING IN HASKELL. CS Chapter 6 - Recursive Functions

PROGRAMMING IN HASKELL. CS Chapter 6 - Recursive Functions PROGRAMMING IN HASKELL CS-205 - Chapter 6 - Recursive Functions 0 Introduction As we have seen, many functions can naturally be defined in terms of other functions. factorial :: Int Int factorial n product

More information

A tour of the Haskell Prelude

A tour of the Haskell Prelude A tour of the Haskell Prelude Bernie Pope 2001 1 Haskell The Haskell language was conceived during a meeting held at the 1987 Functional Programming and Computer Architecture conference (FPCA 87). At the

More information

INTRODUCTION TO HASKELL

INTRODUCTION TO HASKELL INTRODUCTION TO HASKELL PRINCIPLES OF PROGRAMMING LANGUAGES Norbert Zeh Winter 2018 Dalhousie University 1/81 HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE Functions are first-class values: Can be

More information

Haskell Overview II (2A) Young Won Lim 9/26/16

Haskell Overview II (2A) Young Won Lim 9/26/16 (2A) Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

Topic 5: Higher Order Functions

Topic 5: Higher Order Functions Topic 5: Higher Order Functions 1 Recommended Exercises and Readings From Haskell: The craft of functional programming (3 rd Ed.) Exercises: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 10.10,

More information

Topic 5: Higher Order Functions

Topic 5: Higher Order Functions Topic 5: Higher Order Functions 1 Recommended Exercises and Readings From Haskell: The craft of functional programming (3 rd Ed.) Exercises: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 10.10,

More information

CITS3211 FUNCTIONAL PROGRAMMING. 7. Lazy evaluation and infinite lists

CITS3211 FUNCTIONAL PROGRAMMING. 7. Lazy evaluation and infinite lists CITS3211 FUNCTIONAL PROGRAMMING 7. Lazy evaluation and infinite lists Summary: This lecture introduces lazy evaluation and infinite lists in functional languages. cs123 notes: Lecture 19 R.L. While, 1997

More information

Functional Programming and Haskell

Functional Programming and Haskell Functional Programming and Haskell Tim Dawborn University of Sydney, Australia School of Information Technologies Tim Dawborn Functional Programming and Haskell 1/22 What are Programming Paradigms? A programming

More information

Haskell Modules. Input and Output. Urtė Zubkaitė

Haskell Modules. Input and Output. Urtė Zubkaitė Haskell Modules. Input and Output Urtė Zubkaitė Modules in Haskell A Haskell program is a collection of modules where the main module loads up the other modules and then uses the functions defined in them

More information

CSCE 314 Programming Languages. Functional Parsers

CSCE 314 Programming Languages. Functional Parsers CSCE 314 Programming Languages Functional Parsers Dr. Hyunyoung Lee 1 What is a Parser? A parser is a program that takes a text (set of tokens) and determines its syntactic structure. String or [Token]

More information

Programming in Haskell Aug-Nov 2015

Programming in Haskell Aug-Nov 2015 Programming in Haskell Aug-Nov 2015 LECTURE 5 AUGUST 18, 2015 S P SURESH CHENNAI MATHEMATICAL INSTITUTE The datatype Char Values are written with single quotes a, 3, %, #, Character symbols stored in a

More information

CSc 520. Principles of Programming Languages 11: Haskell Basics

CSc 520. Principles of Programming Languages 11: Haskell Basics CSc 520 Principles of Programming Languages 11: Haskell Basics Christian Collberg Department of Computer Science University of Arizona collberg@cs.arizona.edu Copyright c 2005 Christian Collberg April

More information

Watch out for the arrows. Recollecting Haskell, Part V. A start on higher types: Mapping, 1. A start on higher types: Mapping, 2.

