Most of this PDF is editable. You can either type your answers in the red boxes/lines, or you can write them neatly by hand.

Size: px
Start display at page:

Download "Most of this PDF is editable. You can either type your answers in the red boxes/lines, or you can write them neatly by hand."

Transcription

1 : Principles of Imperative Computation, Spring 2016 Written Homework 5 6 Due: Monday 22 nd February, 2016 Name:q1 Andrew ID:q2 Section:q3 This written homework covers big-o notation, some reasoning about searching and sorting algorithms, pointers, interfaces, and stacks and queues. You will use some of the functions from the arrayutil.c0 library, as well as the data structure interfaces introduced in lecture this week. This is the first homework to emphasize interfaces. It s important for you to think carefully and be sure that your solutions respect the interface involved in the problem. Most of this PDF is editable. You can either type your answers in the red boxes/lines, or you can write them neatly by hand. Print out your submission double-sided and staple pages in order. The assignment is due by 5:30pm on Monday 22 nd February, You can hand in the assignment during lab or in the box outside of the lab room. You must hand in your homework yourself; do not give it to someone else to hand in.

2 q Homework 5 6 Page 1 of?? 1. Computing Overlaps We define the Overlap Problem as the task of computing the number of shared elements between two arrays of the same length. Assume that neither array contains duplicate entries. Consider the following function which counts the number of integers that appear in both A and B. The code uses linsearch, where linsearch(x, A, i, j returns the index of the first occurrence of x in A[i,j (or -1 if x is not found in linear time. 1 int overlap(int[] A, int[] B, int n 2 //@requires 0 <= n && n <= \length(a; 3 //@requires \length(a == \length(b; 4 { 5 int count = 0; 6 for (int i = 0; i < n; i++ 7 //@loop_invariant 0 <= i; 8 { 9 if (linsearch(a[i], B, 0, n!= -1 { 10 count = count + 1; return count; 14 1pt (a Using big-o notation, what is the worst-case runtime of this algorithm? Express your answer in its simplest, tightest form. O(q4 1pt (b Suppose we add an additional precondition to the function: //@requires is_sorted(b, 0, n; With this change, explain how to modify the function to solve the Overlap Problem asymptotically faster than it currently does. (State which line(s change and what the change(s should be.

3 q Homework 5 6 Page 2 of?? 1pt (c Using big-o notation, what is the worst-case runtime complexity of your revised algorithm? Again, use the simplest, tightest form. O(q6 1pt (d Suppose we added both of the following preconditions to the function: //@requires is_sorted(a, 0, n; //@requires is_sorted(b, 0, n; With this change, describe how to adapt the merge step of Merge Sort to solve the Overlap Problem so that this new algorithm is asymptotically faster than your previous algorithm. Do NOT write code. Instead, clearly and concisely state how to modify the merge so that it counts the number of duplicates. 1pt (e Using big-o notation, what is the worst-case runtime complexity of this final algorithm? Again, use the simplest, tightest form. O(q8

4 Homework 5 6 Page 3 of?? 2pts 2. Pointer Illustration (a Clearly and carefully illustrate the contents of memory after the following code runs. We ve drawn the contents of w, a pointer that points into allocated memory where the number 0 is stored. 1 int* w = alloc(int; 2 int i = 12; 3 int* p = alloc(int; 4 int* q = p; 5 int* r = alloc(int; 6 int** x = alloc(int*; 7 int** y = alloc(int*; 8 int** z = y; 9 *r = i + 4; 10 *y = q; 11 **z = 4; 12 *x = r; 13 q = NULL; 14 i = *p + **y;

5 q9 image_getwidth(q10 q11 q12 q13 image_getheight(q14 q15 q16 q17 q18 q19 q20 image_setpixel(image_t q21 q22 q23 image_new(q24 q26 q Homework 5 6 Page 4 of?? 3. Implementing an Image Type Using a Struct In a previous programming assignment, we worked with one-dimensional arrays that represented two-dimensional images. Suppose we want to create a data type for an image along with an interface that specifies functions to allow us to get a pixel of the image or set a pixel of the image. (You are allowed to assume that p1 == p2 is an acceptable way of comparing pixels for equality. 2pts (a Complete the interface for the image type. Add appropriate preconditions and postconditions for each image operation (you may not need all the lines we provided. The first two functions should have at least one meaningful postcondition, but you don t have to give every conceivable postcondition. // typedef * image_t; typedef struct image_header* image_t; image_getpixel(image_t IMG, int row, int col IMG, int row, int col, pixel P width, q25 height

6 q Homework 5 6 Page 5 of?? 3pts (b In the implementation of the image_t type, we have the following type definitions: 1 struct image_header { 2 int width; 3 int height; 4 pixel[] data; 5 ; 6 typedef struct image_header image; And the following data structure invariant: 8 bool is_image(image* IMG { 9 return IMG!= NULL 10 && IMG->width > 0 11 && IMG->height > 0 12 && IMG->width <= int_max( / IMG->height 13 && is_arr_expected_length(img->data, IMG->width * IMG->height; 14 The client does not need to know about this function, since it is the job of the implementation to preserve the validity of the image data structure. But the implementation must use this specification function to assure that the image is valid before and after any image operation. Write an implementation for image_getpixel, assuming pixels are stored the same way they were stored in the programming assignment. Include any necessary preconditions and postconditions for the implementation.

