Program threaded-fft-mutex.cc

Size: px
Start display at page:

Download "Program threaded-fft-mutex.cc"

Transcription

1 1 // 2D FFT Using threads 2 // George F. Riley, Georgia Tech, Fall // This illustrates how a mutex would be implemented (both a "buggy" version 4 // and a good one). 5 6 #include <iostream> 7 8 #include "pthread.h" 9 #include "math.h" 10 #include <sys/time.h> #include "complex.h" 13 #include "InputImage.h" using namespace std; // This uses the Intel "Atomic Exchange" to help with mutex locking 18 uint32_t atomic_xchg32(volatile uint32_t *mem, uint32_t val) 19 { 20 uint32_t prev = val; asm volatile ("lock; xchgl %0, %1" 23 : "=r" (prev) 24 : "m" (*(mem)), "0"(prev) 25 : "memory"); 26 return prev; 27 } class BuggyMutex { 30 public: 31 BuggyMutex(); 32 void Lock(); // Lock the mutex 33 void UnLock(); // UnLock the mutex 34 private: // True if locked 35 bool locked; 36 }; BuggyMutex::BuggyMutex() 39 : locked(false) 40 { // Mutex is initially not locked 41 } void BuggyMutex::Lock() 44 { // This is buggy! Why? 45 // See if another thread has the mutex locked. If so, just "spin" 46 while(locked) 47 { // Do nothing.. THis is called "spinning" 48 } 49 // Lock is free, lock it and exit 50 locked = true; 51 } void BuggyMutex::UnLock() 54 { // Free the mutex 55 locked = false; 56 } Program threaded-fft-mutex.cc 1

2 57 58 class GoodMutex { 59 public: 60 GoodMutex(); 61 void Lock(); // Lock the mutex 62 void UnLock(); // UnLock the mutex 63 private: // True if locked 64 bool locked; 65 }; GoodMutex::GoodMutex() 68 : locked(false) 69 { // Mutex is initially not locked 70 } void GoodMutex::Lock() 73 { 74 // Use the atomic exchange to implement the locked flag 75 while(atomic_xchg32((uint32_t*)&locked, true)) 76 { // Another thread has the lock, do nothing. This is called "spinning" 77 } 78 // Lock is set true by atomic exchange, so nothing more needed 79 } void GoodMutex::UnLock() 82 { // Free the mutex 83 locked = false; 84 } // We use global variables in lieu of member variables for this example 87 Complex** h; // Points to the 2D array of complex (the input) 88 Complex* W; // Weights (computed once in main 89 unsigned N; // Number of elements (both width and height) 90 unsigned nthreads; // Desired number of threads 91 unsigned activecount = 0; // Number of active threads // pthread variables 94 // We will replace the activemutex and coutmutex with our 95 // two implementations to observe effects. We can t replace the exit mutex 96 // since it is needed for the condition variable (which we did not 97 // implement a replacement for. 98 BuggyMutex activemutex; 99 //GoodMutex activemutex; 100 pthread_mutex_t exitmutex; 101 pthread_cond_t exitcondition; 102 BuggyMutex coutmutex; 103 //GoodMutex coutmutex; // Add a verbose flag to turn on/off extra outputs 106 bool verbose = false; // Helper routines 109 void DumpTransformedValues() 110 { // Code omitted for brevity 111 } 112 2

3 113 void TransposeInPlace(Complex** m, int wh) 114 { // code omitted for brevity 115 } void LoadWeights() 119 { // Compute the needed W values. Omitted for brevity 120 } void Transform1D(Complex* h) 123 { // The simple 1D transform we did earlier. Code omitted for brevity 124 } 3