Watch out for the arrows. Recollecting Haskell, Part V. A start on higher types: Mapping, 1. A start on higher types: Mapping, 2. Watch out for the arrows Recollecting Haskell, Part V Higher Types CIS 352/Spring 2018 Programming Languages January 30, 2018 1 / 28 2 / 28 A start on higher types: Mapping, 1 Mapping via list comprehension

More information

PROGRAMMING IN HASKELL. Chapter 2 - First Steps

PROGRAMMING IN HASKELL. Chapter 2 - First Steps PROGRAMMING IN HASKELL Chapter 2 - First Steps 0 The Hugs System Hugs is an implementation of Haskell 98, and is the most widely used Haskell system; The interactive nature of Hugs makes it well suited

More information

Haskell An Introduction

Haskell An Introduction Haskell An Introduction What is Haskell? General purpose Purely functional No function can have side-effects IO is done using special types Lazy Strongly typed Polymorphic types Concise and elegant A First

More information

Programming Languages ML Programming Project Due 9/28/2001, 5:00 p.m.

Programming Languages ML Programming Project Due 9/28/2001, 5:00 p.m. Programming Languages ML Programming Project Due 9/28/2001, 5:00 p.m. Functional Suite Instead of writing a single ML program, you are going to write a suite of ML functions to complete various tasks.

More information

Haskell Types, Classes, and Functions, Currying, and Polymorphism

Haskell Types, Classes, and Functions, Currying, and Polymorphism 1 CSCE 314: Programming Languages Dr. Flemming Andersen Haskell Types, Classes, and Functions, Currying, and Polymorphism 2 Types A type is a collection of related values. For example, Bool contains the

More information

OBJECTIVE QUESTIONS: Choose the correct alternative:

OBJECTIVE QUESTIONS: Choose the correct alternative: OBJECTIVE QUESTIONS: Choose the correct alternative: 1. Function is data type a) Primary b) user defined c) derived d) none 2. The declaration of function is called a) function prototype b) function call

More information

Type Processing by Constraint Reasoning

Type Processing by Constraint Reasoning , Martin Sulzmann, Jeremy Wazny 8th November 2006 Chameleon Chameleon is Haskell-style language treats type problems using constraints gives expressive error messages has a programmable type system Developers:

More information

Functional Programming for Logicians - Lecture 1

Functional Programming for Logicians - Lecture 1 Functional Programming for Logicians - Lecture 1 Functions, Lists, Types Malvin Gattinger 4 June 2018 module L1 where Introduction Who is who Course website: https://malv.in/2018/funcproglog/ Malvin Gattinger

More information

CSCE 314 Programming Languages. Monadic Parsing

CSCE 314 Programming Languages. Monadic Parsing CSCE 314 Programming Languages Monadic Parsing Dr. Hyunyoung Lee 1 What is a Parser? A parser is a program that takes a string of characters (or a set of tokens) as input and determines its syntactic structure.

More information

(ii) Define a function ulh that takes a list xs, and pairs each element with all other elements in xs.

(ii) Define a function ulh that takes a list xs, and pairs each element with all other elements in xs. EXAM FUNCTIONAL PROGRAMMING Tuesday the 1st of October 2016, 08.30 h. - 10.30 h. Name: Student number: Before you begin: Do not forget to write down your name and student number above. If necessary, explain

More information

A general introduction to Functional Programming using Haskell

A general introduction to Functional Programming using Haskell A general introduction to Functional Programming using Haskell Matteo Rossi Dipartimento di Elettronica e Informazione Politecnico di Milano rossi@elet.polimi.it 1 Functional programming in a nutshell

More information

CSCE 314 TAMU Fall CSCE 314: Programming Languages Dr. Flemming Andersen. Haskell Functions

CSCE 314 TAMU Fall CSCE 314: Programming Languages Dr. Flemming Andersen. Haskell Functions 1 CSCE 314: Programming Languages Dr. Flemming Andersen Haskell Functions 2 Outline Defining Functions List Comprehensions Recursion 3 Conditional Expressions As in most programming languages, functions

More information

CS201- Introduction to Programming Current Quizzes

CS201- Introduction to Programming Current Quizzes CS201- Introduction to Programming Current Quizzes Q.1 char name [] = Hello World ; In the above statement, a memory of characters will be allocated 13 11 12 (Ans) Q.2 A function is a block of statements

More information

CSCE 314 Programming Languages. Monadic Parsing

CSCE 314 Programming Languages. Monadic Parsing CSCE 314 Programming Languages Monadic Parsing Dr. Hyunyoung Lee 1 What is a Parser? A parser is a program that takes a string of characters (or a set of tokens) as input and determines its syntactic structure.