7 q Homework 5 6 Page 6 of?? Write an implementation for image_new. Include any necessary preconditions and postconditions for the implementation.

8 q Homework 5 6 Page 7 of?? 4. Stacks, queues, and interfaces: 2pts (a Consider the following interface for stack_t that stores elements of the type string: 1 /* Stack Interface */ 2 typedef * stack_t; 3 4 bool stack_empty(stack_t S /* O(1, check if stack empty */ 5 /*@requires S!= 6 7 stack_t stack_new( /* O(1, create new empty stack */ 8 /*@ensures \result!= 9 /*@ensures void push(stack_t S, string x /* O(1, add item on top of stack */ 12 /*@requires S!= string pop(stack_t S /* O(1, remove item from top */ 15 /*@requires S!= 16 Write a client function stack_bottom(stack_t S that returns, but does not remove, the bottom element of the given stack, assuming the stack is not empty. For this question, use only the interface since, as a client, you do not know how this data structure is implemented. Do not use any stack functions that are not in the interface (including specification functions like is_stack since these belong to the implementation. string stack_bottom(stack_t S //@requires S!= NULL; //@requires!stack_empty(s; {

9 q Homework 5 6 Page 8 of?? 1pt (b Below is the queue interface from lecture. 1 typedef * queue_t; 2 3 bool queue_empty(queue_t Q /* O(1 */ 4 /*@requires Q!= 5 6 queue_t queue_new( /* O(1 */ 7 /*@ensures \result!= 8 /*@ensures 9 10 void enq(queue_t Q, string e /* O(1 */ 11 /*@requires Q!= string deq(queue_t Q /* O(1 */ 14 /*@requires Q!= 15 ; The following is a client function queue_size that is intended to compute the size of the queue while leaving the queue unchanged. 50 int queue_size(queue_t Q 51 //@requires Q!= NULL; 52 //@ensures \result >= 0; 53 { 54 int size = 0; 55 queue_t C = Q; 56 while (!queue_empty(q { 57 enq(c, deq(q; 58 size++; while (!queue_empty(c enq(q, deq(c; 61 return size; 62 Explain why the function queue_size does not work and give a corrected version below: (Explanation

10 q Homework 5 6 Page 9 of?? (Correct code 50 int queue_size(queue_t Q 51 //@requires Q!= NULL; 52 //@ensures \result >= 0; 53 {

11 Homework 5 6 Page 10 of?? 5. Multiple Return Values One of the problems that both structs and pointers can solve in different ways is the problem of returning more than one piece of information from a function. For instance, a function that tries to parse a string as an integer needs to return both the successfullyparsed integer and information about whether that parse succeeded. Because any number could be the result of a successful parse, if the function only returns an int, there s no way to distinguish a failed parse from a successful one. int parse_int(string str { int n; bool parse_successful;... if (parse_successful return n; return???; /* What do we do now? */ 2pts In each of the following exercises, a main function wants to print the value that parse_int is storing in the assignable variable n, but only when the boolean value stored in parse_successful is true; otherwise we want to print out Parse error. You don t have to use all the blank lines we have provided, but you shouldn t use any extra lines. Double-check your syntax; we will be picky about syntax errors for this question. (a Finish this program so that the code will parse the first command-line argument as an int if possible. Make sure all your pointer dereferences are provably safe. int* parse_int(string str { int n; bool parse_successful; // Omitted code that tries to parse the string. Puts the // result in the local variable n and sets parse_successful // to true if it can, otherwise sets parse_successful to // false. if (parse_successful { q33 ; q34 ; return q35 ; return q36 ;

12 Homework 5 6 Page 11 of?? int main( { args_t A = args_parse(; if (A->argc!= 1 error("wrong number of arguments"; int* p = parse_int(a->argv[0]; if (q37 printint(q38 ; else error("parse error"; return 0; 3pts (b Complete another program that works the same way, but that gives a different type to parse_int. The missing argument should be a pointer. Make sure all your pointer dereferences are provably safe. bool parse_int(string str, q39 //@requires q40 ; { int n; bool parse_successful; // Same omitted code... if (parse_successful { q41 ; return q42 ; return q43 ; int main( { args_t A = args_parse(; if (A->argc!= 1 error("wrong number of arguments"; q44 ; bool res = parse_int(a->argv[0], q45 ; if (q46 printint(q47 ; else error("parse error"; return 0;

Print out this PDF double-sided, staple pages in order, and write your answers on these pages neatly.

Print out this PDF double-sided, staple pages in order, and write your answers on these pages neatly. 15-122 : Principles of Imperative Computation, Fall 2015 Written Homework 5 Due: Monday, October 5, 2015 by 6PM Name: Andrew ID: Section: This written homework covers big-o notation, some reasoning about

More information

Print out this PDF double-sided, staple pages in order, and write your answers on these pages neatly.