4 125 void* FFT_Thread(void* v) 126 { 127 unsigned long myid = (unsigned long)v; // My thread number 128 unsigned rowspercpu = N / nthreads; 129 unsigned myfirstrow = myid * rowspercpu; 130 // We have to do a mutex around the "activecount++". Why? 131 activemutex.lock(); 132 activecount++; 133 activemutex.unlock(); 134 if (verbose) 135 { 136 coutmutex.lock(); 137 cout << "MyId is " << myid << " myfirstrow " << myfirstrow << endl; 138 coutmutex.unlock(); 139 } 140 // Call the 1D FFT on each row 141 for (unsigned i = 0; i < rowspercpu; ++i) 142 { 143 Transform1D(h[myFirstRow + i]); 144 } 145 // Now notify the main thread we have completed the rows 146 pthread_mutex_lock(&exitmutex); // Insure only one thread signals the exit 147 activemutex.lock(); // Insure only one thread changes active 148 activecount--; 149 activemutex.unlock(); 150 // Don t need cout mutex here. Why? 151 cout << "Thread " << myid << " exited, activecount " << activecount << endl; 152 if (activecount == 0) 153 { // We are the last thread to exit. Signal the main thread 154 // that all threads are done 155 pthread_cond_signal(&exitcondition); 156 } 157 pthread_mutex_unlock(&exitmutex); 158 return 0; 159 } 4

5 160 int main( int argc, char** argv) 161 { 162 verbose = argc > 3; 163 InputImage image(argv[1]); 164 nthreads = atol(argv[2]); // Number of threads 165 N = image.getheight(); // Assume square, width = height 166 h = image.getrows(0, N); // In this case, we get all rows // Start the timer here, after loading the image 169 struct timeval tp; 170 gettimeofday(&tp, 0); 171 double startsec = tp.tv_sec + tp.tv_usec/ ; LoadWeights(); // Only need to do this once // Initialize the pthread mutex and condition variables 176 // The buggymutex variables are initialized in constructor 177 pthread_mutex_init(&exitmutex, 0); 178 pthread_cond_init(&exitcondition, 0); // We lock the exitmutex to be sure no threads exit until 181 // all threads created, and we are waiting on the condition signal 182 pthread_mutex_lock(&exitmutex); 183 // Create the threads 184 for (unsigned i = 0; i < nthreads; ++i) 185 { 186 pthread_t t; 187 pthread_create(&t, 0, FFT_Thread, (void*)i); 188 } 189 // Now wait for them to finish pass pthread_cond_wait(&exitcondition, &exitmutex); 191 if (verbose) cout << "All threads finished pass 1" << endl; // Transpose the matrix and schedule threads to do rows again 194 TransposeInPlace(h, N); 195 // Start the threads again 196 for (unsigned i = 0; i < nthreads; ++i) 197 { 198 pthread_t t; 199 pthread_create(&t, 0, FFT_Thread, (void*)i); 200 } 201 // Now wait for them to finish pass pthread_cond_wait(&exitcondition, &exitmutex); 203 if (verbose) cout << "All threads finished pass 2" << endl; // Transpose back and write results 206 TransposeInPlace(h, N); 207 gettimeofday(&tp, 0); 208 cout << "Calculated FFT " 209 << (tp.tv_sec+tp.tv_usec/ ) - startsec << " seconds" << endl; 210 DumpTransformedValues(); 211 } 212 5

Program threaded-fft-bakery.cc

Program threaded-fft-bakery.cc 1 // 2D FFT Using threads 2 // George F. Riley, Georgia Tech, Fall 2009 3 // This illustrates how a mutex would be implemented using Leslie Lamport s 4 // "Bakery Algorithm". This algorithm implements

More information

Linked List using a Sentinel

Linked List using a Sentinel Linked List using a Sentinel Linked List.h / Linked List.h Using a sentinel for search Created by Enoch Hwang on 2/1/10. Copyright 2010 La Sierra University. All rights reserved. / #include

More information

Program template-smart-pointers-again.cc

Program template-smart-pointers-again.cc 1 // Illustrate the smart pointer approach using Templates 2 // George F. Riley, Georgia Tech, Spring 2012 3 // This is nearly identical to the earlier handout on smart pointers 4 // but uses a different

