MM1_ doc Page E-1 of 12 Rüdiger Siol :21

Size: px
Start display at page:

Download "MM1_ doc Page E-1 of 12 Rüdiger Siol :21"

Transcription

1 Contents E Structures, s and Dynamic Memory Allocation... E-2 E.1 C s Dynamic Memory Allocation Functions... E-2 E.1.1 A conceptual view of memory usage... E-2 E.1.2 malloc() and free()... E-2 E.1.3 Create a simple List... E-4 E.1.4 Insert one record into the list... E-9 E.1.5 Delete one record of the list... E-9 E.2 C++ s Dynamic Memory Allocation Operators... E-10 E.2.1 The operators new and delete... E-10 E.2.2 Create a simple List... E-11 MM1_ doc Page E-1 of 12 Rüdiger Siol

2 E Structures, s and Dynamic Memory Allocation E.1 C s Dynamic Memory Allocation Functions E.1.1 A conceptual view of memory usage Memory usage of a program static area dynamic area Program- Code Global Data Stack- free- Heap- Area (r.siol) Hochschule Ravensburg-Weingarten Technik Wirtschaft Sozialwesen 125 E.1.2 malloc() and free() The C language does not contain the new or the delete operators. lnstead, C uses library functions to allocate and free memory. For compatibility, C++ still provides support for C's dynamic allocation system, and it is still quite common to find the C-like dynamic allocation system used in C++ programs. The following discussion explains how it works. At the core of C's allocation system are the functions malloc( ) and free( ). The malloc( ) function allocates memory, and the free( ) function releases it. That is, each time a malloc( ) memory request is made, a portion of the remaining free memory is allocated. Each time free( ) is called, memory is returned to the system. Any program that uses these functions must include the header <cstdlib>. MM1_ doc Page E-2 of 12 Rüdiger Siol

3 The malloc( ) function has this prototype: void *malloc(size_t num_bytes); Here, num_bytes is the number of bytes of memory you want to allocate. (size_t is a defined type that is some type of unsigned integer). The malloc( ) function returns a pointer of type void, which signifies a generic pointer. You must use a cast to convert this pointer into the type of pointer needed by your program. After a successful call, malloc( ) will return a pointer to the first byte of the region of memory allocated from the heap. If there is not enough memory to satisfy the request, an allocation failure occurs, and malloc( ) returns a null. The free( ) function is the opposite of malloc( ) in that it returns previously allocated memory to the system. Once the memory has been released, it may be reused by a subsequent call to malloc( ). The function free( ) has this prototype: void free(void *ptr); Here, ptr is a pointer to memory previously allocated using malloc( ). You must never call free( ) with an invalid argument; this would cause the free list to be destroyed. While malloc( ) and free( ) are fully capable dynamie allocation functions, there are several reasons why C++ defines its own approach to dynamic allocation. First, new automatically computes the size of the type being allocated. You don't have to make use of the sizeof operator, so you save some effort. More importantly, automatic computation prevents the wrong amount of memory from being allocated. The second advantage to the C++ approach is that new automatically returns the correct pointer type-you don't need to use a type cast. Third, by using new, you can initialize the object being allocated. Finally, as you will see later, you can create your own, customized versions of new and delete. One last point: Because of possible incompatibilities, you should not mix malloc( ) and free( ) with new and delete in the same program. The following program illustrates malloc( ) and free( ): MM1_ doc Page E-3 of 12 Rüdiger Siol

4 E.1.3 Create a simple List Declare a recursive structure with the elements of your record; it is called recursive as it contains elements which are pointers to the same structure. struct char myname[20]; // The name int registration; // The registration ID-Number * ; // A pointer to the record of the same type ; The start of the list is the anchor, this is a pointer to the first record in the list. In the beginning it points to NULL as there is no list available. Anchor mechatronic NULL int main() * mechatronic = NULL; Now mechatronic is an anchor of type. It is initialized to NULL. Connect records to the end of the list. It is necessary to find a record whose - pointer is NULL. p and q are pointers of type. With p we look through the chain of records which is either existent or empty. After the loop q is positioned to the start of the last record. If we connect a record, the associated pointer has to be assigned to q->. while (p) q = p; p = p -> ; // Search the end of the list // q points to the last record The create() function is defined to type and insert the elements of a record and it returns a pointer to that record. Per default it s pointer is NULL. That assures to finish the list with a NULL pointer. q -> = create(); // Add record MM1_ doc Page E-4 of 12 Rüdiger Siol

5 The create function: * create () * q; q = ( *) malloc (sizeof ()); if (!q) cout << "Allocation Failure. \n"; return NULL; cout << "Name:\t\t\t"; cin >> q->myname; cout << "Registration:\t"; cin >> q->registration; q -> = NULL; return q; Now we have the tools available to build a simple list. * build_list ( * mechatronic) * p, *q; int r; cout << "Type the number of records you like to connect to the list: r = "; cin >> r; for (int i = 0; i < r; ++i) if (mechatronic) // Connect the record while (p) // Search the end of the list q = p; // q points to the last record p = p -> ; q -> = create(); // Add record else // Connect the first record mechatronic = create(); return mechatronic; MM1_ doc Page E-5 of 12 Rüdiger Siol