Print out this PDF double-sided, staple pages in order, and write your answers on these pages neatly. 15-122 : Principles of Imperative Computation, Fall 2015 Written Homework 6 Due: Monday, October 12, 2015 Name: Andrew ID: Section: This written homework covers structs, pointers, and linked lists. Print

More information

Most of this PDF is editable. You can either type your answers in the red boxes/lines, or you can write them neatly by hand.

Most of this PDF is editable. You can either type your answers in the red boxes/lines, or you can write them neatly by hand. 15-122 : Principles of Imperative Computation, Spring 2016 Written Homework 7 Due: Monday 7 th March, 2016 Name:q1 Andrew ID: q2 Section:q3 This written homework covers amortized analysis and hash tables.

More information

Lecture 9 Stacks & Queues

Lecture 9 Stacks & Queues Lecture 9 Stacks & Queues 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning, André Platzer, Rob Simmons In this lecture we introduce queues and stacks as data structures, e.g.,

More information

Lecture 9 Stacks & Queues

Lecture 9 Stacks & Queues Lecture 9 Stacks & Queues 15-122: Principles of Imperative Computation (Fall 2018) Frank Pfenning, André Platzer, Rob Simmons In this lecture we introduce queues and stacks as data structures, e.g., for

More information

Lecture 9 Notes Stacks & Queues

Lecture 9 Notes Stacks & Queues Lecture 9 Notes tacks & Queues 15-122: Principles of Imperative Computation (ummer 1 2015) Frank Pfenning, André Platzer, Rob immons 1 Introduction In this lecture we introduce queues and stacks as data

More information

Midterm 1 Exam Principles of Imperative Computation. Thursday 6 th October, This exam is closed-book with one sheet of notes permitted.

Midterm 1 Exam Principles of Imperative Computation. Thursday 6 th October, This exam is closed-book with one sheet of notes permitted. Midterm 1 Exam 15-122 Principles of Imperative Computation Thursday 6 th October, 2016 Name: Andrew ID: Recitation Section: Instructions This exam is closed-book with one sheet of notes permitted. You

More information

Midterm 1 Solutions Principles of Imperative Computation. Thursday 6 th October, 2016

Midterm 1 Solutions Principles of Imperative Computation. Thursday 6 th October, 2016 Midterm 1 Solutions 15-122 Principles of Imperative Computation Thursday 6 th October, 2016 Name: Harry Bovik Andrew ID: bovik Recitation Section: S Instructions This exam is closed-book with one sheet

More information

: Principles of Imperative Computation, Spring Homework 3 Theory [Update 1]

: Principles of Imperative Computation, Spring Homework 3 Theory [Update 1] 15-122 Homework 3 Page 1 of 15 15-122 : Principles of Imperative Computation, Spring 2013 Homework 3 Theory [Update 1] Due: Thursday, February 21, 2013, at the beginning of lecture Name: Andrew ID: Recitation:

More information

Midterm I Exam Principles of Imperative Computation Frank Pfenning. February 17, 2011

Midterm I Exam Principles of Imperative Computation Frank Pfenning. February 17, 2011 Midterm I Exam 15-122 Principles of Imperative Computation Frank Pfenning February 17, 2011 Name: Sample Solution Andrew ID: fp Section: Instructions This exam is closed-book with one sheet of notes permitted.

More information

You must include this cover sheet. Either type up the assignment using theory3.tex, or print out this PDF.

You must include this cover sheet. Either type up the assignment using theory3.tex, or print out this PDF. 15-122 Assignment 3 Page 1 of 12 15-122 : Principles of Imperative Computation Fall 2012 Assignment 3 (Theory Part) Due: Thursday, October 4 at the beginning of lecture. Name: Andrew ID: Recitation: The

More information

The assignment is due by 1:30pm on Tuesday 5 th April, 2016.

The assignment is due by 1:30pm on Tuesday 5 th April, 2016. 15-122 : Principles of Imperative Computation, Spring 2016 Written Homework A/B Due: Tuesday 5 th April, 2016 Name:q1 Andrew ID: q2 Section:q3 This written homework covers heaps and priority queues. The

More information

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins.