More information

Threads CS1372. Lecture 13. CS1372 Threads Fall / 10

Threads CS1372. Lecture 13. CS1372 Threads Fall / 10 Threads CS1372 Lecture 13 CS1372 Threads Fall 2008 1 / 10 Threads 1 In order to implement concurrent algorithms, such as the parallel bubble sort discussed previously, we need some way to say that we want

More information

Program template-smart-pointers.cc

Program template-smart-pointers.cc 1 // Illustrate the smart pointer approach using Templates 2 // George F. Riley, Georgia Tech, Spring 2012 3 4 #include 5 #include 6 7 using namespace std; 8 9 // The Ptr class contains

More information

Threads. Threads (continued)

Threads. Threads (continued) Threads A thread is an alternative model of program execution A process creates a thread through a system call Thread operates within process context Use of threads effectively splits the process state

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

CS 6400 Lecture 11 Name:

CS 6400 Lecture 11 Name: Readers and Writers Example - Granularity Issues. Multiple concurrent readers, but exclusive access for writers. Original Textbook code with ERRORS - What are they? Lecture 11 Page 1 Corrected Textbook

More information

CSE 333 Section 9 - pthreads

CSE 333 Section 9 - pthreads CSE 333 Section 9 - pthreads Welcome back to section! We re glad that you re here :) Process A process has a virtual address space. Each process is started with a single thread, but can create additional

More information

Threaded Programming. Lecture 9: Alternatives to OpenMP

Threaded Programming. Lecture 9: Alternatives to OpenMP Threaded Programming Lecture 9: Alternatives to OpenMP What s wrong with OpenMP? OpenMP is designed for programs where you want a fixed number of threads, and you always want the threads to be consuming

More information

CS 3305 Intro to Threads. Lecture 6

CS 3305 Intro to Threads. Lecture 6 CS 3305 Intro to Threads Lecture 6 Introduction Multiple applications run concurrently! This means that there are multiple processes running on a computer Introduction Applications often need to perform

More information

Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A

Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A Name: ID#: Section #: Day & Time: Instructor: Answer all questions as indicated. Closed book/closed

More information

There are, of course, many other possible solutions and, if done correctly, those received full credit.

There are, of course, many other possible solutions and, if done correctly, those received full credit. Question 1. (20 points) STL. Complete the function ChangeWords below. This function has as inputs a vector of strings, and a map of key-value pairs. The function should return a new vector

More information

Operating systems. Lecture 10

Operating systems. Lecture 10 Operating systems. Lecture 10 Michał Goliński 2018-12-04 Introduction Recall fork one more example allocating memory system and library calls signals Plan for today Threads pthreads Threads in the standard

More information

POSIX Threads. HUJI Spring 2011

POSIX Threads. HUJI Spring 2011 POSIX Threads HUJI Spring 2011 Why Threads The primary motivation for using threads is to realize potential program performance gains and structuring. Overlapping CPU work with I/O. Priority/real-time

More information

typedef Labeling<unsigned char,short> LabelingBS; typedef Labeling<unsigned char,short>::regioninfo RegionInfoBS;

typedef Labeling<unsigned char,short> LabelingBS; typedef Labeling<unsigned char,short>::regioninfo RegionInfoBS; 2005 7 19 1 ( ) Labeling 2 C++ STL(Standard Template Library) g++ (GCC) 3.3.2 3 3.1 Labeling SrcT DstT SrcT: unsigned char, shoft DstT: short typedef 1. unsigned char, short typedef Labeling

More information

C++11 threads -- a simpler interface than pthreads Examples largely taken from https://latedev.wordpress.com/ 013/02/24/investigating-c11-threads/

C++11 threads -- a simpler interface than pthreads Examples largely taken from https://latedev.wordpress.com/ 013/02/24/investigating-c11-threads/ C++11 threads -- a simpler interface than pthreads Examples largely taken from https://latedev.wordpress.com/ 013/02/24/investigating-c11-threads/ #include #include using namespace