6 And with that function the main() function calls: int main() * mechatronic = NULL; // That's an anchor for the s which registered for mechatronic mechatronic = build_list (mechatronic); document (mechatronic); mechatronic = delete_list (mechatronic); document (mechatronic); return 0; The document(mechatronic) function shows all elements of the list as they are stored in the heap. void document( * ptr) while (ptr) cout << ptr -> myname << "\t" << ptr -> registration << "\t" << ptr -> << endl; ptr = ptr -> ; cout << "\nreached the end of the list." << endl; s which are not any more necessary may be deleted with the use of the free() function; the example shows the deletion of the whole list. * delete_list ( * mechatronic) * p, *q; while (p) q = p; p = p-> ; free(q); return p; MM1_ doc Page E-6 of 12 Rüdiger Siol

7 The source code of the complete program: #include <iostream> #include <cstdlib> #include <cstring> using namespace std; struct char myname[20]; int registration; * ; ; // The name // The registration ID-Number // A pointer to the record of the same type void document( * ptr); * create (); * build_list ( * mechatronic); * delete_list ( * mechatronic); int main() * mechatronic = NULL; // That's an anchor for the s which registered for mechatronic mechatronic = build_list (mechatronic); document (mechatronic); mechatronic = delete_list (mechatronic); document (mechatronic); return 0; void document( * ptr) while (ptr) cout << ptr -> myname << "\t" << ptr -> registration << "\t" << ptr -> << endl; ptr = ptr -> ; cout << "\nreached the end of the list." << endl; * build_list ( * mechatronic) * p, *q; int r; cout << "Type the number of records you like to connect to the list: r = "; cin >> r; for (int i = 0; i < r; ++i) if (mechatronic) // Connect the record while (p) // Search the end of the list q = p; // q points to the last record p = p -> ; q -> = create(); // Add record else // Connect the first record mechatronic = create(); MM1_ doc Page E-7 of 12 Rüdiger Siol

8 return mechatronic; * create () * q; q = ( *) malloc (sizeof ()); cout << "Name:\t\t\t"; cin >> q->myname; cout << "Registration:\t"; cin >> q->registration; q -> = NULL; return q; * delete_list ( * mechatronic) * p, *q; while (p) q = p; p = p-> ; free(q); return p; Type the number of records you like to connect to the list: r = 5 Name: Jimmy Registration: 1250 Name: Mike Registration: 1251 Name: Sven Registration: 1252 Name: Herbert Registration: 1253 Name: Glen Registration: 1254 Jimmy x000ce140 Mike x000ce160 Sven x000ce180 Herbert x000ce1a0 Glen x Reached the end of the list. Reached the end of the list. MM1_ doc Page E-8 of 12 Rüdiger Siol

9 E.1.4 Insert one record into the list The list exists in such a complete form. Anchor mechatronic NULL Search an element in the list and insert a new record either after or before that record. Anchor mechatronic NULL E.1.5 Delete one record of the list Anchor mechatronic NULL Search an element in the list and delete the record. MM1_ doc Page E-9 of 12 Rüdiger Siol

10 E.2 C++ s Dynamic Memory Allocation Operators E.2.1 The operators new and delete C++ provides two dynamic allocation operators: new and delete. These operators are used to allocate and free memory at run time. Dynamic allocation is an important part of almost all real-world programs. C++ also supports dynamic memory allocation functions, called malloc() and free(). These are included for the sake of compatibility with C. However, for C++ code, you should use the new and delete operators because they have several advantages. The new operator allocates memory and returns a pointer to the start of it. The delete operator frees memory previously allocated using new. The general forms of new and delete are shown here: p_var = new type; delete p _var; Here, p_var is a pointer variable that receives a pointer to memory that is large enough to hold an item of type type. Since the heap is finite, it can become exhausted. If there is insufficient available memory to fill an allocation request, then new will fail and a bad_alloc exception will be generated. This exception is defined in the header <new>. Your program should handle this exception and take appropriate action if a failure occurs. If this exception is not handled by your program, then your program will be terminated. The actions of new on failure as just described are specified by Standard C++. The trouble is that not all compilers, especially older ones, will have implemented new in compliance with Standard C++. When C++ was first invented, new returned null on failure. Later, this was changed such that new caused an exception on failure. Finally, it was decided that a new failure will generate an exception by default, but that a null pointer could be returned instead, as an option. Thus, new has been implemented differently, at different times, by compiler manufacturers. Although all compilers will eventually implement new in compliance with Standard C++, currently the only way to know the precise action of new on failure is to check your compiler's documentation. Since Standard C++ specifies that new generates an exception on failure, this is the way the code is written. If your compiler handles an allocation failure differently, you will need to make the appropriate changes. The delete operator must be used only with a valid pointer previously allocated by using new. Using any other type of pointer with delete is undefined and will almost certainly cause serious problems, such as a system crash. Although new and delete perform functions similar to malloc() and free(), they have several advantages. First, new automatically allocates enough memory to hold an object of the specified type. You do not need to use the sizeof operator. Because the size is computed automatically, it eliminates any possibility for error in this regard. Second, new automatically returns a pointer of the specified type. You don't need to use an explicit type cast as you do when allocating memory by using malloc( ). Finally, both new and delete can be overloaded, allowing you to create customized allocation systems. Although there is no formal rule that states this, it is best not to mix new and delete with malloc( ) and free( ) in the same program. There is no guarantee that they are mutually compatible. MM1_ doc Page E-10 of 12 Rüdiger Siol