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins. 15-122 Homework 4 Page 1 of 13 15-122 : Principles of Imperative Computation, Summer 1 2014 Written Homework 4 Due: Thursday, June 12 before recitation Name: Andrew ID: Recitation: In this assignment,

More information

Final Exam Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas. December 10, Name: Andrew ID: Section:

Final Exam Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas. December 10, Name: Andrew ID: Section: Final Exam 15-122 Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas December 10, 2010 Name: Andrew ID: Section: Instructions This exam is closed-book with one sheet of notes

More information

Lecture Notes on Queues

Lecture Notes on Queues Lecture Notes on Queues 15-122: Principles of Imperative Computation Frank Pfenning Lecture 9 September 25, 2012 1 Introduction In this lecture we introduce queues as a data structure and linked lists

More information

Lecture 10 Linked Lists

Lecture 10 Linked Lists Lecture 10 Linked Lists 15-122: Principles of Imperative Computation (Spring 2017) Frank Pfenning, Rob Simmons, André Platzer 1 Introduction In this lecture we discuss the use of linked lists to implement

More information

Lecture Notes on Queues

Lecture Notes on Queues Lecture Notes on Queues 15-122: Principles of Imperative Computation Frank Pfenning and Jamie Morgenstern Lecture 9 February 14, 2012 1 Introduction In this lecture we introduce queues as a data structure

More information

Lecture 10 Notes Linked Lists

Lecture 10 Notes Linked Lists Lecture 10 Notes Linked Lists 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, Rob Simmons, André Platzer 1 Introduction In this lecture we discuss the use of linked lists to

More information

Lecture 10 Notes Linked Lists

Lecture 10 Notes Linked Lists Lecture 10 Notes Linked Lists 15-122: Principles of Imperative Computation (Summer 1 2015) Frank Pfenning, Rob Simmons, André Platzer 1 Introduction In this lecture we discuss the use of linked lists to

More information

Midterm I Exam Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas. September 30, 2010

Midterm I Exam Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas. September 30, 2010 Midterm I Exam 15-122 Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas September 30, 2010 Name: Andrew ID: Instructions This exam is closed-book with one sheet of notes permitted.

More information

Lecture 8 Data Structures

Lecture 8 Data Structures Lecture 8 Data Structures 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning, André Platzer, Rob Simmons, Iliano Cervesato In this lecture we introduce the idea of imperative data

More information

Midterm 2 Exam Principles of Imperative Computation. Tuesday 31 st March, This exam is closed-book with one sheet of notes permitted.

Midterm 2 Exam Principles of Imperative Computation. Tuesday 31 st March, This exam is closed-book with one sheet of notes permitted. Midterm 2 Exam 15-122 Principles of Imperative Computation Tuesday 31 st March, 2015 Name: Andrew ID: Recitation Section: Instructions This exam is closed-book with one sheet of notes permitted. You have

More information

: Principles of Imperative Computation. Summer Assignment 4. Due: Monday, June 11, 2012 in class

: Principles of Imperative Computation. Summer Assignment 4. Due: Monday, June 11, 2012 in class 15-122 Assignment 4 Page 1 of 8 15-122 : Principles of Imperative Computation Summer 1 2012 Assignment 4 (Theory Part) Due: Monday, June 11, 2012 in class Name: Andrew ID: Recitation: The written portion

More information

Midterm I Exam Principles of Imperative Computation André Platzer Ananda Gunawardena. February 23, 2012

Midterm I Exam Principles of Imperative Computation André Platzer Ananda Gunawardena. February 23, 2012 Midterm I Exam 15-122 Principles of Imperative Computation André Platzer Ananda Gunawardena February 23, 2012 Name: Sample Solution Andrew ID: aplatzer Section: Instructions This exam is closed-book with

More information

Midterm I Exam Principles of Imperative Computation André Platzer Ananda Gunawardena. February 23, Name: Andrew ID: Section:

Midterm I Exam Principles of Imperative Computation André Platzer Ananda Gunawardena. February 23, Name: Andrew ID: Section: Midterm I Exam 15-122 Principles of Imperative Computation André Platzer Ananda Gunawardena February 23, 2012 Name: Andrew ID: Section: Instructions This exam is closed-book with one sheet of notes permitted.

More information

You must include this cover sheet. Either type up the assignment using theory5.tex, or print out this PDF.

You must include this cover sheet. Either type up the assignment using theory5.tex, or print out this PDF. 15-122 Assignment 5 Page 1 of 11 15-122 : Principles of Imperative Computation Fall 2012 Assignment 5 (Theory Part) Due: Tuesday, October 30, 2012 at the beginning of lecture Name: Andrew ID: Recitation:

More information

Lecture Notes on Memory Layout

Lecture Notes on Memory Layout Lecture Notes on Memory Layout 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 11 1 Introduction In order to understand how programs work, we can consider the functions,

More information

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins.

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins. 15-122 Homework 5 Page 1 of 15 15-122 : Principles of Imperative Computation, Summer 1 2014 Written Homework 5 Due: Thursday, June 19 before recitation Name: Andrew ID: Recitation: Binary search trees,

More information

Lecture 17 Priority Queues

Lecture 17 Priority Queues Lecture 17 Priority Queues 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning, Rob Simmons In this lecture we will look at priority queues as an abstract type and discuss several

More information

Midterm II Exam Principles of Imperative Computation Frank Pfenning. March 31, 2011

Midterm II Exam Principles of Imperative Computation Frank Pfenning. March 31, 2011 Midterm II Exam 15-122 Principles of Imperative Computation Frank Pfenning March 31, 2011 Name: Sample Solution Andrew ID: fp Section: Instructions This exam is closed-book with one sheet of notes permitted.