More information

CSCE 314 TAMU Fall CSCE 314: Programming Languages Dr. Flemming Andersen. Functional Parsers

CSCE 314 TAMU Fall CSCE 314: Programming Languages Dr. Flemming Andersen. Functional Parsers 1 CSCE 314: Programming Languages Dr. Flemming Andersen Functional Parsers What is a Parser? A parser is a program that takes a text (set of tokens) and determines its syntactic structure. String or [Token]

More information

CIS 252 Introduction to Computer Science Section M013: Exam 3 (Blue) April 26, Points Possible

CIS 252 Introduction to Computer Science Section M013: Exam 3 (Blue) April 26, Points Possible Name: CIS 252 Introduction to Computer Science Section M013: April 26, 2018 Question Points Possible Points Received 1 18 2 20 3 12 4 14 5 24 6 12 Total 100 Instructions: 1. This exam is a closed-book

More information

Turing Machine as Transducer. Turing Machines. Computation with Turing Machines. Computation with Turing Machines. Computation with Turing Machines

Turing Machine as Transducer. Turing Machines. Computation with Turing Machines. Computation with Turing Machines. Computation with Turing Machines Turing Machine as Transducer Turing Computation and programming Transducer -- any device that converts a signal from one form to another Turning machine Converts input to output Start with string on the

More information

02157 Functional Programming. Michael R. Ha. Lecture 3: Programming as a model-based activity. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Lecture 3: Programming as a model-based activity. Michael R. Hansen Lecture 3: as a model-based activity nsen 1 DTU Compute, Technical University of Denmark Lecture 3: as a model-based activity MRH 20/09/2018 Overview RECAP Higher-order functions (lists) Type inference

More information

CSc 372. Comparative Programming Languages. 4 : Haskell Basics. Department of Computer Science University of Arizona

CSc 372. Comparative Programming Languages. 4 : Haskell Basics. Department of Computer Science University of Arizona 1/40 CSc 372 Comparative Programming Languages 4 : Haskell Basics Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2013 Christian Collberg 2/40 The Hugs Interpreter The

More information

Informatics 1 Functional Programming Lecture 4. Lists and Recursion. Don Sannella University of Edinburgh

Informatics 1 Functional Programming Lecture 4. Lists and Recursion. Don Sannella University of Edinburgh Informatics 1 Functional Programming Lecture 4 Lists and Recursion Don Sannella University of Edinburgh Part I Lists and Recursion Cons and append Cons takes an element and a list. Append takes two lists.

More information

CSc 372 Comparative Programming Languages. 4 : Haskell Basics

CSc 372 Comparative Programming Languages. 4 : Haskell Basics CSc 372 Comparative Programming Languages 4 : Haskell Basics Christian Collberg Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2011 Christian Collberg August 23, 2011

More information

1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol.

1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol. 1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol. B. Outputs to the console a floating point number f1 in scientific format

More information

Module Title: Informatics 1 Functional Programming (first sitting) Exam Diet (Dec/April/Aug): December 2014 Brief notes on answers:

Module Title: Informatics 1 Functional Programming (first sitting) Exam Diet (Dec/April/Aug): December 2014 Brief notes on answers: Module Title: Informatics 1 Functional Programming (first sitting) Exam Diet (Dec/April/Aug): December 2014 Brief notes on answers: -- Full credit is given for fully correct answers. -- Partial credit

More information

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics National Institute of Informatics May 31, June 7, June 14, 2010 All Right Reserved. Outline I 1 Parser Type 2 Monad Parser Monad 3 Derived Primitives 4 5 6 Outline Parser Type 1 Parser Type 2 3 4 5 6 What

More information

Introduction to Haskell

Introduction to Haskell Introduction to Haskell Matt Mullins Texas A&M Computing Society October 6, 2009 Matt Mullins (TACS) Introduction to Haskell October 6, 2009 1 / 39 Outline Introduction to Haskell Functional Programming

