Computer Programming Practice (2008 Winter) Practice 10 C Scoping & Pointer

Size: px
Start display at page:

Download "Computer Programming Practice (2008 Winter) Practice 10 C Scoping & Pointer"

Transcription

1 Computer Programming Practice (2008 Winter) Practice 10 C Scoping & Pointer

2 2/14 Contents C Scoping Rule Declaration / Definition Single Definition Rule C Pointer & Array Stack implementation Pointer Basic Dynamic Memory Allocation

3 3/14 C Scoping - Declaration / Definition (1/2) /* sub.h */ int i; // dec /* sub.c */ #include <stdio.h> #include "sub.h int j, k; // dec int j = 1; // def /* main.c */ #include <stdio.h> #include "sub.h" main() { printf("(main) i's address : %x\n", &i); printf("i = %d\n",i); sub1(); sub2(); void sub1() { int j = 2; // def printf("(sub1) j's address : %x\n", &j); printf("j = %d\n", j); printf("(sub1) k's address : %x\n", &k); printf("k = %d\n", k); int k = 2; // def void sub2() { printf("(sub2) j's address : %x\n", &j); printf("j = %d\n",j);

4 C Scoping - Single Definition Rule (2/2) /* sub.h */ int i; // dec /* sub.c */ #include <stdio.h> #include "sub.h" int i = 7; // def int j = 1; // def /* main.c */ #include <stdio.h> #include "sub.h" int i; // dec int k = 5; // def int main() { printf("(main) i's address : %x\n", &i); printf("(main) i = %d\n", i); printf("(main) k's address : %x\n", &k); printf("(main) k = %d\n", k); sub1(); sub2(); sub3(); sub4(); sub4(); return 0; 4/14 static int k = 2; // def (static) void sub1() { printf("(sub1) i's address : %x\n", &i); printf("(sub1) i = %d\n", i); void sub2() { printf("(sub2) j's address : %x\n", &j); printf("(sub2) j = %d\n", j); void sub3() { int i = 10; // def printf("(sub3) k's address : %x\n", &k); printf("(sub3) k = %d\n", k); printf("(sub3) i's address : %x\n", &i); printf("(sub3) i = %d\n", i); void sub4() { static j = 10; // def (static) printf("(sub4) j's address : %x\n", &j); printf("(sub4) j = %d\n", j); j++;

5 5/14 Stack (1/2) Stack 한쪽끝에서만새로운항목을삽입, 삭제가능한자료구조 Last In, First Out (LIFO) 삽입과삭제는 top 에서만일어남 top F E D C B A top top top top top top

6 6/14 Stack (2/2) Stack Operatioin push pop 데이타항목을삽입하려면스택포인터를하나만큼증가시켜주고스택의 top 에데이타항목을저장한다 데이타항목을삽입하기전에새로운항목을저장할빈공간이있는지검사해야한다 데이타항목을삭제하려면스택의 top 에있는데이타항목을제거하고스택포인터를하나만큼감소시켜준다 데이타항목을삭제하기전에스택이비어있는지를검사해야한다 full (overflow) 스택이가득차있으면새로운데이터항목을삽입불가 데이터항목을삽입하기전에먼저, 스택포인터가스택의한계에도달해있는지검사해야한다 empty (underflow) 스택이비어있으면, 데이터항목삭제불가 삭제하기전에스택포인터가기저에도달해있는지를검사해야한다

7 7/14 Array 를이용한 Stack 구현 (1/3) /* stack.h */ void make_empty(void); int is_empty(void); void push(int); int pop(void); /* test_stack.c */ #include <stdio.h> #include stack.h int main() { make_empty(); return 0; /* stack.c */ #include <stdio.h> #include stack.h static int contents[100]; static int top = 0; void make_empty(void) { int is_empty(void) { static int is_full(void) { void push(int i) { int pop(void) {

8 8/14 Array 를이용한 Stack 구현 (2/3) 헤더파일 (stack.h) 에는각함수선언 (interface) 스택파일 (stack.c) 에는각함수의기능을구현 (Implementation) make_empty : 스택을비움 top = 0 으로초기화 is_empty : 스택이비었는지검사 비교연산자 == 을사용 비었으면 1 리턴, 비어있지않으면 0 리턴 is_full : 스택이다찼는지검사 push pop 다찼으면 1 리턴, 다차지않았으면 0 리턴 스택이다찼으면 (is_full 호출 ) 에러메시지를출력하고리턴 그렇지않으면아이템을 push하고, 배열 ( 스택 ) 의인덱스를증가 스택이비었으면 (is_empty 호출 ) 에러메시지를출력하고리턴 그렇지않으면배열 ( 스택 ) 의인덱스를감소시키고해당배열아이템을리턴