11 E.2.2 Create a simple List #include <iostream> #include <new> #include <cstring> using namespace std; struct char myname[20]; int registration; * ; ; // In C: #include <cstdlib> // The name // The registration ID-Number // A pointer to the record of the same type void document( * ptr); * create (); * build_list ( * mechatronic); * delete_list ( * mechatronic); int main() * mechatronic = NULL; // That's an anchor for the s which registered for mechatronic mechatronic = build_list (mechatronic); document (mechatronic); mechatronic = delete_list (mechatronic); document (mechatronic); return 0; void document( * ptr) while (ptr) cout << ptr -> myname << "\t" << ptr -> registration << "\t" << ptr -> << endl; ptr = ptr -> ; cout << "\nreached the end of the list." << endl; * build_list ( * mechatronic) * p, *q; int r; cout << "Type the number of records you like to connect to the list: r = "; cin >> r; for (int i = 0; i < r; ++i) if (mechatronic) // Connect the record while (p) // Search the end of the list q = p; // q points to the last record p = p -> ; q -> = create(); // Add record else // Connect the first record MM1_ doc Page E-11 of 12 Rüdiger Siol

12 mechatronic = create(); return mechatronic; * create () * q; q = new ; if (!q) // In C: q = ( *) malloc (sizeof ()); cout << "Allocation Failure. \n"; return NULL; cout << "Name:\t\t\t"; cin >> q->myname; cout << "Registration:\t"; cin >> q->registration; q -> = NULL; return q; * delete_list ( * mechatronic) * p, *q; while (p) q = p; p = p-> ; return p; delete q; // In C: free(q); This example shows, we needed three modifications of the C-Version to come to a C++ version of the program. In C++ new and delete are operators but not functions! MM1_ doc Page E-12 of 12 Rüdiger Siol

Stack memory - "scratch pad" memory that is used by automatic variables.

Stack memory - scratch pad memory that is used by automatic variables. Dynamic Memory Allocation In C and C++ three types of memory are used by programs: Static memory - where global and static variables live Stack memory - "scratch pad" memory that is used by automatic variables.

More information

C++ For Science and Engineering Lecture 15

C++ For Science and Engineering Lecture 15 C++ For Science and Engineering Lecture 15 John Chrispell Tulane University Wednesday September 29, 2010 Function Review Recall the basics you already know about functions. Provide a function definition.

More information

Pointers, Dynamic Data, and Reference Types

Pointers, Dynamic Data, and Reference Types Pointers, Dynamic Data, and Reference Types Review on Pointers Reference Variables Dynamic Memory Allocation The new operator The delete operator Dynamic Memory Allocation for Arrays 1 C++ Data Types simple

More information

Dynamic Allocation of Memory

Dynamic Allocation of Memory Dynamic Allocation of Memory Lecture 4 Sections 10.9-10.10 Robb T. Koether Hampden-Sydney College Fri, Jan 25, 2013 Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Fri, Jan 25, 2013

More information

CS2141 Software Development using C/C++ C++ Basics

CS2141 Software Development using C/C++ C++ Basics CS2141 Software Development using C/C++ C++ Basics Integers Basic Types Can be short, long, or just plain int C++ does not define the size of them other than short

More information

Pointers II. Class 31

Pointers II. Class 31 Pointers II Class 31 Compile Time all of the variables we have seen so far have been declared at compile time they are written into the program code you can see by looking at the program how many variables

More information

CSC 270 Survey of Programming Languages. What is a Pointer?

CSC 270 Survey of Programming Languages. What is a Pointer? CSC 270 Survey of Programming Languages C Lecture 6 Pointers and Dynamic Arrays What is a Pointer? A pointer is the address in memory of a variable. We call it a pointer because we envision the address

More information

Actually, C provides another type of variable which allows us to do just that. These are called dynamic variables.

Actually, C provides another type of variable which allows us to do just that. These are called dynamic variables. When a program is run, memory space is immediately reserved for the variables defined in the program. This memory space is kept by the variables until the program terminates. These variables are called

More information

Introduction to C++ Professor Hugh C. Lauer CS-2303, System Programming Concepts

Introduction to C++ Professor Hugh C. Lauer CS-2303, System Programming Concepts Introduction to C++ Professor Hugh C. Lauer CS-2303, System Programming Concepts (Slides include materials from The C Programming Language, 2 nd edition, by Kernighan and Ritchie, Absolute C++, by Walter

More information

FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each):

FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): 1. If a function has default arguments, they can be located anywhere

More information

Pointers. Reference operator (&) ted = &andy;

Pointers. Reference operator (&)  ted = &andy; Pointers We have already seen how variables are seen as memory cells that can be accessed using their identifiers. This way we did not have to care about the physical location of our data within memory,

More information

Short Notes of CS201

Short Notes of CS201 #includes: Short Notes of CS201 The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with < and > if the file is a system

