15 122: Principles of Imperative Computation. Practice Exam August 4, 2015

Size: px
Start display at page:

Download "15 122: Principles of Imperative Computation. Practice Exam August 4, 2015"

Transcription

1 15 122: Principles of Imperative Computation Practice Exam August 4, 2015

2 Practice Exam Page 2 of Fun with C. The following C programs have between 0 and 1 errors in them. If the function has no errors, state that this is the case and write what the function prints. (a) #include <stdio.h> #define double(x) ((x) + (x)) int i = 2; int j = 1; printf("%d\n", i=double(j*3)); printf("%d\n", i); (b) #include <stdio.h> int rot13(char *s) { int size = 1; while(*s++ = (*s + 13)) { size++; return s - size; printf("%s\n", rot13("abcd"))

3 Practice Exam Page 3 of 17 (c) #include <stdio.h> char *s = "yay 122 :)"; printf("%s\n", (char *)((int *) s + 2)); (d) #include <stdio.h> int a = 1; char *s = "abcdef"; while (a = 1) { if(*s > d ) a = 0; else ++s; printf("s is %s\n", s);

4 Practice Exam Page 4 of 17 (e) #include <stdio.h> char **alphabet; for(int i = 0; i < 26; i++) { *(alphabet + i) = xmalloc(sizeof(char) + 1); alphabet[i][0] = a + i; alphabet[i][1] = \0 ; printf("the first letter of the alphabet is %s\n", alphabet[0]); (f) #include <stdio.h> char *str = "yesterday"; char t[10]; while(*t++ = *str++); printf("t is %s\n", t);

5 Practice Exam Page 5 of 17 (g) #include <stdio.h> struct tree { char *data; struct tree *left; struct tree *right; void print_tree (struct tree t) { if (t == NULL) return; print_tree(t->left); printf("%s\n", t->data); print_tree(t->right); struct tree t; t->data = "new tree!" t->left = NULL; t->right = NULL; print_tree(t);

6 Practice Exam Page 6 of 17 (h) #include <stdio.h> #include <string.h> char *copy_string (char *str) { char copy[strlen(str)]; while(*copy++ = *str++); return copy; printf("copy of copy is %s\n", copy_string("copy"));

7 Practice Exam Page 7 of Memory. For each of the following code segments, state what is wrong with the code and how to correct it. You can look for errors such as unallocated or uninitialized memory, dereference of an invalid pointer, freeing of an invalid pointer, and etc. You may assume that all appropriate libraries have been included. (a) int allocate(int** array, int n) { array = (int**) xmalloc(n*sizeof(int*)); int** A; allocate(a, 10); free(a); (b) char* word = (char*) xmalloc(strlen("1337")*sizeof(char)); strcpy(word, "1337"); free(word);

8 Practice Exam Page 8 of 17 (c) int** p = (int**) xmalloc(sizeof(int*)); *p[0] = 42; free(p); (d) struct player { char* name; int score; ; typedef struct player player; player* noob = (player*) xmalloc(sizeof(player)); strcpy(noob->name, "Player"); noob->score = -1337; free(noob);

9 Practice Exam Page 9 of 17 (e) int free_array(char** array, int num_elts) { for (int i = 0; i < num_elts; i++) { free(array[i]); free(array); int n = 10; char** A = (char**) malloc(n*sizeof(char*)); char* word = (char*) malloc(100*sizeof(char)); strcpy(word, "You are just so cool."); for (int i = 0; i < n; i++) { A[i] = word; free_array(a, n);

10 Practice Exam Page 10 of Function Pointers. Some functions we studied such as bsearch perform operations only on an array of integers. In practice, we would want to develop more generic functions that can perform operations on arrays of arbitrary data. Therefore, in this problem we will sketch portions of such a generic function and write code to demonstrate how to use it. Assume we have the following generic function declaration typedef void* elem; elem findmax(elem array, int length, int type, int (*cmp)(elem x, elem y)) The function is supposed to take an array of arbitrary comparable data, the array length, a size type of each element (in bytes) and a function pointer, and then return a pointer to the maximum element of the array. (15) (a) Complete the function body of findmax(). Be sure to write pre condition as assertions. elem findmax(elem array,int length,int type,int (*cmp)(elem x,elem y)){ (5) (b) Suppose that the findmax function is to be used with an array of ints. Write the intcmp function used to compare two elements. intcmp returns 1,0,-1 based on comparison (behavior similar to standard compare functions) int intcmp(elem x, elem y) {