9 9/14 Array 를이용한 Stack 구현 (3/3) 테스트파일 (test_stack.c) 에서는 push, pop 루틴을호출하고결과를출력한다. make_empty 를이용하여배열을초기화 3, 7, 및 9 를 push 하고 pop 루틴을 2 번수행하여각각 pop 된값을출력 is_empty 루틴을수행하여그결과를출력 pop 루틴을한번더수행한후 is_empty 루틴을수행하여그결과를출력 Makefile 을작성하여컴파일한다. File 들의 Dependency 를고려

10 10/14 Pointer Basic Pointer Operators &: Address of Operator Get the address of the variable *: Indirect Operator Get the value at the address p = &var; *p = 3; -> : Member variable of Structure 996 var p

11 11/14 Dynamic Memory Allocation malloc Allocate a Specified Number of Bytes of Memory (w/ Indeterminate Initial Values) calloc Allocate (Zero-Set) Space for a Specific Number of Objects of a Specified Size realloc Change the Size of a Previous Allocated Area (w/ Indeterminate-Valued Added Area) free Deallocate the Specified Space

12 12/14 Dynamic Memory Allocation Standard Library Function Prototype #include <stdlib.h> void *malloc(size_t size); void *calloc(size_t nobj, size_t size); void *realloc(void *ptr, size_t newsize); void free(void *ptr); Example Allocation & Deallocation should match struct node *new_node; int *pa, n = 10; new_node = malloc(sizeof(struct node)); pa = calloc(n, sizeof(int)); free(new_node); free(pa);

13 Dynamic Memory Allocation Example /* mem.c */ #include <stdio.h> #include <stdlib.h> struct node { int data; struct node *next; ; int main() { struct node *a; struct node *b; struct node *c; struct node *p; a = malloc(sizeof(struct node)); b = malloc(sizeof(struct node)); c = malloc(sizeof(struct node)); b->data = 6; b->next = c; c->data = 9; c->next = NULL; p = a; while ( p!= NULL ) { printf("%d\n", p->data); p = p->next; free(a); free(b); free(c); printf("%d\n", p->data); return 0; a->data = 3; a->next = b; 13/14 a b c NULL

14 14/14 Dynamic Memory Allocation Example 앞예제는 Segmentation fault 발생 gdb 를이용해서 Error 가발생한위치를찾고, 문제점을해결

Chapter 19: Program Design. Chapter 19. Program Design. Copyright 2008 W. W. Norton & Company. All rights reserved.

Chapter 19: Program Design. Chapter 19. Program Design. Copyright 2008 W. W. Norton & Company. All rights reserved. Chapter 19 Program Design 1 Introduction Most full-featured programs are at least 100,000 lines long. Although C wasn t designed for writing large programs, many large programs have been written in C.

More information

C Pointers. Abdelghani Bellaachia, CSCI 1121 Page: 1

C Pointers. Abdelghani Bellaachia, CSCI 1121 Page: 1 C Pointers 1. Objective... 2 2. Introduction... 2 3. Pointer Variable Declarations and Initialization... 3 4. Reference operator (&) and Dereference operator (*) 6 5. Relation between Arrays and Pointers...

More information

Dynamic Memory Allocation (and Multi-Dimensional Arrays)

Dynamic Memory Allocation (and Multi-Dimensional Arrays) Dynamic Memory Allocation (and Multi-Dimensional Arrays) Professor Hugh C. Lauer CS-2303, System Programming Concepts (Slides include materials from The C Programming Language, 2 nd edition, by Kernighan

More information

Advanced Unix Programming Module 06 Raju Alluri spurthi.com

Advanced Unix Programming Module 06 Raju Alluri spurthi.com Advanced Unix Programming Module 06 Raju Alluri askraju @ spurthi.com Advanced Unix Programming: Module 6 Data Management Basic Memory Management File Locking Basic Memory Management Memory allocation

More information

Dynamic Memory Management. Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island

Dynamic Memory Management. Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island Dynamic Memory Management Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island 1 Dynamic Memory Allocation Dynamic memory allocation is used to

More information

CSCI 2132 Software Development. Lecture 29: Dynamic Memory Allocation

CSCI 2132 Software Development. Lecture 29: Dynamic Memory Allocation CSCI 2132 Software Development Lecture 29: Dynamic Memory Allocation Instructor: Vlado Keselj Faculty of Computer Science Dalhousie University 22-Nov-2017 (29) CSCI 2132 1 Previous Lecture Protecting header