More information

Heap Arrays. Steven R. Bagley

Heap Arrays. Steven R. Bagley Heap Arrays Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index a[42] = 35; Variables and arrays have a type int, char, double,

More information

Heap Arrays and Linked Lists. Steven R. Bagley

Heap Arrays and Linked Lists. Steven R. Bagley Heap Arrays and Linked Lists Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index Variables and arrays have a type Create our

More information

CS201 - Introduction to Programming Glossary By

CS201 - Introduction to Programming Glossary By CS201 - Introduction to Programming Glossary By #include : The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

CS201- Introduction to Programming Current Quizzes

CS201- Introduction to Programming Current Quizzes CS201- Introduction to Programming Current Quizzes Q.1 char name [] = Hello World ; In the above statement, a memory of characters will be allocated 13 11 12 (Ans) Q.2 A function is a block of statements

More information

Pointers and Arrays CS 201. This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book.

Pointers and Arrays CS 201. This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book. Pointers and Arrays CS 201 This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book. Pointers Powerful but difficult to master Used to simulate pass-by-reference

More information

Pointers. Developed By Ms. K.M.Sanghavi

Pointers. Developed By Ms. K.M.Sanghavi Pointers Developed By Ms. K.M.Sanghavi Memory Management : Dynamic Pointers Linked List Example Smart Pointers Auto Pointer Unique Pointer Shared Pointer Weak Pointer Memory Management In order to create

More information

Homework #3 CS2255 Fall 2012

Homework #3 CS2255 Fall 2012 Homework #3 CS2255 Fall 2012 MULTIPLE CHOICE 1. The, also known as the address operator, returns the memory address of a variable. a. asterisk ( * ) b. ampersand ( & ) c. percent sign (%) d. exclamation

More information

[CSE10200] Programming Basis ( 프로그래밍기초 ) Chapter 9. Seungkyu Lee. Assistant Professor, Dept. of Computer Engineering Kyung Hee University

[CSE10200] Programming Basis ( 프로그래밍기초 ) Chapter 9. Seungkyu Lee. Assistant Professor, Dept. of Computer Engineering Kyung Hee University [CSE10200] Programming Basis ( 프로그래밍기초 ) Chapter 9 Seungkyu Lee Assistant Professor, Dept. of Computer Engineering Kyung Hee University CHAPTER 9 Pointers #1~2 Pointer int main () { int a; int b; int c;

More information

Lab 2: Pointers. //declare a pointer variable ptr1 pointing to x. //change the value of x to 10 through ptr1

Lab 2: Pointers. //declare a pointer variable ptr1 pointing to x. //change the value of x to 10 through ptr1 Lab 2: Pointers 1. Goals Further understanding of pointer variables Passing parameters to functions by address (pointers) and by references Creating and using dynamic arrays Combing pointers, structures

More information

cout << "How many numbers would you like to type? "; cin >> memsize; p = new int[memsize];

cout << How many numbers would you like to type? ; cin >> memsize; p = new int[memsize]; 1 C++ Dynamic Allocation Memory needs were determined before program execution by defining the variables needed. Sometime memory needs of a program can only be determined during runtime, or the memory

More information

CSC 211 Intermediate Programming. Arrays & Pointers

CSC 211 Intermediate Programming. Arrays & Pointers CSC 211 Intermediate Programming Arrays & Pointers 1 Definition An array a consecutive group of memory locations that all have the same name and the same type. To create an array we use a declaration statement.

More information

Chapter 6: User-Defined Functions. Objectives (cont d.) Objectives. Introduction. Predefined Functions 12/2/2016

Chapter 6: User-Defined Functions. Objectives (cont d.) Objectives. Introduction. Predefined Functions 12/2/2016 Chapter 6: User-Defined Functions Objectives In this chapter, you will: Learn about standard (predefined) functions Learn about user-defined functions Examine value-returning functions Construct and use

More information

FORM 2 (Please put your name and form # on the scantron!!!!)

FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam 2: FORM 2 (Please put your name and form # on the scantron!!!!) True (A)/False(B) (2 pts each): 1. Recursive algorithms tend to be less efficient than iterative algorithms. 2. A recursive function

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

Chapter 15 - C++ As A "Better C"

Chapter 15 - C++ As A Better C Chapter 15 - C++ As A "Better C" Outline 15.1 Introduction 15.2 C++ 15.3 A Simple Program: Adding Two Integers 15.4 C++ Standard Library 15.5 Header Files 15.6 Inline Functions 15.7 References and Reference

More information

FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam II:

FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam II: FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): 1. The declaration below declares three pointer variables of type pointer to double that is

More information

Character Strings. String-copy Example

Character Strings. String-copy Example Character Strings No operations for string as a unit A string is just an array of char terminated by the null character \0 The null character makes it easy for programs to detect the end char s[] = "0123456789";

More information

Understanding Pointers

Understanding Pointers Division of Mathematics and Computer Science Maryville College Pointers and Addresses Memory is organized into a big array. Every data item occupies one or more cells. A pointer stores an address. A pointer