11 Practice Exam Page 11 of 17 (5) (c) Suppose that the function findmax is to be used with an array of strings. Write the strcmp function used to compare two string elements. intcmp returns 1,0,-1 based on comparison (behavior similar to standard compare functions) int strcmp(elem x, elem y) { (6) (d) Complete the following main function using intcmp and strcmp. Do a proper casting. int A[] = {23, 10, 12, 38, 9, 15; printf("the max is %d \n", ); char* B[] = {"victor", "guna", "frank", "tom"; printf("in a sorted (ascending) order %s would be the last\n", );

12 Practice Exam Page 12 of Perfect Trees. Recall the structure of a tree: typedef struct tree_node* tree; struct tree_node { elem data; tree left; tree right; The perfect binary tree is defined as a tree that has the maximum number of possible nodes for a given height (which is defined by the number of links - that is, a tree with only a root node has height 0). More formally, a perfect binary tree T with height h satisfies the following conditions: 1. An empty tree cannot be perfect. 2. If h = 0, then the left and right subtrees must be empty. 3. If h > 0, then both subtrees are perfect binary trees of height h 1. (10) (a) Implement the recursive function bool is perfect tree(tree T, int h), which returns true if and only if the tree T, of height h, is a perfect tree, according to the above definition. It returns false otherwise. You may assume that h is the correct height of the tree T. bool is_perfect_tree(tree T, int h) {

13 Practice Exam Page 13 of 17 (5) (b) What can you say about the complexity of search operation on a perfect binary tree? Hint: What can we assume if a tree is perfect?

14 Practice Exam Page 14 of Complexity. (6) (a) You have the method transform shown below that transforms a two-dimensional array of ints into a stack: stack transform(int *input, int rows, int cols) { stack stk = stack_new(); for(int i = 0; i < rows; i++) { for(int j = 0; j < cols; j++) { stack temp = stack_new(); push(*(input + i*cols + j), stk); while(!stack_empty(stk)) push(pop(stk), temp); stk = temp; return stk; Assuming that the input array has n rows and n columns, what is the worst-case runtime complexity in Big-O of the above method in terms of n? Explain your answer. (6) (b) Given Circle ALL upper bounds that apply. T (n) = n log n n log(log n) T (n) = O(n 2 ) T (n) = O(n log n) T (n) = O(n log(log n)) T (n) = O(n) T (n) = O(log n) T (n) = O(n 1/2 )

15 Practice Exam Page 15 of 17 Prove, using the formal definition of O (e.g., using n o and c) that f(n) = O(g(n)). (5) (c) f(n) = 3n 2 + 6n, g(n) = 1 2 n2

16 Practice Exam Page 16 of Splay Trees. Insert 30, 8, 29, 16, 86, 63, 20 (in the given order) into an initially empty splay tree. Draw the tree after each insertion.

17 Practice Exam Page 17 of Graphs. Consider a generic adjacency list directed graph implementation: typedef size_t vertex; typedef struct list_node* list; typedef struct graph_header* graph; struct list_node { vertex vert; list next; ; struct graph_header { size_t cap; // the table length and the number of vertices list* table; // array of adjacency lists ; Write a recursive function isconnected(graph G) that uses Depth First Traversal to check if the graph G is connected. The only functions you can use are is graph(g) and is vertex(g, v). bool isconnected(graph G)

: Principles of Imperative Computation Victor Adamchik. Practice Exam - I

: Principles of Imperative Computation Victor Adamchik. Practice Exam - I 15-122 Practice Exam - I Page 1 of 10 15-122 : Principles of Imperative Computation Victor Adamchik Practice Exam - I Name: Andrew ID: Answer the questions in the space provided following each question.

More information

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam August 26, 2017 Section I A DATA STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max Pts Category

More information

You must include this cover sheet. Either type up the assignment using theory5.tex, or print out this PDF.

You must include this cover sheet. Either type up the assignment using theory5.tex, or print out this PDF. 15-122 Assignment 5 Page 1 of 11 15-122 : Principles of Imperative Computation Fall 2012 Assignment 5 (Theory Part) Due: Tuesday, October 30, 2012 at the beginning of lecture Name: Andrew ID: Recitation:

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

Midterm I Exam Principles of Imperative Computation Frank Pfenning. February 17, 2011

Midterm I Exam Principles of Imperative Computation Frank Pfenning. February 17, 2011 Midterm I Exam 15-122 Principles of Imperative Computation Frank Pfenning February 17, 2011 Name: Sample Solution Andrew ID: fp Section: Instructions This exam is closed-book with one sheet of notes permitted.