More information

Overview of today s lecture. Quick recap of previous C lectures. Introduction to C programming, lecture 2. Abstract data type - Stack example

Overview of today s lecture. Quick recap of previous C lectures. Introduction to C programming, lecture 2. Abstract data type - Stack example Overview of today s lecture Introduction to C programming, lecture 2 -Dynamic data structures in C Quick recap of previous C lectures Abstract data type - Stack example Make Refresher: pointers Pointers

More information

Reminder of midterm 1. Next Thursday, Feb. 14, in class Look at Piazza announcement for rules and preparations

Reminder of midterm 1. Next Thursday, Feb. 14, in class Look at Piazza announcement for rules and preparations Reminder of midterm 1 Next Thursday, Feb. 14, in class Look at Piazza announcement for rules and preparations A New Example to see effect of E++ (better than the one in previous lecture) Purpose of showing

More information

Deep C. Multifile projects Getting it running Data types Typecasting Memory management Pointers. CS-343 Operating Systems

Deep C. Multifile projects Getting it running Data types Typecasting Memory management Pointers. CS-343 Operating Systems Deep C Multifile projects Getting it running Data types Typecasting Memory management Pointers Fabián E. Bustamante, Fall 2004 Multifile Projects Give your project a structure Modularized design Reuse

More information

Dynamic memory allocation

Dynamic memory allocation Dynamic memory allocation outline Memory allocation functions Array allocation Matrix allocation Examples Memory allocation functions (#include ) malloc() Allocates a specified number of bytes

More information

19-Nov CSCI 2132 Software Development Lecture 29: Linked Lists. Faculty of Computer Science, Dalhousie University Heap (Free Store)

19-Nov CSCI 2132 Software Development Lecture 29: Linked Lists. Faculty of Computer Science, Dalhousie University Heap (Free Store) Lecture 29 p.1 Faculty of Computer Science, Dalhousie University CSCI 2132 Software Development Lecture 29: Linked Lists 19-Nov-2018 Location: Chemistry 125 Time: 12:35 13:25 Instructor: Vlado Keselj Previous

More information

Memory (Stack and Heap)

Memory (Stack and Heap) Memory (Stack and Heap) Praktikum C-Programmierung Nathanael Hübbe, Eugen Betke, Michael Kuhn, Jakob Lüttgau, Jannek Squar Wissenschaftliches Rechnen Fachbereich Informatik Universität Hamburg 2018-12-03

More information

Programming. Pointers, Multi-dimensional Arrays and Memory Management

Programming. Pointers, Multi-dimensional Arrays and Memory Management Programming Pointers, Multi-dimensional Arrays and Memory Management Summary } Computer Memory } Pointers } Declaration, assignment, arithmetic and operators } Casting and printing pointers } Relationship

More information

Memory Allocation. General Questions

Memory Allocation. General Questions General Questions 1 Memory Allocation 1. Which header file should be included to use functions like malloc() and calloc()? A. memory.h B. stdlib.h C. string.h D. dos.h 2. What function should be used to

More information

Understanding Pointers

Understanding Pointers Division of Mathematics and Computer Science Maryville College Pointers and Addresses Memory is organized into a big array. Every data item occupies one or more cells. A pointer stores an address. A pointer

More information

1. Lab exercise C programming language

1. Lab exercise C programming language Parallel and disributed systems and algorithms 2018/19 1. Lab exercise C programming language Davor Sluga "The more I C, the less I see." Introduction Lab exercises are mandatory and are being graded To

More information

List, Stack and Queue Implementation

List, Stack and Queue Implementation Roy Chan CSC2100B Data Structures Tutorial 2 (Version 2) January 21, 2009 1 / 39 1 CSC2100B Online Judge Score 2 Structure 3 Linked List Overview Implementation 4 Stack Overview Implementation 5 Queue

More information

Memory Management. CSC215 Lecture

Memory Management. CSC215 Lecture Memory Management CSC215 Lecture Outline Static vs Dynamic Allocation Dynamic allocation functions malloc, realloc, calloc, free Implementation Common errors Static Allocation Allocation of memory at compile-time

More information

POINTER AND ARRAY SUNU WIBIRAMA

POINTER AND ARRAY SUNU WIBIRAMA POINTER AND ARRAY SUNU WIBIRAMA Presentation Outline Basic Pointer Arrays Dynamic Memory Allocation Basic Pointer 3 Pointers A pointer is a reference to another variable (memory location) in a program