More information

Exam 3 Chapters 7 & 9

Exam 3 Chapters 7 & 9 Exam 3 Chapters 7 & 9 CSC 2100-002/003 29 Mar 2017 Read through the entire test first BEFORE starting Put your name at the TOP of every page The test has 4 sections worth a total of 100 points o True/False

More information

Basic memory model Using functions Writing functions. Basics Prototypes Parameters Return types Functions and memory Names and namespaces

Basic memory model Using functions Writing functions. Basics Prototypes Parameters Return types Functions and memory Names and namespaces Basic memory model Using functions Writing functions Basics Prototypes Parameters Return types Functions and memory Names and namespaces When a program runs it requires main memory (RAM) space for Program

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Linked List using a Sentinel

Linked List using a Sentinel Linked List using a Sentinel Linked List.h / Linked List.h Using a sentinel for search Created by Enoch Hwang on 2/1/10. Copyright 2010 La Sierra University. All rights reserved. / #include

More information

Basic program The following is a basic program in C++; Basic C++ Source Code Compiler Object Code Linker (with libraries) Executable

Basic program The following is a basic program in C++; Basic C++ Source Code Compiler Object Code Linker (with libraries) Executable Basic C++ Overview C++ is a version of the older C programming language. This is a language that is used for a wide variety of applications and which has a mature base of compilers and libraries. C++ is

More information

CS2255 HOMEWORK #1 Fall 2012

CS2255 HOMEWORK #1 Fall 2012 CS55 HOMEWORK #1 Fall 01 1.What is assigned to the variable a given the statement below with the following assumptions: x = 10, y = 7, and z, a, and b are all int variables. a = x >= y; a. 10 b. 7 c. The

More information

THE GOOD, BAD AND UGLY ABOUT POINTERS. Problem Solving with Computers-I

THE GOOD, BAD AND UGLY ABOUT POINTERS. Problem Solving with Computers-I THE GOOD, BAD AND UGLY ABOUT POINTERS Problem Solving with Computers-I The good: Pointers pass data around efficiently Pointers and arrays 100 104 108 112 116 ar 20 30 50 80 90 ar is like a pointer to

More information

PIC 10A Pointers, Arrays, and Dynamic Memory Allocation. Ernest Ryu UCLA Mathematics

PIC 10A Pointers, Arrays, and Dynamic Memory Allocation. Ernest Ryu UCLA Mathematics PIC 10A Pointers, Arrays, and Dynamic Memory Allocation Ernest Ryu UCLA Mathematics Pointers A variable is stored somewhere in memory. The address-of operator & returns the memory address of the variable.

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

Fast Introduction to Object Oriented Programming and C++

Fast Introduction to Object Oriented Programming and C++ Fast Introduction to Object Oriented Programming and C++ Daniel G. Aliaga Note: a compilation of slides from Jacques de Wet, Ohio State University, Chad Willwerth, and Daniel Aliaga. Outline Programming

More information

CA341 - Comparative Programming Languages

CA341 - Comparative Programming Languages CA341 - Comparative Programming Languages David Sinclair Dynamic Data Structures Generally we do not know how much data a program will have to process. There are 2 ways to handle this: Create a fixed data

More information

cast.c /* Program illustrates the use of a cast to coerce a function argument to be of the correct form. */

cast.c /* Program illustrates the use of a cast to coerce a function argument to be of the correct form. */ cast.c /* Program illustrates the use of a cast to coerce a function argument to be of the correct form. */ #include #include /* The above include is present so that the return type

More information

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples:

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples: 1 Programming in C Pointer Variable A variable that stores a memory address Allows C programs to simulate call-by-reference Allows a programmer to create and manipulate dynamic data structures Must be

More information

Outline. 1 About the course

Outline. 1 About the course Outline EDAF50 C++ Programming 1. Introduction 1 About the course Sven Gestegård Robertz Computer Science, LTH 2018 2 Presentation of C++ History Introduction Data types and variables 1. Introduction 2/1

More information

A brief introduction to C programming for Java programmers

A brief introduction to C programming for Java programmers A brief introduction to C programming for Java programmers Sven Gestegård Robertz September 2017 There are many similarities between Java and C. The syntax in Java is basically

More information

Run Time Environment

Run Time Environment CS 403 Compiler Construction Lecture 12 Run Time Environment and Management [Based on Chapter 7 of Aho2] 1 Run Time Environment From Lecture 1 to 11, we have seen many jobs that are done by a compiler.

More information

Dynamic memory. EECS 211 Winter 2019

Dynamic memory. EECS 211 Winter 2019 Dynamic memory EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/06dynamic.tgz tar zx $ cd 06dynamic 3 Oops! I made a mistake. In C, the declaration struct circle read_circle();

More information

Bruce Merry. IOI Training Dec 2013

Bruce Merry. IOI Training Dec 2013 IOI Training Dec 2013 Outline 1 2 3 Outline 1 2 3 You can check that something is true using assert: #include int main() { assert(1 == 2); } Output: test_assert: test_assert.cpp:4: int main():

More information

CS349/SE382 A1 C Programming Tutorial

CS349/SE382 A1 C Programming Tutorial CS349/SE382 A1 C Programming Tutorial Erin Lester January 2005 Outline Comments Variable Declarations Objects Dynamic Memory Boolean Type structs, enums and unions Other Differences The Event Loop Comments