More information

Final Exam Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas. December 10, Name: Andrew ID: Section:

Final Exam Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas. December 10, Name: Andrew ID: Section: Final Exam 15-122 Principles of Imperative Computation Frank Pfenning, Tom Cortina, William Lovas December 10, 2010 Name: Andrew ID: Section: Instructions This exam is closed-book with one sheet of notes

More information

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011 Exam 3 15-122 Principles of Imperative Computation, Summer 2011 William Lovas June 24, 2011 Name: Sample Solution Andrew ID: wlovas Instructions This exam is closed-book with one double-sided sheet of

More information

CSE 373 Spring Midterm. Friday April 21st

CSE 373 Spring Midterm. Friday April 21st CSE 373 Spring 2006 Data Structures and Algorithms Midterm Friday April 21st NAME : Do all your work on these pages. Do not add any pages. Use back pages if necessary. Show your work to get partial credit.

More information

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer)

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer) COSC 2007 Data Structures II Final Exam Thursday, April 13 th, 2006 This is a closed book and closed notes exam. There are total 3 parts. Please answer the questions in the provided space and use back

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 16 March 17, 2015 1 Introduction In this lecture, we will continue considering ways

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam May 19, 2018 Section I A DATA STRUCTURES SOLUTION NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max

More information

Lecture Notes on Tries

Lecture Notes on Tries Lecture Notes on Tries 15-122: Principles of Imperative Computation Thomas Cortina, Frank Pfenning, Rob Simmons, Penny Anderson Lecture 22 June 20, 2014 1 Introduction In the data structures implementing

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam August 6, 017 Section I A DATA STRUCTURES SOLUTIONS NO books, notes, or calculators may be used, and you must work entirely on your own. Question # Max Pts Category Passing

More information

ESC101N: Fundamentals of Computing End-sem st semester

ESC101N: Fundamentals of Computing End-sem st semester ESC101N: Fundamentals of Computing End-sem 2010-11 1st semester Instructor: Arnab Bhattacharya 8:00-11:00am, 15th November, 2010 Instructions 1. Please write your name, roll number and section below. 2.

More information

Lecture Notes on Tries

Lecture Notes on Tries Lecture Notes on Tries 15-122: Principles of Imperative Computation Thomas Cortina Notes by Frank Pfenning Lecture 24 April 19, 2011 1 Introduction In the data structures implementing associative arrays

More information

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

Arrays. An array is a collection of several elements of the same type. An array variable is declared as array name[size]

Arrays. An array is a collection of several elements of the same type. An array variable is declared as array name[size] (November 10, 2009 2.1 ) Arrays An array is a collection of several elements of the same type. An array variable is declared as type array name[size] I The elements are numbered as 0, 1, 2... size-1 I

More information

Lecture 15 Notes Binary Search Trees

Lecture 15 Notes Binary Search Trees Lecture 15 Notes Binary Search Trees 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, André Platzer, Rob Simmons 1 Introduction In this lecture, we will continue considering ways

More information

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes CSE 250 Final Exam Fall 2013 Time: 3 hours. Dec 11, 2013 Total points: 100 14 pages Please use the space provided for each question, and the back of the page if you need to. Please do not use any extra

More information

CSE 333 Midterm Exam 2/14/14

CSE 333 Midterm Exam 2/14/14 Name There are 4 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. The exam is closed book, closed notes, closed

More information

Midterm II Exam Principles of Imperative Computation Frank Pfenning. March 31, 2011

Midterm II Exam Principles of Imperative Computation Frank Pfenning. March 31, 2011 Midterm II Exam 15-122 Principles of Imperative Computation Frank Pfenning March 31, 2011 Name: Sample Solution Andrew ID: fp Section: Instructions This exam is closed-book with one sheet of notes permitted.