More information

o Code, executable, and process o Main memory vs. virtual memory

o Code, executable, and process o Main memory vs. virtual memory Goals for Today s Lecture Memory Allocation Prof. David August COS 217 Behind the scenes of running a program o Code, executable, and process o Main memory vs. virtual memory Memory layout for UNIX processes,

More information

Lists, Stacks and Queues in C. CHAN Hou Pong, Ken CSCI2100A Data Structures Tutorial 4

Lists, Stacks and Queues in C. CHAN Hou Pong, Ken CSCI2100A Data Structures Tutorial 4 Lists, Stacks and Queues in C CHAN Hou Pong, Ken CSCI2100A Data Structures Tutorial 4 Outline Structure Linked List Overview Implementation Stack Overview Implementation Queue Overview Implementation 2

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

Lecture 8 Dynamic Memory Allocation

Lecture 8 Dynamic Memory Allocation Lecture 8 Dynamic Memory Allocation CS240 1 Memory Computer programs manipulate an abstraction of the computer s memory subsystem Memory: on the hardware side 3 @ http://computer.howstuffworks.com/computer-memory.htm/printable

More information

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science Memory Allocation in C C Programming and Software Tools N.C. State Department of Computer Science The Easy Way Java (JVM) automatically allocates and reclaims memory for you, e.g... Removed object is implicitly

More information

CMPS 105 Systems Programming. Prof. Darrell Long E2.371

CMPS 105 Systems Programming. Prof. Darrell Long E2.371 + CMPS 105 Systems Programming Prof. Darrell Long E2.371 darrell@ucsc.edu + Chapter 7: The Environment of a UNIX process + Introduction + The main() fuction n int main(int argc, char* argv[]); n argc =

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation The process of allocating memory at run time is known as dynamic memory allocation. C does not Inherently have this facility, there are four library routines known as memory management

More information

Chapter 14. Dynamic Data Structures. Instructor: Öğr. Gör. Okan Vardarlı. Copyright 2004 Pearson Addison-Wesley. All rights reserved.

Chapter 14. Dynamic Data Structures. Instructor: Öğr. Gör. Okan Vardarlı. Copyright 2004 Pearson Addison-Wesley. All rights reserved. Chapter 14 Dynamic Data Structures Instructor: Öğr. Gör. Okan Vardarlı Copyright 2004 Pearson Addison-Wesley. All rights reserved. 12-1 Dynamic Data Structure Usually, so far, the arrays and strings we

More information

A. Year / Module Semester Subject Topic 2016 / V 2 PCD Pointers, Preprocessors, DS

A. Year / Module Semester Subject Topic 2016 / V 2 PCD Pointers, Preprocessors, DS Syllabus: Pointers and Preprocessors: Pointers and address, pointers and functions (call by reference) arguments, pointers and arrays, address arithmetic, character pointer and functions, pointers to pointer,initialization

More information

Dynamically Allocated Memory in C

Dynamically Allocated Memory in C Dynamically Allocated Memory in C All throughout the C course (COP 3223), all examples of variable declarations were statically allocated memory. The word static means not changing while the word dynamic

More information

Memory Allocation in C

Memory Allocation in C Memory Allocation in C When a C program is loaded into memory, it is organized into three areas of memory, called segments: the text segment, stack segment and heap segment. The text segment (also called

More information

14. Memory API. Operating System: Three Easy Pieces

14. Memory API. Operating System: Three Easy Pieces 14. Memory API Oerating System: Three Easy Pieces 1 Memory API: malloc() #include void* malloc(size_t size) Allocate a memory region on the hea. w Argument size_t size : size of the memory block(in

More information

Outline. Briefly review the last class Pointers and Structs Memory allocation Linked lists

Outline. Briefly review the last class Pointers and Structs Memory allocation Linked lists Outline Briefly review the last class Pointers and Structs Memory allocation Linked lists C Structures and Memory Allocation A struct is a data structure that comprises multiple types, each known as a

More information

C Structures & Dynamic Memory Management

C Structures & Dynamic Memory Management C Structures & Dynamic Memory Management Goals of this Lecture Help you learn about: Structures and unions Dynamic memory management Note: Will be covered in precepts as well We look at them in more detail

More information

CSCI 2132 Software Development. Lecture 20: Program Organization

CSCI 2132 Software Development. Lecture 20: Program Organization CSCI 232 Software Development Lecture 20: Program Organization Instructor: Vlado Keselj Faculty of Computer Science Dalhousie University 22-Oct-208 (20) CSCI 232 Previous Lecture Generating permutations