More information

BEng (Hons) Electronic Engineering. Resit Examinations for / Semester 1

BEng (Hons) Electronic Engineering. Resit Examinations for / Semester 1 BEng (Hons) Electronic Engineering Cohort: BEE/10B/FT Resit Examinations for 2016-2017 / Semester 1 MODULE: Programming for Engineers MODULE CODE: PROG1114 Duration: 3 Hours Instructions to Candidates:

More information

Programming in C++: Assignment Week 2

Programming in C++: Assignment Week 2 Programming in C++: Assignment Week 2 Total Marks : 20 Each question carries one mark Right hand side of each question shows its Type (MCQ/MSQ) March 3, 2017 Question 1 Look at the code snippet below:

More information

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 19 Introduction to C++

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 19 Introduction to C++ CSE 374 Programming Concepts & Tools Hal Perkins Fall 2015 Lecture 19 Introduction to C++ C++ C++ is an enormous language: All of C Classes and objects (kind of like Java, some crucial differences) Many

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

C Legacy Code Topics. Objectives. In this appendix you ll:

C Legacy Code Topics. Objectives. In this appendix you ll: cppfp2_appf_legacycode.fm Page 1 Monday, March 25, 2013 3:44 PM F C Legacy Code Topics Objectives In this appendix you ll: Redirect keyboard input to come from a file and redirect screen output to a file.

More information

Functions in C++ Problem-Solving Procedure With Modular Design C ++ Function Definition: a single

Functions in C++ Problem-Solving Procedure With Modular Design C ++ Function Definition: a single Functions in C++ Problem-Solving Procedure With Modular Design: Program development steps: Analyze the problem Develop a solution Code the solution Test/Debug the program C ++ Function Definition: A module

More information

Introduction to C++ Systems Programming

Introduction to C++ Systems Programming Introduction to C++ Systems Programming Introduction to C++ Syntax differences between C and C++ A Simple C++ Example C++ Input/Output C++ Libraries C++ Header Files Another Simple C++ Example Inline Functions

More information

Non-numeric types, boolean types, arithmetic. operators. Comp Sci 1570 Introduction to C++ Non-numeric types. const. Reserved words.

Non-numeric types, boolean types, arithmetic. operators. Comp Sci 1570 Introduction to C++ Non-numeric types. const. Reserved words. , ean, arithmetic s s on acters Comp Sci 1570 Introduction to C++ Outline s s on acters 1 2 3 4 s s on acters Outline s s on acters 1 2 3 4 s s on acters ASCII s s on acters ASCII s s on acters Type: acter

More information

Interview Questions of C++

Interview Questions of C++ Interview Questions of C++ Q-1 What is the full form of OOPS? Ans: Object Oriented Programming System. Q-2 What is a class? Ans: Class is a blue print which reflects the entities attributes and actions.

More information

Dynamic Allocation of Memory

Dynamic Allocation of Memory Dynamic Allocation of Memory Lecture 5 Section 9.8 Robb T. Koether Hampden-Sydney College Wed, Jan 24, 2018 Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Wed, Jan 24, 2018 1 / 34

More information

AN OVERVIEW OF C++ 1

AN OVERVIEW OF C++ 1 AN OVERVIEW OF C++ 1 OBJECTIVES Introduction What is object-oriented programming? Two versions of C++ C++ console I/O C++ comments Classes: A first look Some differences between C and C++ Introducing function

More information

Programming in C/C Lecture 2

Programming in C/C Lecture 2 Programming in C/C++ 2005-2006 Lecture 2 http://few.vu.nl/~nsilvis/c++/2006 Natalia Silvis-Cividjian e-mail: nsilvis@few.vu.nl vrije Universiteit amsterdam News Check announcements on the C/C++ website

More information

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor CS 261 Fall 2017 Mike Lam, Professor C Introduction Variables, Memory Model, Pointers, and Debugging The C Language Systems language originally developed for Unix Imperative, compiled language with static

More information

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS Pages 792 to 800 Anna Rakitianskaia, University of Pretoria INITIALISING POINTER VARIABLES Pointer variables are declared by putting

More information

CS 222: Pointers and Manual Memory Management

CS 222: Pointers and Manual Memory Management CS 222: Pointers and Manual Memory Management Chris Kauffman Week 4-1 Logistics Reading Ch 8 (pointers) Review 6-7 as well Exam 1 Back Today Get it in class or during office hours later HW 3 due tonight

More information

Contents of Lecture 3

Contents of Lecture 3 Contents of Lecture 3 Repetition of matrices double a[3][4]; double* b; double** c; Terminology Linkage Types Conversions Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 1 / 33 A global matrix: double a[3][4]

More information

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures The main body and cout Agenda 1 Fundamental data types Declarations and definitions Control structures References, pass-by-value vs pass-by-references The main body and cout 2 C++ IS AN OO EXTENSION OF

More information

Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CMPSC11 Final (Study Guide) Fall 11 Prof Hartman Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is a collection of statements that performs

More information

C++ PROGRAMMING LANGUAGE: DYNAMIC MEMORY ALLOCATION AND EXCEPTION IN C++. CAAM 519, CHAPTER 15

C++ PROGRAMMING LANGUAGE: DYNAMIC MEMORY ALLOCATION AND EXCEPTION IN C++. CAAM 519, CHAPTER 15 C++ PROGRAMMING LANGUAGE: DYNAMIC MEMORY ALLOCATION AND EXCEPTION IN C++. CAAM 519, CHAPTER 15 This chapter introduces the notion of dynamic memory allocation of variables and objects in a C++ program.