More information

CSc 520 Principles of Programming Languages. Currying Revisited... Currying Revisited. 16: Haskell Higher-Order Functions

CSc 520 Principles of Programming Languages. Currying Revisited... Currying Revisited. 16: Haskell Higher-Order Functions Higher-Order Functions CSc 520 Principles of Programming Languages 16: Haskell Higher-Order Functions Christian Collberg collberg@cs.arizona.edu Department of Computer Science University of Arizona Copyright

More information

CSc 372. Comparative Programming Languages. 11 : Haskell Higher-Order Functions. Department of Computer Science University of Arizona

CSc 372. Comparative Programming Languages. 11 : Haskell Higher-Order Functions. Department of Computer Science University of Arizona CSc 372 Comparative Programming Languages 11 : Haskell Higher-Order Functions Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2010 Christian Collberg Higher-Order Functions

More information

CS3200: Programming Languages Homework 7: Prolog

CS3200: Programming Languages Homework 7: Prolog CS3200: Programming Languages Homework 7: Prolog For the following problems, you are required to submit a sample prolog tests that demonstrates each predicate working correctly. Required Problems 1. In

More information

Haskell Types COMP360

Haskell Types COMP360 Haskell Types COMP360 No computer has ever been designed that is ever aware of what it's doing; but most of the time, we aren't either. Marvin Minsky Haskell Programming Assignment A Haskell programming

More information

Introduction to Programming: Lecture 3

Introduction to Programming: Lecture 3 Introduction to Programming: Lecture 3 K Narayan Kumar Chennai Mathematical Institute http://www.cmi.ac.in/~kumar 14 Aug 2012 Polymorphism in Haskell mylength [] = 0 mylength (x:xs) = 1 + mylength xs Polymorphism

More information

Programming Languages Fall 2013

Programming Languages Fall 2013 Programming Languages Fall 2013 Lecture 2: types Prof. Liang Huang huang@qc.cs.cuny.edu Recap of Lecture 1 functional programming vs. imperative programming basic Haskell syntax function definition lazy

More information

A Sudoku Solver (1A) Richard Bird Implementation. Young Won Lim 11/15/16

A Sudoku Solver (1A) Richard Bird Implementation. Young Won Lim 11/15/16 A Sudoku Solver (1A) Richard Bird Implementation Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

More information

Converting a Lowercase Letter Character to Uppercase (Or Vice Versa)

Converting a Lowercase Letter Character to Uppercase (Or Vice Versa) Looping Forward Through the Characters of a C String A lot of C string algorithms require looping forward through all of the characters of the string. We can use a for loop to do that. The first character

More information

Informatics 1 Functional Programming Lecture 7. Map, filter, fold. Don Sannella University of Edinburgh

Informatics 1 Functional Programming Lecture 7. Map, filter, fold. Don Sannella University of Edinburgh Informatics 1 Functional Programming Lecture 7 Map, filter, fold Don Sannella University of Edinburgh Part I Map Squares *Main> squares [1,-2,3] [1,4,9] squares :: [Int] -> [Int] squares xs [ x*x x

More information

Tree Equality: The Problem

Tree Equality: The Problem Recall the tree data type we defined: Tree Equality: The Problem data LTree a = LLeaf a LBranch (LTree a) (LTree a) Suppose we want to write a function that determines if two trees are equal: treeeq (LLeaf

More information

CS 440: Programming Languages and Translators, Spring 2019 Mon 2/4

CS 440: Programming Languages and Translators, Spring 2019 Mon 2/4 Haskell, Part 5 CS 440: Programming Languages and Translators, Spring 2019 Mon 2/4 More Haskell Miscellaneous topics Simple I/O, do blocks, actions Modules data vs type declaration Instances of classtypes

More information

Ozyegin University CS 321 Programming Languages Sample Problems 05

Ozyegin University CS 321 Programming Languages Sample Problems 05 Page 1 of 7 Ozyegin University CS 321 Programming Languages Sample Problems 05 1. (PLC Ex. 7.2.(i)) Write a C program containing a function void arrsum(int n, int arr[], int *sump) that computes and returns