More information

UNIT-2 Stack & Queue

UNIT-2 Stack & Queue UNIT-2 Stack & Queue 59 13. Stack A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It is named stack as it behaves like a real-world stack, for example a deck of cards

More information

Dynamic Allocation of Memory

Dynamic Allocation of Memory Dynamic Allocation of Memory Lecture 5 Section 9.8 Robb T. Koether Hampden-Sydney College Wed, Jan 24, 2018 Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 1 / 34

More information

Memory Management. CS449 Fall 2017

Memory Management. CS449 Fall 2017 Memory Management CS449 Fall 2017 Life9mes Life9me: 9me from which a par9cular memory loca9on is allocated un9l it is deallocated Three types of life9mes Automa9c (within a scope) Sta9c (dura9on of program)

More information

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory.

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory. Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

Dynamic Memory & ADTs in C

Dynamic Memory & ADTs in C Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

CS 33. Intro to Storage Allocation. CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Intro to Storage Allocation. CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Intro to Storage Allocation CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. A Queue head typedef struct list_element { int value; struct list_element

More information

Dynamic memory. EECS 211 Winter 2019

Dynamic memory. EECS 211 Winter 2019 Dynamic memory EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/06dynamic.tgz tar zx $ cd 06dynamic 3 Oops! I made a mistake. In C, the declaration struct circle read_circle();

More information

Systems Programming and Computer Architecture ( )

Systems Programming and Computer Architecture ( ) Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Dynamic Memory Allocation 1 5: Dynamic memory

More information

Linked List. April 2, 2007 Programming and Data Structure 1

Linked List. April 2, 2007 Programming and Data Structure 1 Linked List April 2, 2007 Programming and Data Structure 1 Introduction head A linked list is a data structure which can change during execution. Successive elements are connected by pointers. Last element

More information

Memory Management I. two kinds of memory: stack and heap

Memory Management I. two kinds of memory: stack and heap Memory Management I two kinds of memory: stack and heap stack memory: essentially all non-pointer (why not pointers? there s a caveat) variables and pre-declared arrays of fixed (i.e. fixed before compilation)

More information

Hacking in C. Memory layout. Radboud University, Nijmegen, The Netherlands. Spring 2018

Hacking in C. Memory layout. Radboud University, Nijmegen, The Netherlands. Spring 2018 Hacking in C Memory layout Radboud University, Nijmegen, The Netherlands Spring 2018 A short recap The & operator gives us the address of data Inverse of & is the * operator (dereferencing) 2 A short recap

More information

Quick review pointer basics (KR ch )

Quick review pointer basics (KR ch ) 1 Plan for today Quick review pointer basics (KR ch5.1 5.5) Related questions in midterm Continue on pointers (KR 5.6 -- ) Array of pointers Command line arguments Dynamic memory allocation (malloc) 1

More information

Procedural programming with C

Procedural programming with C Procedural programming with C Dr. C. Constantinides Department of Computer Science and Software Engineering Concordia University Montreal, Canada August 11, 2016 1 / 77 Functions Similarly to its mathematical

More information

ECE 264 Exam 2. 6:30-7:30PM, March 9, You must sign here. Otherwise you will receive a 1-point penalty.

ECE 264 Exam 2. 6:30-7:30PM, March 9, You must sign here. Otherwise you will receive a 1-point penalty. ECE 264 Exam 2 6:30-7:30PM, March 9, 2011 I certify that I will not receive nor provide aid to any other student for this exam. Signature: You must sign here. Otherwise you will receive a 1-point penalty.

More information

Actually, C provides another type of variable which allows us to do just that. These are called dynamic variables.

Actually, C provides another type of variable which allows us to do just that. These are called dynamic variables. When a program is run, memory space is immediately reserved for the variables defined in the program. This memory space is kept by the variables until the program terminates. These variables are called

More information

C for Java Programmers 1. Last Week. Overview of the differences between C and Java. The C language (keywords, types, functies, etc.