More information

CGS 3460 Summer 07 Midterm Exam

CGS 3460 Summer 07 Midterm Exam Short Answer 3 Points Each 1. What would the unix command gcc somefile.c -o someotherfile.exe do? 2. Name two basic data types in C. 3. A pointer data type holds what piece of information? 4. This key

More information

ECE264 Spring 2013 Final Exam, April 30, 2013

ECE264 Spring 2013 Final Exam, April 30, 2013 ECE264 Spring 2013 Final Exam, April 30, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

: Principles of Imperative Computation. Summer Assignment 4. Due: Monday, June 11, 2012 in class

: Principles of Imperative Computation. Summer Assignment 4. Due: Monday, June 11, 2012 in class 15-122 Assignment 4 Page 1 of 8 15-122 : Principles of Imperative Computation Summer 1 2012 Assignment 4 (Theory Part) Due: Monday, June 11, 2012 in class Name: Andrew ID: Recitation: The written portion

More information

CSL 201 Data Structures Mid-Semester Exam minutes

CSL 201 Data Structures Mid-Semester Exam minutes CL 201 Data tructures Mid-emester Exam - 120 minutes Name: Roll Number: Please read the following instructions carefully This is a closed book, closed notes exam. Calculators are allowed. However laptops

More information

Data Structure and Algorithm, Spring 2013 Midterm Examination 120 points Time: 2:20pm-5:20pm (180 minutes), Tuesday, April 16, 2013

Data Structure and Algorithm, Spring 2013 Midterm Examination 120 points Time: 2:20pm-5:20pm (180 minutes), Tuesday, April 16, 2013 Data Structure and Algorithm, Spring 2013 Midterm Examination 120 points Time: 2:20pm-5:20pm (180 minutes), Tuesday, April 16, 2013 Problem 1. In each of the following question, please specify if the statement

More information

SOFTWARE Ph.D. Qualifying Exam Fall 2017

SOFTWARE Ph.D. Qualifying Exam Fall 2017 (i) (4 pts.) SOFTWARE Ph.D. Qualifying Exam Fall 2017 Consider the following C program. #include #define START 2 #define LIMIT 60 #define STEP 7 #define SIZE 3 int main(void) { int i = START,

More information

15-122: Principles of Imperative Computation, Spring Written Homework 12. Due: Sunday 15 th April, 2018 by 10pm. Name: Andrew ID: Section:

15-122: Principles of Imperative Computation, Spring Written Homework 12. Due: Sunday 15 th April, 2018 by 10pm. Name: Andrew ID: Section: 15-122: Principles of Imperative Computation, Spring 2018 Written Homework 12 Due: Sunday 15 th April, 2018 by 10pm Name: Andrew ID: Section: This written homework provides practice with C features such

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 14, 2012 2:00 p.m. 4:30 p.m. (150 minutes) Examiners: J. Anderson, B. Li, M. Sadoghi,

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 17 1 Introduction In the previous two lectures we have seen how to exploit the structure of binary

More information

Comp Sci 1MD3 Mid-Term II 2004 Dr. Jacques Carette

Comp Sci 1MD3 Mid-Term II 2004 Dr. Jacques Carette Comp Sci 1MD3 Mid-Term II 2004 Dr. Jacques Carette Name: Student No.: Duration : 50 minutes This midterm contains 18 questions on 4 pages This midterm will be marked out of 50. There are 60 total marks

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 9, 2011 9:30 a.m. 12:00 p.m. Examiners: J. Anderson, T. Fairgrieve, B. Li, G. Steffan,

More information

COP Study Union - Fall 2017

COP Study Union - Fall 2017 COP 3502 - Study Union - Fall 2017 Chris Marsh Contents 1 Tries 3 1.1 Insertion...................................... 4 1.1.1 Worst Case Runtime........................... 4 1.1.2 Best Case Runtime............................

More information

Midterm 2 Exam Principles of Imperative Computation. Tuesday 31 st March, This exam is closed-book with one sheet of notes permitted.

Midterm 2 Exam Principles of Imperative Computation. Tuesday 31 st March, This exam is closed-book with one sheet of notes permitted. Midterm 2 Exam 15-122 Principles of Imperative Computation Tuesday 31 st March, 2015 Name: Andrew ID: Recitation Section: Instructions This exam is closed-book with one sheet of notes permitted. You have

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 15 March 6, 2014 1 Introduction In this lecture, we will continue considering associative

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

Foundation Exam - Sample Problems for New Topics

Foundation Exam - Sample Problems for New Topics Foundation Exam - Sample Problems for New Topics Fall 2016 Dynamic Memory Allocation Sample Question #1 Consider the following struct to store a single Uno playing card: typedef struct char color[20];

More information

CS 112 Final May 8, 2008 (Lightly edited for 2012 Practice) Name: BU ID: Instructions