More information

Program des-simple3.cc

Program des-simple3.cc 1 // A simple trivial Discrete Event Simulator to illustrate DES concepts 2 // This one uses typesafe callbacks for the event handlers. 3 4 // George F. Riley, Georgia Tech, Fall 2011 ECE8893 5 6 #include

More information

CS2141 Software Development using C/C++ C++ Basics

CS2141 Software Development using C/C++ C++ Basics CS2141 Software Development using C/C++ C++ Basics Integers Basic Types Can be short, long, or just plain int C++ does not define the size of them other than short

More information

CSE 333 Final Exam June 8, 2016 Sample Solution

CSE 333 Final Exam June 8, 2016 Sample Solution Question 1. (18 points) A bit of C++ coding. In this problem we would like to implement parts of an inverted document index related to, but (much) simpler than, the project code we built this quarter.

More information

Shared memory parallel computing

Shared memory parallel computing Shared memory parallel computing OpenMP Sean Stijven Przemyslaw Klosiewicz Shared-mem. programming API for SMP machines Introduced in 1997 by the OpenMP Architecture Review Board! More high-level than

More information

CSE 333 Final Exam June 6, 2017 Sample Solution

CSE 333 Final Exam June 6, 2017 Sample Solution Question 1. (24 points) Some C and POSIX I/O programming. Given an int file descriptor returned by open(), write a C function ReadFile that reads the entire file designated by that file descriptor and

More information

Thread Posix: Condition Variables Algoritmi, Strutture Dati e Calcolo Parallelo. Daniele Loiacono

Thread Posix: Condition Variables Algoritmi, Strutture Dati e Calcolo Parallelo. Daniele Loiacono Thread Posix: Condition Variables Algoritmi, Strutture Dati e Calcolo Parallelo References The material in this set of slide is taken from two tutorials by Blaise Barney from the Lawrence Livermore National

More information

First Exam name: John Franco

First Exam name: John Franco 20-EECE-4029 Operating Systems Fall, 2012 John Franco First Exam name: John Franco Question 1: Semaphores What is the expected output of the following? sem_t g[6]; void Q () { sem_wait(&g[5]); sem_post(&g[5]);

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst What is a Monitor? Ties data and the synchronization operations together Monitors guarantee mutual exclusion, i.e.,

More information

Locks and semaphores. Johan Montelius KTH

Locks and semaphores. Johan Montelius KTH Locks and semaphores Johan Montelius KTH 2018 1 / 40 recap, what s the problem : # include < pthread.h> volatile int count = 0; void * hello ( void * arg ) { for ( int i = 0; i < 10; i ++) { count ++;

More information

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures The main body and cout Agenda 1 Fundamental data types Declarations and definitions Control structures References, pass-by-value vs pass-by-references The main body and cout 2 C++ IS AN OO EXTENSION OF

More information

CS-345 Operating Systems. Tutorial 2: Grocer-Client Threads, Shared Memory, Synchronization

CS-345 Operating Systems. Tutorial 2: Grocer-Client Threads, Shared Memory, Synchronization CS-345 Operating Systems Tutorial 2: Grocer-Client Threads, Shared Memory, Synchronization Threads A thread is a lightweight process A thread exists within a process and uses the process resources. It

More information

Programming. C++ Basics

Programming. C++ Basics Programming C++ Basics Introduction to C++ C is a programming language developed in the 1970s with the UNIX operating system C programs are efficient and portable across different hardware platforms C++

More information

CS 376b Computer Vision

CS 376b Computer Vision CS 376b Computer Vision 09 / 25 / 2014 Instructor: Michael Eckmann Today s Topics Questions? / Comments? Enhancing images / masks Cross correlation Convolution C++ Cross-correlation Cross-correlation involves

More information

Operating Systems Course: Jacobs University Bremen Date: Dr. Jürgen Schönwälder Deadline:

Operating Systems Course: Jacobs University Bremen Date: Dr. Jürgen Schönwälder Deadline: Operating Systems Course: 320202 Jacobs University Bremen Date: 2011-02-23 Dr. Jürgen Schönwälder Deadline: 2011-02-28 Problem Sheet #2 Problem 2.1: home-made busy-waiting semaphore (2+3 = 5 points) In

More information

Lecture 19: Shared Memory & Synchronization

Lecture 19: Shared Memory & Synchronization Lecture 19: Shared Memory & Synchronization COMP 524 Programming Language Concepts Stephen Olivier April 16, 2009 Based on notes by A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts Forking int pid;

More information

CS 537 Lecture 11 Locks

CS 537 Lecture 11 Locks CS 537 Lecture 11 Locks Michael Swift 10/17/17 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 1 Concurrency: Locks Questions answered in this lecture: Review: Why threads

More information

The following program computes a Calculus value, the "trapezoidal approximation of

The following program computes a Calculus value, the trapezoidal approximation of Multicore machines and shared memory Multicore CPUs have more than one core processor that can execute instructions at the same time. The cores share main memory. In the next few activities, we will learn

More information

Modern C++ for Computer Vision and Image Processing. Igor Bogoslavskyi

Modern C++ for Computer Vision and Image Processing. Igor Bogoslavskyi Modern C++ for Computer Vision and Image Processing Igor Bogoslavskyi Outline Move semantics Classes Operator overloading Making your class copyable Making your class movable Rule of all or nothing Inheritance

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Synchronization: Basics 53: Introduction to Computer Systems 4 th Lecture, November 6, 7 Instructor: Randy Bryant Today Threads review Sharing Mutual exclusion Semaphores 3 Traditional View of a Process

More information

Process Synchronization (Part I)

Process Synchronization (Part I) Process Synchronization (Part I) Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Process Synchronization 1393/7/14 1 / 44 Motivation

More information

CS 153 Lab6. Kishore Kumar Pusukuri

CS 153 Lab6. Kishore Kumar Pusukuri Outline Mutex vs Condition Variables Unlocking and locking mutex leads spinning or polling, wastes CPU time. We could sleep for some amount of time, but we do not know how long to sleep. A mutex is for

More information

Increment and the While. Class 15

Increment and the While. Class 15 Increment and the While Class 15 Increment and Decrement Operators Increment and Decrement Increase or decrease a value by one, respectively. the most common operation in all of programming is to increment

More information

Synchronization: Basics

Synchronization: Basics Synchronization: Basics CS 485G6: Systems Programming Lecture 34: 5 Apr 6 Shared Variables in Threaded C Programs Question: Which variables in a threaded C program are shared? The answer is not as simple

More information

Threads need to synchronize their activities to effectively interact. This includes:

Threads need to synchronize their activities to effectively interact. This includes: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS Information and Computer Science Department ICS 431 Operating Systems Lab # 8 Threads Synchronization ( Mutex & Condition Variables ) Objective: When multiple

More information

CSE 160 Lecture 7. C++11 threads C++11 memory model

CSE 160 Lecture 7. C++11 threads C++11 memory model CSE 160 Lecture 7 C++11 threads C++11 memory model Today s lecture C++ threads The C++11 Memory model 2013 Scott B. Baden / CSE 160 / Winter 2013 2 C++11 Threads Via , C++ supports a threading

More information

Concurrency: Mutual Exclusion (Locks)

Concurrency: Mutual Exclusion (Locks) Concurrency: Mutual Exclusion (Locks) Questions Answered in this Lecture: What are locks and how do we implement them? How do we use hardware primitives (atomics) to support efficient locks? How do we

More information

Function Overloading

Function Overloading Function Overloading C++ supports writing more than one function with the same name but different argument lists How does the compiler know which one the programmer is calling? They have different signatures

More information

Distributed Programming

Distributed Programming Distributed Programming Lecture 02 - Processes, Threads and Synchronization Edirlei Soares de Lima Programs and Processes What is a computer program? Is a sequence

More information

Reading compiler errors

Reading compiler errors Reading compiler errors ls2.c:1: error: expected =,,, ;, asm or attribute before : token In file included from /usr/include/stdio.h:75, from ls2.c:12: /usr/include/libio.h:332: error: expected specifier-qualifier-list

More information

Lab Instructor : Jean Lai

Lab Instructor : Jean Lai Lab Instructor : Jean Lai Group related statements to perform a specific task. Structure the program (No duplicate codes!) Must be declared before used. Can be invoked (called) as any number of times.