C for Java Programmers 1. Last Week. Overview of the differences between C and Java. The C language (keywords, types, functies, etc. C for Java Programmers 1 Last Week Very short history of C Overview of the differences between C and Java The C language (keywords, types, functies, etc.) Compiling (preprocessor, compiler, linker) C for

More information

Structures and Pointers

Structures and Pointers Structures and Pointers Comp-206 : Introduction to Software Systems Lecture 11 Alexandre Denault Computer Science McGill University Fall 2006 Note on Assignment 1 Please note that handin does not allow

More information

Dynamic memory allocation (malloc)

Dynamic memory allocation (malloc) 1 Plan for today Quick review of previous lecture Array of pointers Command line arguments Dynamic memory allocation (malloc) Structures (Ch 6) Input and Output (Ch 7) 1 Pointers K&R Ch 5 Basics: Declaration

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Cpt S 122 Data Structures. Data Structures

Cpt S 122 Data Structures. Data Structures Cpt S 122 Data Structures Data Structures Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Topics Introduction Self Referential Structures Dynamic Memory Allocation

More information

Dynamic Data Structures. CSCI 112: Programming in C

Dynamic Data Structures. CSCI 112: Programming in C Dynamic Data Structures CSCI 112: Programming in C 1 It s all about flexibility In the programs we ve made so far, the compiler knows at compile time exactly how much memory to allocate for each variable

More information

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive)

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive) Final Exam Exercises Chapters 1-7 + 11 Write C++ code to: l Determine if a number is odd or even CS 2308 Fall 2016 Jill Seaman l Determine if a number/character is in a range - 1 to 10 (inclusive) - between

More information

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming Jagannath Institute of Management Sciences Lajpat Nagar BCA II Sem C Programming UNIT I Pointers: Introduction to Pointers, Pointer Notation,Decalaration and Initialization, Accessing variable through

More information

Data Structure Series

Data Structure Series Data Structure Series This series is actually something I started back when I was part of the Sweet.Oblivion staff, but then some things happened and I was no longer able to complete it. So now, after

More information

Memory Management. a C view. Dr Alun Moon KF5010. Computer Science. Dr Alun Moon (Computer Science) Memory Management KF / 24

Memory Management. a C view. Dr Alun Moon KF5010. Computer Science. Dr Alun Moon (Computer Science) Memory Management KF / 24 Memory Management a C view Dr Alun Moon Computer Science KF5010 Dr Alun Moon (Computer Science) Memory Management KF5010 1 / 24 The Von Neumann model Memory Architecture One continuous address space Program

More information

Name CPTR246 Spring '17 (100 total points) Exam 3

Name CPTR246 Spring '17 (100 total points) Exam 3 Name CPTR246 Spring '17 (100 total points) Exam 3 1. Linked Lists Consider the following linked list of integers (sorted from lowest to highest) and the changes described. Make the necessary changes in

More information

Content. In this chapter, you will learn:

Content. In this chapter, you will learn: ARRAYS & HEAP Content In this chapter, you will learn: To introduce the array data structure To understand the use of arrays To understand how to define an array, initialize an array and refer to individual

More information

Introduction to Computer Systems /18 243, fall th Lecture, Oct. 22 th

Introduction to Computer Systems /18 243, fall th Lecture, Oct. 22 th Introduction to Computer Systems 15 213/18 243, fall 2009 16 th Lecture, Oct. 22 th Instructors: Gregory Kesden and Markus Püschel Today Dynamic memory allocation Process Memory Image %esp kernel virtual

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

(13-2) Dynamic Data Structures I H&K Chapter 13. Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University

(13-2) Dynamic Data Structures I H&K Chapter 13. Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University (13-2) Dynamic Data Structures I H&K Chapter 13 Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University Dynamic Data Structures (1) Structures that expand and contract

More information

Dynamic Memory Allocation I Nov 5, 2002

Dynamic Memory Allocation I Nov 5, 2002 15-213 The course that gives CMU its Zip! Dynamic Memory Allocation I Nov 5, 2002 Topics Simple explicit allocators Data structures Mechanisms Policies class21.ppt Harsh Reality Memory is not unbounded

More information

LOÏC CAPPANERA. 1. Memory management The variables involved in a C program can be stored either statically or dynamically.

LOÏC CAPPANERA. 1. Memory management The variables involved in a C program can be stored either statically or dynamically. C PROGRAMMING LANGUAGE. MEMORY MANAGEMENT. APPLICATION TO ARRAYS. CAAM 519, CHAPTER 7 This chapter aims to describe how a programmer manages the allocation of memory associated to the various variables

More information

MODULE 5: Pointers, Preprocessor Directives and Data Structures

MODULE 5: Pointers, Preprocessor Directives and Data Structures MODULE 5: Pointers, Preprocessor Directives and Data Structures 1. What is pointer? Explain with an example program. Solution: Pointer is a variable which contains the address of another variable. Two

More information

CS 314 Principles of Programming Languages. Lecture 11

CS 314 Principles of Programming Languages. Lecture 11 CS 314 Principles of Programming Languages Lecture 11 Zheng Zhang Department of Computer Science Rutgers University Wednesday 12 th October, 2016 Zheng Zhang 1 eddy.zhengzhang@cs.rutgers.edu Class Information

More information

Fall 2018 Discussion 2: September 3, 2018

Fall 2018 Discussion 2: September 3, 2018 CS 61C C Basics Fall 2018 Discussion 2: September 3, 2018 1 C C is syntactically similar to Java, but there are a few key differences: 1. C is function-oriented, not object-oriented; there are no objects.