CS 112 Final May 8, 2008 (Lightly edited for 2012 Practice) Name: BU ID: Instructions CS 112 Final May 8, 2008 (Lightly edited for 2012 Practice) Name: BU ID: This exam is CLOSED book and notes. Instructions The exam consists of six questions on 11 pages. Please answer all questions on

More information

Lecture 15 Binary Search Trees

Lecture 15 Binary Search Trees Lecture 15 Binary Search Trees 15-122: Principles of Imperative Computation (Fall 2017) Frank Pfenning, André Platzer, Rob Simmons, Iliano Cervesato In this lecture, we will continue considering ways to

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination University of Illinois at Urbana-Champaign Department of Computer Science Second Examination CS 225 Data Structures and Software Principles Spring 2012 7p-9p, Tuesday, April 3 Name: NetID: Lab Section

More information

SCJ2013 Data Structure & Algorithms. Binary Search Tree. Nor Bahiah Hj Ahmad

SCJ2013 Data Structure & Algorithms. Binary Search Tree. Nor Bahiah Hj Ahmad SCJ2013 Data Structure & Algorithms Binary Search Tree Nor Bahiah Hj Ahmad Binary Search Tree A binary search tree has the following properties: For every node n in the tree Value of n is greater than

More information

Solution to CSE 250 Final Exam

Solution to CSE 250 Final Exam Solution to CSE 250 Final Exam Fall 2013 Time: 3 hours. December 13, 2013 Total points: 100 14 pages Please use the space provided for each question, and the back of the page if you need to. Please do

More information

Final Exam. Name: Student ID: Section: Signature:

Final Exam. Name: Student ID: Section: Signature: Final Exam PIC 10B, Spring 2016 Name: Student ID: Section: Discussion 3A (2:00 2:50 with Kelly) Discussion 3B (3:00 3:50 with Andre) I attest that the work presented in this exam is my own. I have not

More information

DC54 DATA STRUCTURES DEC 2014

DC54 DATA STRUCTURES DEC 2014 Q.2 a. Write a function that computes x^y using Recursion. The property that x^y is simply a product of x and x^(y-1 ). For example, 5^4= 5 * 5^3. The recursive definition of x^y can be represented as

More information

NET/JRF-COMPUTER SCIENCE & APPLICATIONS. Time: 01 : 00 Hour Date : M.M. : 50

NET/JRF-COMPUTER SCIENCE & APPLICATIONS. Time: 01 : 00 Hour Date : M.M. : 50 1 NET/JRF-COMPUTER SCIENCE & APPLICATIONS UNIT TEST : DATA STRUCTURE Time: 01 : 00 Hour Date : 02-06-2017 M.M. : 50 INSTRUCTION: Attempt all the 25 questions. Each question carry TWO marks. 1. Consider

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk A. Maus, R.K. Runde, I. Yu INF2220: algorithms and data structures Series 1 Topic Trees & estimation of running time (Exercises with hints for solution) Issued:

More information

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins.

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins. 15-122 Homework 4 Page 1 of 13 15-122 : Principles of Imperative Computation, Summer 1 2014 Written Homework 4 Due: Thursday, June 12 before recitation Name: Andrew ID: Recitation: In this assignment,

More information

21# 33# 90# 91# 34# # 39# # # 31# 98# 0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# #

21# 33# 90# 91# 34# # 39# # # 31# 98# 0# 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# # 1. Prove that n log n n is Ω(n). York University EECS 11Z Winter 1 Problem Set 3 Instructor: James Elder Solutions log n n. Thus n log n n n n n log n n Ω(n).. Show that n is Ω (n log n). We seek a c >,

More information

CMSC 341 Lecture 10 Binary Search Trees

CMSC 341 Lecture 10 Binary Search Trees CMSC 341 Lecture 10 Binary Search Trees John Park Based on slides from previous iterations of this course Review: Tree Traversals 2 Traversal Preorder, Inorder, Postorder H X M A K B E N Y L G W UMBC CMSC

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 21, 2015 9:30 a.m. 12:00 p.m. (150 minutes) Examiners: J. Anderson, B. Li, J. Rose

More information

Problem 2 Add the two 2 s complement signed 8-bit values given below, and express your answer in decimal.