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 1 Review: Sync Terminology Worksheet 2 Review: Semaphores 3 Semaphores o Motivation: Avoid busy waiting by blocking a process execution

More information

Condition Variables. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Condition Variables. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Condition Variables Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Exceptions, Case Study-Exception handling in C++.

Exceptions, Case Study-Exception handling in C++. PART III: Structuring of Computations- Structuring the computation, Expressions and statements, Conditional execution and iteration, Routines, Style issues: side effects and aliasing, Exceptions, Case

More information

Global variables and resources are shared between threads within the same process. Each thread has its own stack and program counter (see Fig 2-7).

Global variables and resources are shared between threads within the same process. Each thread has its own stack and program counter (see Fig 2-7). Threads One way to reduce context switch time is to run lightweight processes within the same address space. This abstraction is often called a thread. Look at Figure 2-6. Global variables and resources

More information

Cache Awareness. Course Level: CS1/CS2. PDC Concepts Covered: PDC Concept Locality False Sharing

Cache Awareness. Course Level: CS1/CS2. PDC Concepts Covered: PDC Concept Locality False Sharing Cache Awareness Course Level: CS1/CS PDC Concepts Covered: PDC Concept Locality False Sharing Bloom Level C C Programming Knowledge Prerequisites: Know how to compile Java/C++ Be able to understand loops

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

recap, what s the problem Locks and semaphores Total Store Order Peterson s algorithm Johan Montelius 0 0 a = 1 b = 1 read b read a

recap, what s the problem Locks and semaphores Total Store Order Peterson s algorithm Johan Montelius 0 0 a = 1 b = 1 read b read a recap, what s the problem Locks and semaphores Johan Montelius KTH 2017 # include < pthread.h> volatile int count = 0; void * hello ( void * arg ) { for ( int i = 0; i < 10; i ++) { count ++; int main

More information

Lecture 5 Threads and Pthreads II

Lecture 5 Threads and Pthreads II CSCI-GA.3033-017 Special Topics: Multicore Programming Lecture 5 Threads and Pthreads II Christopher Mitchell, Ph.D. cmitchell@cs.nyu.edu http://z80.me Context We re exploring the layers of an application

More information

Concurrency and Synchronization. ECE 650 Systems Programming & Engineering Duke University, Spring 2018

Concurrency and Synchronization. ECE 650 Systems Programming & Engineering Duke University, Spring 2018 Concurrency and Synchronization ECE 650 Systems Programming & Engineering Duke University, Spring 2018 Concurrency Multiprogramming Supported by most all current operating systems More than one unit of

More information

Solving a 2D Maze. const int WIDTH = 10; const int HEIGHT = 10;

Solving a 2D Maze. const int WIDTH = 10; const int HEIGHT = 10; Solving a 2D Maze Let s use a 2D array to represent a maze. Let s start with a 10x10 array of char. The array of char can hold either X for a wall, for a blank, and E for the exit. Initially we can hard-code

More information

Lab 2: Pointers. //declare a pointer variable ptr1 pointing to x. //change the value of x to 10 through ptr1

Lab 2: Pointers. //declare a pointer variable ptr1 pointing to x. //change the value of x to 10 through ptr1 Lab 2: Pointers 1. Goals Further understanding of pointer variables Passing parameters to functions by address (pointers) and by references Creating and using dynamic arrays Combing pointers, structures

More information

Do not turn the page until 12:30.