More information

Lecture Notes on Types in C

Lecture Notes on Types in C Lecture Notes on Types in C 15-122: Principles of Imperative Computation Frank Pfenning, Rob Simmons Lecture 20 April 2, 2013 1 Introduction In lecture 18, we emphasized the things we lost by going to

More information

Class Information ANNOUCEMENTS

Class Information ANNOUCEMENTS Class Information ANNOUCEMENTS Third homework due TODAY at 11:59pm. Extension? First project has been posted, due Monday October 23, 11:59pm. Midterm exam: Friday, October 27, in class. Don t forget to

More information

ECE 2400 Computer Systems Programming Fall 2018 Topic 6: C Dynamic Allocation

ECE 2400 Computer Systems Programming Fall 2018 Topic 6: C Dynamic Allocation ECE 2400 Computer Systems Programming Fall 2018 Topic 6: C Dynamic Allocation School of Electrical and Computer Engineering Cornell University revision: 2018-10-11-00-22 1 Bookcase Analogy 2 2 Using malloc

More information

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21 Department of Computer Science College of Engineering Boise State University September 11, 2017 1/21 Pointers A pointer is a variable that stores the address of another variable. Pointers are similar to

More information

ENEE150 Final Exam Review

ENEE150 Final Exam Review ENEE150 Final Exam Review Topics: Pointers -- pointer definitions & initialization -- call-by-reference and Call-by-value -- pointer with arrays -- NULL pointer, void pointer, and pointer to pointer Strings

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

Secure Software Programming and Vulnerability Analysis

Secure Software Programming and Vulnerability Analysis Secure Software Programming and Vulnerability Analysis Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Heap Buffer Overflows and Format String Vulnerabilities Secure Software

More information

Variation of Pointers

Variation of Pointers Variation of Pointers A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory location. Like any variable or constant, you must declare a pointer before

More information

Dynamic Memory Allocation I

Dynamic Memory Allocation I Dynamic Memory Allocation I William J. Taffe Plymouth State University Using the Slides of Randall E. Bryant Carnegie Mellon University Topics Simple explicit allocators Data structures Mechanisms Policies

More information

Computer Systems Lecture 9

Computer Systems Lecture 9 Computer Systems Lecture 9 CPU Registers in x86 CPU status flags EFLAG: The Flag register holds the CPU status flags The status flags are separate bits in EFLAG where information on important conditions

More information

Reminder: compiling & linking

Reminder: compiling & linking Reminder: compiling & linking source file 1 object file 1 source file 2 compilation object file 2 library object file 1 linking (relocation + linking) load file source file N object file N library object

More information

Structures, Unions, and Enumerations

Structures, Unions, and Enumerations Chapter 16 Structures, Unions, and Enumerations 1 Structure Variables The properties of a structure are different from those of an array. The elements of a structure (its members) aren t required to have

More information

Dynamic Memory & ADTs in C

Dynamic Memory & ADTs in C Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 CS 136 Fall 2017 10: Dynamic Memory & ADTs 1 The heap The heap is the final section in the C memory model. It can be thought of as a big

More information

Memory and C/C++ modules

Memory and C/C++ modules Memory and C/C++ modules From Reading #5 and mostly #6 More OOP topics (templates; libraries) as time permits later Program building l Have: source code human readable instructions l Need: machine language

More information

MODULE V: POINTERS & PREPROCESSORS

MODULE V: POINTERS & PREPROCESSORS MODULE V: POINTERS & PREPROCESSORS INTRODUCTION As you know, every variable is a memory-location and every memory-location has its address defined which can be accessed using ampersand(&) operator, which

More information

The Environment of a Unix Process

The Environment of a Unix Process Contents 1. Preface/Introduction 2. Standardization and Implementation 3. File I/O 4. Standard I/O Library 5. Files and Directories 6. System Data Files and Information 7. Environment of a Unix Process