Problem 2 Add the two 2 s complement signed 8-bit values given below, and express your answer in decimal. Problem 1 Recall the definition of root in project 1. (The declaration of struct entrynode appears below.) struct entrynode * root; Give the type of each of the following expressions. The answer may be

More information

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011

Exam Principles of Imperative Computation, Summer 2011 William Lovas. June 24, 2011 Exam 3 15-122 Principles of Imperative Computation, Summer 2011 William Lovas June 24, 2011 Name: Andrew ID: Instructions This exam is closed-book with one double-sided sheet of notes permitted. You have

More information

I2206 Data Structures TS 6: Binary Trees - Binary Search Trees

I2206 Data Structures TS 6: Binary Trees - Binary Search Trees Lebanese University BS - Computer Science Faculty of Science 2018-2019 Section I I2206 Data Structures TS 6: Binary Trees - Binary Search Trees Exercise 1 What value does the following C function return?

More information

Final Exam Solutions PIC 10B, Spring 2016

Final Exam Solutions PIC 10B, Spring 2016 Final Exam Solutions PIC 10B, Spring 2016 Problem 1. (10 pts) Consider the Fraction class, whose partial declaration was given by 1 class Fraction { 2 public : 3 Fraction ( int num, int den ); 4... 5 int

More information

CS126 Final Exam Review

CS126 Final Exam Review CS126 Final Exam Review Fall 2007 1 Asymptotic Analysis (Big-O) Definition. f(n) is O(g(n)) if there exists constants c, n 0 > 0 such that f(n) c g(n) n n 0 We have not formed any theorems dealing with

More information

4. Trees. 4.1 Preliminaries. 4.2 Binary trees. 4.3 Binary search trees. 4.4 AVL trees. 4.5 Splay trees. 4.6 B-trees. 4. Trees

4. Trees. 4.1 Preliminaries. 4.2 Binary trees. 4.3 Binary search trees. 4.4 AVL trees. 4.5 Splay trees. 4.6 B-trees. 4. Trees 4. Trees 4.1 Preliminaries 4.2 Binary trees 4.3 Binary search trees 4.4 AVL trees 4.5 Splay trees 4.6 B-trees Malek Mouhoub, CS340 Fall 2002 1 4.1 Preliminaries A Root B C D E F G Height=3 Leaves H I J

More information

Section I B COMPUTER SCIENCE SOLUTION

Section I B COMPUTER SCIENCE SOLUTION Computer Science Foundation Exam December 17, 2010 Section I B COMPUTER SCIENCE NO books, notes, or calculators may be used, and you must work entirely on your own. SOLUTION Question # Max Pts Category

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING APS 105 Computer Fundamentals Final Examination December 16, 2013 2:00 p.m. 4:30 p.m. (150 minutes) Examiners: J. Anderson, B. Korst, J.

More information

11 'e' 'x' 'e' 'm' 'p' 'l' 'i' 'f' 'i' 'e' 'd' bool equal(const unsigned char pstr[], const char *cstr) {

11 'e' 'x' 'e' 'm' 'p' 'l' 'i' 'f' 'i' 'e' 'd' bool equal(const unsigned char pstr[], const char *cstr) { This document contains the questions and solutions to the CS107 midterm given in Spring 2016 by instructors Julie Zelenski and Michael Chang. This was an 80-minute exam. Midterm questions Problem 1: C-strings

More information

Exam I Principles of Imperative Computation, Summer 2011 William Lovas. May 27, 2011

Exam I Principles of Imperative Computation, Summer 2011 William Lovas. May 27, 2011 Exam I 15-122 Principles of Imperative Computation, Summer 2011 William Lovas May 27, 2011 Name: Sample Solution Andrew ID: wlovas Instructions This exam is closed-book with one sheet of notes permitted.

More information

Total Score /1 /20 /41 /15 /23 Grader

Total Score /1 /20 /41 /15 /23 Grader NAME: NETID: CS2110 Spring 2015 Prelim 2 April 21, 2013 at 5:30 0 1 2 3 4 Total Score /1 /20 /41 /15 /23 Grader There are 5 questions numbered 0..4 on 8 pages. Check now that you have all the pages. Write

More information

CSE413 Midterm. Question Max Points Total 100

CSE413 Midterm. Question Max Points Total 100 CSE413 Midterm 05 November 2007 Name Student ID Answer all questions; show your work. You may use: 1. The Scheme language definition. 2. One 8.5 * 11 piece of paper with handwritten notes Other items,

More information

CS 314 Exam 2 Spring

CS 314 Exam 2 Spring Points off 1 2 3 4 5 Total off CS 314 Exam 2 Spring 2017 Your Name Your UTEID Instructions: 1. There are 5 questions on this test. 100 points available. Scores will be scaled to 200 points. 2. You have