More information

CSE 303: Concepts and Tools for Software Development

CSE 303: Concepts and Tools for Software Development CSE 303: Concepts and Tools for Software Development Hal Perkins Autumn 2008 Lecture 24 Introduction to C++ CSE303 Autumn 2008, Lecture 24 1 C++ C++ is an enormous language: All of C Classes and objects

More information

FORM 1 (Please put your name and form # on the scantron!!!!) CS 161 Exam I: True (A)/False(B) (2 pts each):

FORM 1 (Please put your name and form # on the scantron!!!!) CS 161 Exam I: True (A)/False(B) (2 pts each): FORM 1 (Please put your name and form # on the scantron!!!!) CS 161 Exam I: True (A)/False(B) (2 pts each): 1. The basic commands that a computer performs are input (get data), output (display result),

More information

5. Assuming gooddata is a Boolean variable, the following two tests are logically equivalent. if (gooddata == false) if (!

5. Assuming gooddata is a Boolean variable, the following two tests are logically equivalent. if (gooddata == false) if (! FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam I: True (A)/False(B) (2 pts each): 1. Assume that all variables are properly declared. The following for loop executes 20 times.

More information

CS 376b Computer Vision

CS 376b Computer Vision CS 376b Computer Vision 09 / 25 / 2014 Instructor: Michael Eckmann Today s Topics Questions? / Comments? Enhancing images / masks Cross correlation Convolution C++ Cross-correlation Cross-correlation involves

More information

At this time we have all the pieces necessary to allocate memory for an array dynamically. Following our example, we allocate N integers as follows:

At this time we have all the pieces necessary to allocate memory for an array dynamically. Following our example, we allocate N integers as follows: Pointers and Arrays Part II We will continue with our discussion on the relationship between pointers and arrays, and in particular, discuss how arrays with dynamical length can be created at run-time

More information

Introduction to C++ Introduction to C++ 1

Introduction to C++ Introduction to C++ 1 1 What Is C++? (Mostly) an extension of C to include: Classes Templates Inheritance and Multiple Inheritance Function and Operator Overloading New (and better) Standard Library References and Reference

More information

Pointers and References

Pointers and References Steven Zeil October 2, 2013 Contents 1 References 2 2 Pointers 8 21 Working with Pointers 8 211 Memory and C++ Programs 11 212 Allocating Data 15 22 Pointers Can Be Dangerous 17 3 The Secret World of Pointers

More information

However, in C we can group related variables together into something called a struct.

However, in C we can group related variables together into something called a struct. CIT 593: Intro to Computer Systems Lecture #21 (11/27/12) Structs Unlike Java, C++, and to some extent Python, C is not traditionally considered an objectoriented language. That is, there is no concept

More information

Chapter 2. Procedural Programming

Chapter 2. Procedural Programming Chapter 2 Procedural Programming 2: Preview Basic concepts that are similar in both Java and C++, including: standard data types control structures I/O functions Dynamic memory management, and some basic

More information

CSCI 104 Memory Allocation. Mark Redekopp David Kempe

CSCI 104 Memory Allocation. Mark Redekopp David Kempe CSCI 104 Memory Allocation Mark Redekopp David Kempe VARIABLES & SCOPE 2 A Program View of Memory Code usually sits at low addresses Global variables somewhere after code System stack (memory for each

More information

Advanced Programming

Advanced Programming Advanced Programming Memory Management The Heap Dr. Miri (Kopel) Ben-Nissan Bar-Ilan University 2016 1 The Traditional Heap Manager The standard C library routines for allocating and freeing memory are

More information

Functions, Arrays & Structs

Functions, Arrays & Structs Functions, Arrays & Structs Unit 1 Chapters 6-7, 11 Function Definitions! Function definition pattern: datatype identifier (parameter1, parameter2,...) { statements... Where a parameter is: datatype identifier

More information

Object Reference and Memory Allocation. Questions:

Object Reference and Memory Allocation. Questions: Object Reference and Memory Allocation Questions: 1 1. What is the difference between the following declarations? const T* p; T* const p = new T(..constructor args..); 2 2. Is the following C++ syntax

More information

Dynamic Data Structures. CSCI 112: Programming in C

Dynamic Data Structures. CSCI 112: Programming in C Dynamic Data Structures CSCI 112: Programming in C 1 It s all about flexibility In the programs we ve made so far, the compiler knows at compile time exactly how much memory to allocate for each variable

More information

Pointers and Arrays. Introduction To Pointers. Using The "Address Of" The Operator & Operator. Using The Dereference. The Operator * Operator