More information

Lecture 13 Notes Sets

Lecture 13 Notes Sets Lecture 13 Notes Sets 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, Rob Simmons 1 Introduction In this lecture, we will discuss the data structure of hash tables further and

More information

Lecture 17 Notes Priority Queues

Lecture 17 Notes Priority Queues Lecture 17 Notes Priority Queues 15-122: Principles of Imperative Computation (Summer 1 2015) Frank Pfenning, Rob Simmons 1 Introduction In this lecture we will look at priority queues as an abstract type

More information

15-122: Principles of Imperative Computation, Fall 2015

15-122: Principles of Imperative Computation, Fall 2015 15-122 Programming 5 Page 1 of 10 15-122: Principles of Imperative Computation, Fall 2015 Homework 5 Programming: Clac Due: Thursday, October 15, 2015 by 22:00 In this assignment, you will implement a

More information

: Principles of Imperative Computation Victor Adamchik. Practice Exam - I

: Principles of Imperative Computation Victor Adamchik. Practice Exam - I 15-122 Practice Exam - I Page 1 of 10 15-122 : Principles of Imperative Computation Victor Adamchik Practice Exam - I Name: Andrew ID: Answer the questions in the space provided following each question.

More information

Lecture 13 Hash Dictionaries

Lecture 13 Hash Dictionaries Lecture 13 Hash Dictionaries 15-122: Principles of Imperative Computation (Fall 2018) Frank Pfenning, Rob Simmons, Iliano Cervesato In this lecture, we will discuss the data structure of hash tables further

More information

Lecture 13 Notes Sets

Lecture 13 Notes Sets Lecture 13 Notes Sets 15-122: Principles of Imperative Computation (Fall 2015) Frank Pfenning, Rob Simmons 1 Introduction In this lecture, we will discuss the data structure of hash tables further and

More information

Exam I Principles of Imperative Computation, Summer 2011 William Lovas. May 27, 2011

Exam I Principles of Imperative Computation, Summer 2011 William Lovas. May 27, 2011 Exam I 15-122 Principles of Imperative Computation, Summer 2011 William Lovas May 27, 2011 Name: Sample Solution Andrew ID: wlovas Instructions This exam is closed-book with one sheet of notes permitted.

More information

You must include this cover sheet. Either type up the assignment using theory4.tex, or print out this PDF.

You must include this cover sheet. Either type up the assignment using theory4.tex, or print out this PDF. 15-122 Assignment 4 Page 1 of 12 15-122 : Principles of Imperative Computation Fall 2012 Assignment 4 (Theory Part) Due: Thursday, October 18, 2012 at the beginning of lecture Name: Andrew ID: Recitation:

More information

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

Lecture 18 Restoring Invariants

Lecture 18 Restoring Invariants Lecture 18 Restoring Invariants 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning In this lecture we will implement heaps and operations on them. The theme of this lecture is reasoning

More information

Lecture 11 Unbounded Arrays

Lecture 11 Unbounded Arrays Lecture 11 Unbounded Arrays 15-122: Principles of Imperative Computation (Spring 2018) Rob Simmons, Frank Pfenning Arrays have efficient O(1) access to elements given an index, but their size is set at

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

Lecture Notes on Interfaces

Lecture Notes on Interfaces Lecture Notes on Interfaces 15-122: Principles of Imperative Computation Frank Pfenning Lecture 14 October 16, 2012 1 Introduction The notion of an interface to an implementation of an abstract data type

More information

SOME TYPICAL QUESTIONS, THEIR EXPECTED ANSWERS AND THINGS

SOME TYPICAL QUESTIONS, THEIR EXPECTED ANSWERS AND THINGS SOME TYPICAL QUESTIONS, THEIR EXPECTED ANSWERS AND THINGS TO WATCH OUT FOR ON THE TEST Nivedita Chopra 1: Contracts (The following question is Question 1 on Written Homework 2) Consider the following implementation

More information

Lecture 5 Sorting Arrays

Lecture 5 Sorting Arrays Lecture 5 Sorting Arrays 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning, Rob Simmons We begin this lecture by discussing how to compare running times of functions in an abstract,

More information

Lecture Notes on Sorting

Lecture Notes on Sorting Lecture Notes on Sorting 15-122: Principles of Imperative Computation Frank Pfenning Lecture 4 September 2, 2010 1 Introduction Algorithms and data structures can be evaluated along a number of dimensions,

More information

Lecture Notes on Quicksort

Lecture Notes on Quicksort Lecture Notes on Quicksort 15-122: Principles of Imperative Computation Frank Pfenning Lecture 8 February 5, 2015 1 Introduction In this lecture we consider two related algorithms for sorting that achieve

More information

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

CS 161 Computer Security

CS 161 Computer Security Raluca Popa Spring 2018 CS 161 Computer Security Homework 1 Due: Monday, January 29th, at 11:59pm Instructions. This homework is due Monday, January 29th, at 11:59pm. No late homeworks will be accepted

More information

Lecture 7 Quicksort : Principles of Imperative Computation (Spring 2018) Frank Pfenning