More information

CS/ENGRD 2110 Object-Oriented Programming and Data Structures Spring 2012 Thorsten Joachims. Lecture 10: Asymptotic Complexity and

CS/ENGRD 2110 Object-Oriented Programming and Data Structures Spring 2012 Thorsten Joachims. Lecture 10: Asymptotic Complexity and CS/ENGRD 2110 Object-Oriented Programming and Data Structures Spring 2012 Thorsten Joachims Lecture 10: Asymptotic Complexity and What Makes a Good Algorithm? Suppose you have two possible algorithms or

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam August 25, 2018 Section I A DATA STRUCTURES SOLUTION NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max

More information

Computer Science Foundation Exam. Dec. 19, 2003 COMPUTER SCIENCE I. Section I A. No Calculators! KEY

Computer Science Foundation Exam. Dec. 19, 2003 COMPUTER SCIENCE I. Section I A. No Calculators! KEY Computer Science Foundation Exam Dec. 19, 2003 COMPUTER SCIENCE I Section I A No Calculators! Name: KEY SSN: Score: 50 In this section of the exam, there are Three (3) problems You must do all of them.

More information

Midterm 1 Solutions Principles of Imperative Computation. Thursday 6 th October, 2016

Midterm 1 Solutions Principles of Imperative Computation. Thursday 6 th October, 2016 Midterm 1 Solutions 15-122 Principles of Imperative Computation Thursday 6 th October, 2016 Name: Harry Bovik Andrew ID: bovik Recitation Section: S Instructions This exam is closed-book with one sheet

More information

Midterm 1 Exam Principles of Imperative Computation. Thursday 6 th October, This exam is closed-book with one sheet of notes permitted.

Midterm 1 Exam Principles of Imperative Computation. Thursday 6 th October, This exam is closed-book with one sheet of notes permitted. Midterm 1 Exam 15-122 Principles of Imperative Computation Thursday 6 th October, 2016 Name: Andrew ID: Recitation Section: Instructions This exam is closed-book with one sheet of notes permitted. You

More information

DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURES AND ALGORITHMS DATA STRUCTURES AND ALGORITHMS For COMPUTER SCIENCE DATA STRUCTURES &. ALGORITHMS SYLLABUS Programming and Data Structures: Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Tom Cortina Lecture 15 October 14, 2010 1 Introduction In the previous two lectures we have seen how to exploit the structure

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

20 Dynamic allocation of memory: malloc and calloc

20 Dynamic allocation of memory: malloc and calloc 20 Dynamic allocation of memory: malloc and calloc As noted in the last lecture, several new functions will be used in this section. strlen (string.h), the length of a string. fgets(buffer, max length,

More information

C BOOTCAMP DAY 2. CS3600, Northeastern University. Alan Mislove. Slides adapted from Anandha Gopalan s CS132 course at Univ.

C BOOTCAMP DAY 2. CS3600, Northeastern University. Alan Mislove. Slides adapted from Anandha Gopalan s CS132 course at Univ. C BOOTCAMP DAY 2 CS3600, Northeastern University Slides adapted from Anandha Gopalan s CS132 course at Univ. of Pittsburgh Pointers 2 Pointers Pointers are an address in memory Includes variable addresses,

More information

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming Jagannath Institute of Management Sciences Lajpat Nagar BCA II Sem C Programming UNIT I Pointers: Introduction to Pointers, Pointer Notation,Decalaration and Initialization, Accessing variable through

More information

CSE030 Fall 2012 Final Exam Friday, December 14, PM

CSE030 Fall 2012 Final Exam Friday, December 14, PM CSE030 Fall 2012 Final Exam Friday, December 14, 2012 3-6PM Write your name here and at the top of each page! Name: Select your lab session: Tuesdays Thursdays Paper. If you have any questions or need

More information

ECE264 Fall 2013 Exam 3, November 20, 2013

ECE264 Fall 2013 Exam 3, November 20, 2013 ECE264 Fall 2013 Exam 3, November 20, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

Computer Science 136 Spring 2004 Professor Bruce. Final Examination May 19, 2004

Computer Science 136 Spring 2004 Professor Bruce. Final Examination May 19, 2004 Computer Science 136 Spring 2004 Professor Bruce Final Examination May 19, 2004 Question Points Score 1 10 2 8 3 15 4 12 5 12 6 8 7 10 TOTAL 65 Your name (Please print) I have neither given nor received