Pointers and Arrays. Introduction To Pointers. Using The Address Of The Operator & Operator. Using The Dereference. The Operator * Operator Introduction To Pointers Pointers and Arrays For : COP 3330. Object oriented Programming (Using C++) http://www.compgeom.com/~piyush/teach/3330 A pointer in C++ holds the value of a memory address A pointer's

More information

POINTERS - Pointer is a variable that holds a memory address of another variable of same type. - It supports dynamic allocation routines. - It can improve the efficiency of certain routines. C++ Memory

More information

Input And Output of C++

Input And Output of C++ Input And Output of C++ Input And Output of C++ Seperating Lines of Output New lines in output Recall: "\n" "newline" A second method: object endl Examples: cout

More information

Ch. 17: Linked Lists. Introduction to Linked Lists

Ch. 17: Linked Lists. Introduction to Linked Lists Ch. 17: Linked Lists Part 1 CS 2308 Fall 2011 Jill Seaman Lecture 16 Using content from textbook slides: Starting Out with C++, Gaddis, Pearson/Addison-Wesley 1 Introduction to Linked Lists A data structure

More information

Chapter 9: Pointers Co C pyr py igh i t gh Pear ea so s n n E ducat ca io i n, n Inc. n c.

Chapter 9: Pointers Co C pyr py igh i t gh Pear ea so s n n E ducat ca io i n, n Inc. n c. Chapter 9: Pointers 9.1 Getting the Address of a Variable C++ Variables [ not in book ] A Variable has all of the following attributes: 1. name 2. type 3. size 4. value 5. storage class static or automatic

More information

Computer Programming

Computer Programming Computer Programming Dr. Deepak B Phatak Dr. Supratik Chakraborty Department of Computer Science and Engineering Session: Programming using Structures Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, 1

More information

COMP26120: Linked List in C (2018/19) Lucas Cordeiro

COMP26120: Linked List in C (2018/19) Lucas Cordeiro COMP26120: Linked List in C (2018/19) Lucas Cordeiro lucas.cordeiro@manchester.ac.uk Linked List Lucas Cordeiro (Formal Methods Group) lucas.cordeiro@manchester.ac.uk Office: 2.28 Office hours: 10-11 Tuesday,

More information

Name. CPTR246 Spring '17 (100 total points) Exam 2

Name. CPTR246 Spring '17 (100 total points) Exam 2 Name CPTR246 Spring '17 (100 total points) Exam 2 1. Pointer parameters (the old C way) In the following program, make all of the changes to convert the call-by-reference parameters in the function computeoptions

More information

Homework Assignment #2 (revised)

Homework Assignment #2 (revised) CISC 2000 Computer Science II Fall, 2018 1 Recall the following functions and operators: Homework Assignment #2 (revised) sizeof function: returns the size of a variable (i.e., the number of bytes used

More information

CSE 374 Programming Concepts & Tools. Hal Perkins Spring 2010

CSE 374 Programming Concepts & Tools. Hal Perkins Spring 2010 CSE 374 Programming Concepts & Tools Hal Perkins Spring 2010 Lecture 19 Introduction ti to C++ C++ C++ is an enormous language: g All of C Classes and objects (kind of like Java, some crucial differences)

More information

QUIZ. 1. Explain the meaning of the angle brackets in the declaration of v below:

QUIZ. 1. Explain the meaning of the angle brackets in the declaration of v below: QUIZ 1. Explain the meaning of the angle brackets in the declaration of v below: This is a template, used for generic programming! QUIZ 2. Why is the vector class called a container? 3. Explain how the

More information

2. First Program Stuff

2. First Program Stuff CSE 232 First Midterm, Overview: 1. Getting Started 1. we got started 2. First Program Stuff 1. Compiler vs. Intepreter a. do you know all the steps to create an executable? 2. Variables are declared a.

More information

pointers + memory double x; string a; int x; main overhead int y; main overhead

pointers + memory double x; string a; int x; main overhead int y; main overhead pointers + memory computer have memory to store data. every program gets a piece of it to use as we create and use more variables, more space is allocated to a program memory int x; double x; string a;

More information

Lab Instructor : Jean Lai

Lab Instructor : Jean Lai Lab Instructor : Jean Lai Group related statements to perform a specific task. Structure the program (No duplicate codes!) Must be declared before used. Can be invoked (called) as any number of times.

More information

School of Information Technology and Computer Science CSCI192 - Spring Session Revision

School of Information Technology and Computer Science CSCI192 - Spring Session Revision School of Information Technology and Computer Science CSCI192 - Spring Session Revision Aim: Revision 1. Covert 0x27 from hexadecimal into 8-bit binary value 00100111 2. Convert 00110110 8-bit binary value

More information

21. Exceptions. Advanced Concepts: // exceptions #include <iostream> using namespace std;

21. Exceptions. Advanced Concepts: // exceptions #include <iostream> using namespace std; - 147 - Advanced Concepts: 21. Exceptions Exceptions provide a way to react to exceptional circumstances (like runtime errors) in our program by transferring control to special functions called handlers.

More information

Why VC++ instead of Dev C++?

Why VC++ instead of Dev C++? Why VC++ instead of Dev C++? I love UNIX! I am proficient in UNIX! I like public domain open source software. I love GPL. I was more confident in GCC than in Microsoft C. But! The software business has

More information