Lecture 7 Quicksort : Principles of Imperative Computation (Spring 2018) Frank Pfenning Lecture 7 Quicksort 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning In this lecture we consider two related algorithms for sorting that achieve a much better running time than

More information

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011 Exam 3 15-122 Principles of Imperative Computation, Summer 2011 William Lovas June 24, 2011 Name: Andrew ID: Instructions This exam is closed-book with one double-sided sheet of notes permitted. You have

More information

Lecture Notes on Arrays

Lecture Notes on Arrays Lecture Notes on Arrays 15-122: Principles of Imperative Computation July 2, 2013 1 Introduction So far we have seen how to process primitive data like integers in imperative programs. That is useful,

More information

Lecture 3 Notes Arrays

Lecture 3 Notes Arrays Lecture 3 Notes Arrays 15-122: Principles of Imperative Computation (Summer 1 2015) Frank Pfenning, André Platzer 1 Introduction So far we have seen how to process primitive data like integers in imperative

More information

CS32 Final Exam. E03, F15, Phill Conrad, UC Santa Barbara

CS32 Final Exam. E03, F15, Phill Conrad, UC Santa Barbara 1 #1 Page: 1 Name: CS32 Final E03, F15, Phill Conrad, UC Santa Barbara Thursday, 12/10/2015, noon 3pm Name: Umail Address: @ umail.ucsb.edu Please write your name above AND AT THE TOP OF EVERY PAGE Be

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam August 26, 2017 Section I A DATA STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max Pts Category

More information

CPSC 211, Sections : Data Structures and Implementations, Honors Final Exam May 4, 2001

CPSC 211, Sections : Data Structures and Implementations, Honors Final Exam May 4, 2001 CPSC 211, Sections 201 203: Data Structures and Implementations, Honors Final Exam May 4, 2001 Name: Section: Instructions: 1. This is a closed book exam. Do not use any notes or books. Do not confer with

More information

Lecture Notes on Linear Search

Lecture Notes on Linear Search Lecture Notes on Linear Search 15-122: Principles of Imperative Computation Frank Pfenning Lecture 5 January 28, 2014 1 Introduction One of the fundamental and recurring problems in computer science is

More information

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) _ UWNetID: Lecture Section: A CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will give

More information

CSE030 Fall 2012 Final Exam Friday, December 14, PM

CSE030 Fall 2012 Final Exam Friday, December 14, PM CSE030 Fall 2012 Final Exam Friday, December 14, 2012 3-6PM Write your name here and at the top of each page! Name: Select your lab session: Tuesdays Thursdays Paper. If you have any questions or need

More information

Lecture Notes on Priority Queues

Lecture Notes on Priority Queues Lecture Notes on Priority Queues 15-122: Principles of Imperative Computation Frank Pfenning Lecture 16 October 18, 2012 1 Introduction In this lecture we will look at priority queues as an abstract type

More information

DUKE UNIVERSITY Department of Computer Science. Test 1: CompSci 100

DUKE UNIVERSITY Department of Computer Science. Test 1: CompSci 100 DUKE UNIVERSITY Department of Computer Science Test 1: CompSci 100 Name (print): Community Standard acknowledgment (signature): Problem 1 value 9 pts. grade Problem 2 9 pts. Problem 3 6 pts. Problem 4

More information

: Principles of Imperative Computation. Fall Assignment 5: Interfaces, Backtracking Search, Hash Tables

: Principles of Imperative Computation. Fall Assignment 5: Interfaces, Backtracking Search, Hash Tables 15-122 Assignment 3 Page 1 of 12 15-122 : Principles of Imperative Computation Fall 2012 Assignment 5: Interfaces, Backtracking Search, Hash Tables (Programming Part) Due: Monday, October 29, 2012 by 23:59

More information

CS61C Machine Structures. Lecture 3 Introduction to the C Programming Language. 1/23/2006 John Wawrzynek. www-inst.eecs.berkeley.

CS61C Machine Structures. Lecture 3 Introduction to the C Programming Language. 1/23/2006 John Wawrzynek. www-inst.eecs.berkeley. CS61C Machine Structures Lecture 3 Introduction to the C Programming Language 1/23/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L03 Introduction to C (1) Administrivia

More information

Lecture 4 Searching Arrays

Lecture 4 Searching Arrays Lecture 4 Searching Arrays 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning One of the fundamental and recurring problems in computer science is to find elements in collections,

More information

Computer Science 302 Spring 2007 Practice Final Examination: Part I

Computer Science 302 Spring 2007 Practice Final Examination: Part I Computer Science 302 Spring 2007 Practice Final Examination: Part I Name: This practice examination is much longer than the real final examination will be. If you can work all the problems here, you will

More information

Lecture Notes on Memory Management

Lecture Notes on Memory Management Lecture Notes on Memory Management 15-122: Principles of Imperative Computation Frank Pfenning Lecture 22 November 11, 2010 1 Introduction Unlike C0 and other modern languages like Java, C#, or ML, C requires