More information

CS 241 Data Organization Binary Trees

CS 241 Data Organization Binary Trees CS 241 Data Organization Binary Trees Brooke Chenoweth University of New Mexico Fall 2017 Binary Tree: Kernighan and Ritchie 6.5 Read a file and count the occurrences of each word. now is the time for

More information

CS 223: Data Structures and Programming Techniques. Exam 2

CS 223: Data Structures and Programming Techniques. Exam 2 CS 223: Data Structures and Programming Techniques. Exam 2 Instructor: Jim Aspnes Work alone. Do not use any notes or books. You have approximately 75 minutes to complete this exam. Please write your answers

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam January 13, 2018 Section I A DATA STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max Pts Category

More information

- 1 - Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions. CS106B Spring 2013

- 1 - Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions. CS106B Spring 2013 CS106B Spring 2013 Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions Based on handouts by Eric Roberts and Jerry Cain Problem One: Reversing a Queue One way to reverse the queue is to keep

More information

How much space does this routine use in the worst case for a given n? public static void use_space(int n) { int b; int [] A;

How much space does this routine use in the worst case for a given n? public static void use_space(int n) { int b; int [] A; How much space does this routine use in the worst case for a given n? public static void use_space(int n) { int b; int [] A; } if (n

More information

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) _ UWNetID: Lecture Section: A CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will give

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

SOFTWARE Ph.D. Qualifying Exam Spring Consider the following C program, which includes three function definitions, including the main function.

SOFTWARE Ph.D. Qualifying Exam Spring Consider the following C program, which includes three function definitions, including the main function. (i) (6 pts.) SOFTWARE Ph.D. Qualifying Exam Spring 2017 Consider the following C program, which includes three function definitions, including the main function. #include #include

More information

: Principles of Imperative Computation, Spring Homework 3 Theory [Update 1]

: Principles of Imperative Computation, Spring Homework 3 Theory [Update 1] 15-122 Homework 3 Page 1 of 15 15-122 : Principles of Imperative Computation, Spring 2013 Homework 3 Theory [Update 1] Due: Thursday, February 21, 2013, at the beginning of lecture Name: Andrew ID: Recitation:

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination University of Illinois at Urbana-Champaign Department of Computer Science Second Examination CS 225 Data Structures and Software Principles Spring 2014 7-10p, Tuesday, April 8 Name: NetID: Lab Section

More information

Computer Science E-22 Practice Final Exam

Computer Science E-22 Practice Final Exam name Computer Science E-22 This exam consists of three parts. Part I has 10 multiple-choice questions that you must complete. Part II consists of 4 multi-part problems, of which you must complete 3, and

More information

Signature: ECE 551 Midterm Exam

Signature: ECE 551 Midterm Exam Name: ECE 551 Midterm Exam NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual work.

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination University of Illinois at Urbana-Champaign Department of Computer Science Second Examination CS 225 Data Structures and Software Principles Fall 2011 9a-11a, Wednesday, November 2 Name: NetID: Lab Section

More information

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example.

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example. Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Tree: non-recursive definition Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every node (except

More information

ECE264 Spring 2013 Exam 1, February 14, 2013

ECE264 Spring 2013 Exam 1, February 14, 2013 ECE264 Spring 2013 Exam 1, February 14, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

CS 315 Data Structures mid-term 2

CS 315 Data Structures mid-term 2 CS 315 Data Structures mid-term 2 1) Shown below is an AVL tree T. Nov 14, 2012 Solutions to OPEN BOOK section. (a) Suggest a key whose insertion does not require any rotation. 18 (b) Suggest a key, if

More information

Chapter 2 (Dynamic variable (i.e. pointer), Static variable)

Chapter 2 (Dynamic variable (i.e. pointer), Static variable) Chapter 2 (Dynamic variable (i.e. pointer), Static variable) August_04 A2. Identify and explain the error in the program below. [4] #include int *pptr; void fun1() { int num; num=25; pptr= &num;

More information

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer Prelim 2 CS 2110, November 20, 2014, 7:30 PM 1 2 3 4 5 Extra Total Question True/False Short Answer Complexity Induction Trees Graphs Extra Credit Max 20 10 15 25 30 5 100 Score Grader The exam is closed

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam December 16, 2016 Section I A DATA STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. Name: UCFID: NID: Question # Max Pts

More information