More information

Higher Order Functions in Haskell

Higher Order Functions in Haskell Higher Order Functions in Haskell Evan Misshula 2018-09-10 Outline Curried Functions Curried comparison Example partial application partial application of a string function Returned functions ZipWith flip

More information

Haskell Overview III (3A) Young Won Lim 10/4/16

Haskell Overview III (3A) Young Won Lim 10/4/16 (3A) Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

CSCE 314 Programming Languages

CSCE 314 Programming Languages CSCE 314 Programming Languages Haskell: Declaring Types and Classes Dr. Hyunyoung Lee 1 Outline Declaring Data Types Class and Instance Declarations 2 Defining New Types Three constructs for defining types:

More information

These notes are intended exclusively for the personal usage of the students of CS352 at Cal Poly Pomona. Any other usage is prohibited without

These notes are intended exclusively for the personal usage of the students of CS352 at Cal Poly Pomona. Any other usage is prohibited without These notes are intended exclusively for the personal usage of the students of CS352 at Cal Poly Pomona. Any other usage is prohibited without previous written authorization. 1 2 The simplest way to create

More information

Type-indexed functions in Generic Haskell

Type-indexed functions in Generic Haskell Type-indexed functions in Generic Haskell Johan Jeuring September 15, 2004 Introduction Today I will talk about: a Types of polymorphism. b Type-indexed functions. c Dependencies. Read about b, and c in

More information

Haskell 101. (Version 1 (July 18, 2012)) Juan Pedro Villa Isaza

Haskell 101. (Version 1 (July 18, 2012)) Juan Pedro Villa Isaza Haskell 101 (Version 1 (July 18, 2012)) Juan Pedro Villa Isaza Haskell 101: Contents Introduction Tutorial Homework Bibliography Haskell 101: Contents Introduction Tutorial Homework Bibliography Haskell

More information

COMPUTER SCIENCE (083)

COMPUTER SCIENCE (083) Roll No. Code : 112011-083-A Please check that this question paper contains 7 questions and 6 printed pages. CLASS-XI COMPUTER SCIENCE (083) Time Allowed : 3 Hrs. Maximum Marks : 70 General Instructions

More information

Type Conversion. and. Statements

Type Conversion. and. Statements and Statements Type conversion changing a value from one type to another Void Integral Floating Point Derived Boolean Character Integer Real Imaginary Complex no fractional part fractional part 2 tj Suppose

More information

CMSC 330: Organization of Programming Languages. Functional Programming with Lists

CMSC 330: Organization of Programming Languages. Functional Programming with Lists CMSC 330: Organization of Programming Languages Functional Programming with Lists CMSC330 Spring 2018 1 Lists in OCaml The basic data structure in OCaml Lists can be of arbitrary length Implemented as

More information

Inductive Data Types

Inductive Data Types Inductive Data Types Lars-Henrik Eriksson Functional Programming 1 Original slides by Tjark Weber Lars-Henrik Eriksson (UU) Inductive Data Types 1 / 42 Inductive Data Types Today Today New names for old

More information

Haskell Types COMP360

Haskell Types COMP360 Haskell Types COMP360 Should array indices start at 0 or 1? My compromise of 0.5 was rejected without, I thought, proper consideration. Stan Kelly-Bootle British author, singer-songwriter and computer

More information

02157 Functional Programming Tagged values and Higher-order list functions

02157 Functional Programming Tagged values and Higher-order list functions Tagged values and Higher-order list functions nsen 1 DTU Informatics, Technical University of Denmark Tagged values and Higher-order list functions MRH 27/09/2012 Part I: Disjoint Sets An Example A shape

More information

Imperative languages

Imperative languages Imperative languages Von Neumann model: store with addressable locations machine code: effect achieved by changing contents of store locations instructions executed in sequence, flow of control altered

More information

CSC324- TUTORIAL 5. Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides

CSC324- TUTORIAL 5. Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides CSC324- TUTORIAL 5 ML Shems Saleh* *Some slides inspired by/based on Afsaneh Fazly s slides Assignment 1 2 More questions were added Questions regarding the assignment? Starting ML Who am I? Shems Saleh