More information

Lecture 15 Binary Search Trees

Lecture 15 Binary Search Trees Lecture 15 Binary Search Trees 15-122: Principles of Imperative Computation (Fall 2017) Frank Pfenning, André Platzer, Rob Simmons, Iliano Cervesato In this lecture, we will continue considering ways to

More information

! Determine if a number is odd or even. ! Determine if a number/character is in a range. - 1 to 10 (inclusive) - between a and z (inclusive)

! Determine if a number is odd or even. ! Determine if a number/character is in a range. - 1 to 10 (inclusive) - between a and z (inclusive) Final Exam Exercises CS 2308 Spring 2014 Jill Seaman Chapters 1-7 + 11 Write C++ code to: Determine if a number is odd or even Determine if a number/character is in a range - 1 to 10 (inclusive) - between

More information

Review: C Strings. A string in C is just an array of characters. Lecture #4 C Strings, Arrays, & Malloc

Review: C Strings. A string in C is just an array of characters. Lecture #4 C Strings, Arrays, & Malloc CS61C L4 C Pointers (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #4 C Strings, Arrays, & Malloc Albert Chae Instructor 2008-06-26 Review: C Strings A string in C is just an array

More information

CS 1713 Introduction to Programming II

CS 1713 Introduction to Programming II CS 1713 Introduction to Programming II Spring 2014 Midterm 2 -- April 24, 2014 You have 75 min. Good luck. You can use the 2-page C reference card posted in the class web page. Name: Score:./100 Background

More information

CS 455 Final Exam Fall 2015 [Bono] Dec. 15, 2015

CS 455 Final Exam Fall 2015 [Bono] Dec. 15, 2015 Name: USC NetID (e.g., ttrojan): CS 455 Final Exam Fall 2015 [Bono] Dec. 15, 2015 There are 6 problems on the exam, with 70 points total available. There are 10 pages to the exam (5 pages double-sided),

More information

15-122: Principles of Imperative Computation, Spring Due: Thursday, March 10, 2016 by 22:00

15-122: Principles of Imperative Computation, Spring Due: Thursday, March 10, 2016 by 22:00 15-122 Programming 7 Page 1 of 8 15-122: Principles of Imperative Computation, Spring 2016 Programming homework 7: Text Buers Due: Thursday, March 10, 2016 by 22:00 For the programming portion of this

More information

Lecture 15 Notes Binary Search Trees

Lecture 15 Notes Binary Search Trees Lecture 15 Notes Binary Search Trees 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, André Platzer, Rob Simmons 1 Introduction In this lecture, we will continue considering ways

More information

Topics. Java arrays. Definition. Data Structures and Information Systems Part 1: Data Structures. Lecture 3: Arrays (1)

Topics. Java arrays. Definition. Data Structures and Information Systems Part 1: Data Structures. Lecture 3: Arrays (1) Topics Data Structures and Information Systems Part 1: Data Structures Michele Zito Lecture 3: Arrays (1) Data structure definition: arrays. Java arrays creation access Primitive types and reference types

More information

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011 Exam 3 15-122 Principles of Imperative Computation, Summer 2011 William Lovas June 24, 2011 Name: Sample Solution Andrew ID: wlovas Instructions This exam is closed-book with one double-sided sheet of

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam January 12, 2019 Section I A DATA STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max Pts Category

More information

Computer Science 136. Midterm Examination

Computer Science 136. Midterm Examination Computer Science 136 Bruce - Spring 04 Midterm Examination March 10, 2004 Question Points Score 1 12 2 10 3 11 4 18 5 8 TOTAL 59 Your name (Please print) I have neither given nor received aid on this examination.

More information

Sorting L7.2 Recall linear search for an element in an array, which is O(n). The divide-and-conquer technique of binary search divides the array in ha

Sorting L7.2 Recall linear search for an element in an array, which is O(n). The divide-and-conquer technique of binary search divides the array in ha Lecture Notes on Sorting 15-122: Principles of Imperative Computation Frank Pfenning Lecture 7 February 1, 2011 1 Introduction We have seen in the last lecture that sorted arrays drastically reduce the

More information

NET/JRF-COMPUTER SCIENCE & APPLICATIONS. Time: 01 : 00 Hour Date : M.M. : 50

NET/JRF-COMPUTER SCIENCE & APPLICATIONS. Time: 01 : 00 Hour Date : M.M. : 50 1 NET/JRF-COMPUTER SCIENCE & APPLICATIONS UNIT TEST : DATA STRUCTURE Time: 01 : 00 Hour Date : 02-06-2017 M.M. : 50 INSTRUCTION: Attempt all the 25 questions. Each question carry TWO marks. 1. Consider

More information

15 122: Principles of Imperative Computation. Practice Exam August 4, 2015

15 122: Principles of Imperative Computation. Practice Exam August 4, 2015 15 122: Principles of Imperative Computation Practice Exam August 4, 2015 15-122 Practice Exam Page 2 of 17 1. Fun with C. The following C programs have between 0 and 1 errors in them. If the function