More information

Dynamic Memory Allocation. Gerson Robboy Portland State University. class20.ppt

Dynamic Memory Allocation. Gerson Robboy Portland State University. class20.ppt Dynamic Memory Allocation Gerson Robboy Portland State University class20.ppt Harsh Reality Memory is not unbounded It must be allocated and managed Many applications are memory dominated Especially those

More information

Lecture No.04. Data Structures

Lecture No.04. Data Structures Lecture No.04 Data Structures Josephus Problem #include "CList.cpp" void main(int argc, char *argv[]) { CList list; int i, N=10, M=3; for(i=1; i

More information

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100 ECE 2035(A) Programming for Hardware/Software Systems Fall 2013 Exam Three November 20 th 2013 Name: Q1: /8 Q2: /30 Q3: /30 Q4: /32 Total: /100 1/10 For functional call related questions, let s assume

More information

Definition of Stack. 5 Linked Structures. Stack ADT Operations. ADT Stack Operations. A stack is a LIFO last in, first out structure.

Definition of Stack. 5 Linked Structures. Stack ADT Operations. ADT Stack Operations. A stack is a LIFO last in, first out structure. 5 Linked Structures Definition of Stack Logical (or ADT) level: A stack is an ordered group of homogeneous items (elements), in which the removal and addition of stack items can take place only at the

More information

ch = argv[i][++j]; /* why does ++j but j++ does not? */

ch = argv[i][++j]; /* why does ++j but j++ does not? */ CMPS 12M Introduction to Data Structures Lab Lab Assignment 4 The purpose of this lab assignment is to get more practice programming in C, including the character functions in the library ctype.h, and

More information

Programming in C. 4. Misc. Library Features, Gotchas, Hints and Tips. Dr. Neel Krishnaswami University of Cambridge

Programming in C. 4. Misc. Library Features, Gotchas, Hints and Tips. Dr. Neel Krishnaswami University of Cambridge Programming in C 4. Misc. Library Features, Gotchas, Hints and Tips Dr. Neel Krishnaswami University of Cambridge (based on notes from and with thanks to Anil Madhavapeddy, Alan Mycroft, Alastair Beresford

More information

Heap Arrays. Steven R. Bagley

Heap Arrays. Steven R. Bagley Heap Arrays Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index a[42] = 35; Variables and arrays have a type int, char, double,

More information

Pointers. Part VI. 1) Introduction. 2) Declaring Pointer Variables. 3) Using Pointers. 4) Pointer Arithmetic. 5) Pointers and Arrays

Pointers. Part VI. 1) Introduction. 2) Declaring Pointer Variables. 3) Using Pointers. 4) Pointer Arithmetic. 5) Pointers and Arrays EE105: Software Engineering II Part 6 Pointers page 1 of 19 Part VI Pointers 1) Introduction 2) Declaring Pointer Variables 3) Using Pointers 4) Pointer Arithmetic 5) Pointers and Arrays 6) Pointers and

More information

Dynamic Allocation of Memory

Dynamic Allocation of Memory Dynamic Allocation of Memory Lecture 4 Sections 10.9-10.10 Robb T. Koether Hampden-Sydney College Fri, Jan 25, 2013 Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Fri, Jan 25, 2013

More information

int marks[10]; // fixed size and fixed address No change in Memory address.

int marks[10]; // fixed size and fixed address No change in Memory address. Dynamic Memory Allocation : Used When we want to allocate memory during run time. int marks[10]; // fixed size and fixed address No change in Memory address. // fixed size. ( no change in size possible

More information

EM108 Software Development for Engineers

EM108 Software Development for Engineers EE108 Section 6 Pointers page 1 of 20 EM108 Software Development for Engineers Section 6 - Pointers 1) Introduction 2) Declaring Pointer Variables 3) Using Pointers 4) Pointer Arithmetic 5) Pointers and

More information

ECE551 Midterm Version 1

ECE551 Midterm Version 1 Name: ECE551 Midterm Version 1 NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual

More information

Processes. Johan Montelius KTH

Processes. Johan Montelius KTH Processes Johan Montelius KTH 2017 1 / 47 A process What is a process?... a computation a program i.e. a sequence of operations a set of data structures a set of registers means to interact with other

More information

CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) Allocating Space

CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) Allocating Space CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) Allocating Space Dynamic Memory Allocation All variables, arrays, structures and unions that we worked with so far are statically allocated,

More information

Arrays and Memory Management

Arrays and Memory Management Arrays and Memory Management 1 Pointing to Different Size Objects Modern machines are byte-addressable Hardware s memory composed of 8-bit storage cells, each has a unique address A C pointer is just abstracted

More information