More information

Starting Out with C++: Early Objects, 9 th ed. (Gaddis, Walters & Muganda) Chapter 2 Introduction to C++ Chapter 2 Test 1 Key

Starting Out with C++: Early Objects, 9 th ed. (Gaddis, Walters & Muganda) Chapter 2 Introduction to C++ Chapter 2 Test 1 Key Starting Out with C++ Early Objects 9th Edition Gaddis TEST BANK Full clear download (no formatting errors) at: https://testbankreal.com/download/starting-c-early-objects-9thedition-gaddis-test-bank/ Starting

More information

02157 Functional Programming Lecture 3: Lists

02157 Functional Programming Lecture 3: Lists Lecture 3: Lists nsen 1 DTU Informatics, Technical University of Denmark Lecture 3: Lists MRH 17/09/2012 Overview Generation of lists Useful functions on lists Typical recursions on lists as a modelling

More information

Structural polymorphism in Generic Haskell

Structural polymorphism in Generic Haskell Structural polymorphism in Generic Haskell Andres Löh andres@cs.uu.nl 5 February 2005 Overview About Haskell Genericity and other types of polymorphism Examples of generic functions Generic Haskell Overview

More information

02157 Functional Programming. Michael R. Ha. Disjoint Unions and Higher-order list functions. Michael R. Hansen

02157 Functional Programming. Michael R. Ha. Disjoint Unions and Higher-order list functions. Michael R. Hansen Disjoint Unions and Higher-order list functions nsen 1 DTU Compute, Technical University of Denmark Disjoint Unions and Higher-order list functions MRH 27/09/2018 Overview Recap Disjoint union (or Tagged

More information

GHCi: Getting started (1A) Young Won Lim 6/3/17

GHCi: Getting started (1A) Young Won Lim 6/3/17 GHCi: Getting started (1A) Copyright (c) 2016-2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Case by Case. Chapter 3

Case by Case. Chapter 3 Chapter 3 Case by Case In the previous chapter, we used the conditional expression if... then... else to define functions whose results depend on their arguments. For some of them we had to nest the conditional

More information

Informatics 1 Functional Programming Lecture 11. Data Representation. Don Sannella University of Edinburgh

Informatics 1 Functional Programming Lecture 11. Data Representation. Don Sannella University of Edinburgh Informatics 1 Functional Programming Lecture 11 Data Representation Don Sannella University of Edinburgh Part I Complexity t = n vs t = n 2 10.4 9.6 8.8 8 7.2 6.4 5.6 4.8 4 3.2 2.4 1.6 0.8 0 0.8 1.6 2.4

More information

Programming in Haskell Aug-Nov 2015

Programming in Haskell Aug-Nov 2015 Programming in Haskell Aug-Nov 2015 LECTURE 14 OCTOBER 1, 2015 S P SURESH CHENNAI MATHEMATICAL INSTITUTE Enumerated data types The data keyword is used to define new types data Bool = False True data Day

More information

Programming Languages 3. Definition and Proof by Induction

Programming Languages 3. Definition and Proof by Induction Programming Languages 3. Definition and Proof by Induction Shin-Cheng Mu Oct. 22, 2015 Total Functional Programming The next few lectures concerns inductive definitions and proofs of datatypes and programs.

More information

Solution sheet 1. Introduction. Exercise 1 - Types of values. Exercise 2 - Constructors

Solution sheet 1. Introduction. Exercise 1 - Types of values. Exercise 2 - Constructors Solution sheet 1 Introduction Please note that there can be other solutions than those listed in this document. This is a literate Haskell file which is available as PDF, as well as literate Haskell source

More information

Topics: Material through example 19 (types, operators, expressions, functions, selection, loops, arrays)

Topics: Material through example 19 (types, operators, expressions, functions, selection, loops, arrays) CPSC 122 Study Guide: Examination 1 Topics: Material through example 19 (types, operators, expressions, functions, selection, loops, arrays) 1. What is the output? int x, y; x = y = 0; while(x < 5) y +=

More information