More information

EE 312 Fall 2017 Midterm 1 October 12, 2017

EE 312 Fall 2017 Midterm 1 October 12, 2017 EE 312 Fall 2017 Midterm 1 October 12, 2017 Name: EID: Recitation time: Recitation TA (circle one): Colin Huy Give clear, legible answers. If you give more than one answer, we will randomly choose one

More information

Section 01: Solutions

Section 01: Solutions Section 01: Solutions 1. CSE 143 review 1.1. Reference semantics Quick Check 2 [0, 1] 1 [0, 1] 1 [1, 2] 0 [1, 2] 0 [0, 0] 0 [1, 2] (a) What is the output of this program? public class Mystery2 { public

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam December 16, 2016 Section I A DATA STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max Pts

More information

Computer Science E-119 Fall Problem Set 1. Due before lecture on Wednesday, September 26

Computer Science E-119 Fall Problem Set 1. Due before lecture on Wednesday, September 26 Due before lecture on Wednesday, September 26 Getting Started Before starting this assignment, make sure that you have completed Problem Set 0, which can be found on the assignments page of the course

More information

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive)

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive) Final Exam Exercises Chapters 1-7 + 11 Write C++ code to: l Determine if a number is odd or even CS 2308 Fall 2016 Jill Seaman l Determine if a number/character is in a range - 1 to 10 (inclusive) - between

More information

Lecture 1 Contracts. 1 A Mysterious Program : Principles of Imperative Computation (Spring 2018) Frank Pfenning

Lecture 1 Contracts. 1 A Mysterious Program : Principles of Imperative Computation (Spring 2018) Frank Pfenning Lecture 1 Contracts 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning In these notes we review contracts, which we use to collectively denote function contracts, loop invariants,

More information

ASYMPTOTIC COMPLEXITY

ASYMPTOTIC COMPLEXITY Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better. - Edsger Dijkstra ASYMPTOTIC COMPLEXITY Lecture

More information

Final exam. CS 2110, December 15, 2016, 9:00AM

Final exam. CS 2110, December 15, 2016, 9:00AM Final exam CS 2110, December 15, 2016, 9:00AM Question Short Trie Loop Exp Rec Gen Span Mon BigO Data Total Max 20 7 9 10 9 9 8 10 10 8 100 Score Grader The exam is closed book and closed notes. Do not

More information

Lecture Notes on Tries

Lecture Notes on Tries Lecture Notes on Tries 15-122: Principles of Imperative Computation Thomas Cortina Notes by Frank Pfenning Lecture 24 April 19, 2011 1 Introduction In the data structures implementing associative arrays

More information

ComS 228 Exam 1. September 27, 2004

ComS 228 Exam 1. September 27, 2004 ComS 228 Exam 1 September 27, 2004 Name: University ID: Section: (10 percent penalty if incorrect) This is a one-hour, closed-book, closed-notes, closed-calculator exam. The exam consists of 9 pages (including

More information

(1-2) Introduction to C Data Structures & Abstract Data Types. Instructor - Andrew S. O Fallon CptS 122 (June 6, 2018) Washington State University

(1-2) Introduction to C Data Structures & Abstract Data Types. Instructor - Andrew S. O Fallon CptS 122 (June 6, 2018) Washington State University (1-2) Introduction to C Data Structures & Abstract Data Types Instructor - Andrew S. O Fallon CptS 122 (June 6, 2018) Washington State University What is a Data Structure? A software construct describing

More information

"apple" "grape" "grape" "grape" "apple"

apple grape grape grape apple Test 1: CPS 100 Owen Astrachan and Dee Ramm February 21, 1997 Name: Honor code acknowledgment (signature) Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 TOTAL: value 10 pts. 9 pts. 21 pts.

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 16 March 17, 2015 1 Introduction In this lecture, we will continue considering ways

More information

15-122: Principles of Imperative Computation (Section G)

15-122: Principles of Imperative Computation (Section G) 15-122: Principles of Imperative Computation (Section G) Document 2 Solutions 0. Contracts This lecture was mainly about contracts and ensuring correctness of code. Josh Zimmerman There are 4 types of

More information

15-122: Principles of Imperative Computation, Spring 2013

15-122: Principles of Imperative Computation, Spring 2013 15-122 Homework 2 Page 1 of 11 15-122: Principles of Imperative Computation, Spring 2013 Homework 2 Programming: Twitterlab Due: Monday, February 11, 2013 by 23:59 For the programming portion of this week

More information

Understanding Pointers

Understanding Pointers Division of Mathematics and Computer Science Maryville College Pointers and Addresses Memory is organized into a big array. Every data item occupies one or more cells. A pointer stores an address. A pointer

More information

Lecture 7. Log into Linux New documents posted to course webpage

Lecture 7. Log into Linux New documents posted to course webpage Lecture 7 Log into Linux New documents posted to course webpage Coding style guideline; part of project grade is following this Homework 4, due on Monday; this is a written assignment Project 1, due next

More information