Do not turn the page until 12:30. University of Washington Computer Science & Engineering Spring 2018 Instructor: Justin Hsia 2018-06-05 Last Name: First Name: Perfect Perry Student ID Number: 1234567 Name of person to your Left Right

More information

Chapter 4 Concurrent Programming

Chapter 4 Concurrent Programming Chapter 4 Concurrent Programming 4.1. Introduction to Parallel Computing In the early days, most computers have only one processing element, known as the Central Processing Unit (CPU). Due to this hardware

More information

Homework 5. Yuji Shimojo CMSC 330. Instructor: Prof. Reginald Y. Haseltine

Homework 5. Yuji Shimojo CMSC 330. Instructor: Prof. Reginald Y. Haseltine Homework 5 Yuji Shimojo CMSC 330 Instructor: Prof. Reginald Y. Haseltine July 13, 2013 Question 1 Consider the following Java definition of a mutable string class. class MutableString private char[] chars

More information

Physics 234: Computational Physics

Physics 234: Computational Physics Physics 234: Computational Physics In-class Midterm Exam Friday, February 12, 2010 Student s Name: Fill-in-the-blank and multiple choice questions (20 points) Mark your answers on the exam sheet in blue

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto For more information please consult Advanced Programming in the UNIX Environment, 3rd Edition, W. Richard Stevens and

More information

Synchronization and Semaphores. Copyright : University of Illinois CS 241 Staff 1

Synchronization and Semaphores. Copyright : University of Illinois CS 241 Staff 1 Synchronization and Semaphores Copyright : University of Illinois CS 241 Staff 1 Synchronization Primatives Counting Semaphores Permit a limited number of threads to execute a section of the code Binary

More information

C++ Undefined Behavior What is it, and why should I care?

C++ Undefined Behavior What is it, and why should I care? C++ Undefined Behavior What is it, and why should I care? Marshall Clow Qualcomm marshall@idio.com http://cplusplusmusings.wordpress.com (intermittent) Twitter: @mclow ACCU 2014 April 2014 What is Undefined

More information

POSIX Threads and OpenMP tasks

POSIX Threads and OpenMP tasks POSIX Threads and OpenMP tasks Jimmy Aguilar Mena February 16, 2018 Introduction Pthreads Tasks Two simple schemas Independent functions # include # include void f u n c t i

More information

Ch 6. Functions. Example: function calls function

Ch 6. Functions. Example: function calls function Ch 6. Functions Part 2 CS 1428 Fall 2011 Jill Seaman Lecture 21 1 Example: function calls function void deeper() { cout

More information

Locks and semaphores. Johan Montelius KTH

Locks and semaphores. Johan Montelius KTH Locks and semaphores Johan Montelius KTH 2017 1 / 41 recap, what s the problem : # include < pthread.h> volatile int count = 0; void * hello ( void * arg ) { for ( int i = 0; i < 10; i ++) { count ++;

More information

Example Final Questions Instructions

Example Final Questions Instructions Example Final Questions Instructions This exam paper contains a set of sample final exam questions. It is for practice purposes only. You ll most likely need longer than three hours to answer all the questions.

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1 Thread Disclaimer: some slides are adopted from the book authors slides with permission 1 IPC Shared memory Recap share a memory region between processes read or write to the shared memory region fast

More information

Programming Language. Functions. Eng. Anis Nazer First Semester

Programming Language. Functions. Eng. Anis Nazer First Semester Programming Language Functions Eng. Anis Nazer First Semester 2016-2017 Definitions Function : a set of statements that are written once, and can be executed upon request Functions are separate entities

More information

Computer Core Practice1: Operating System Week10. locking Protocol & Atomic Operation in Linux

Computer Core Practice1: Operating System Week10. locking Protocol & Atomic Operation in Linux 1 Computer Core Practice1: Operating System Week10. locking Protocol & Atomic Operation in Linux Jhuyeong Jhin and Injung Hwang Race Condition & Critical Region 2 Race Condition Result may change according

More information

Condition Variables. Dongkun Shin, SKKU

Condition Variables. Dongkun Shin, SKKU Condition Variables 1 Why Condition? cases where a thread wishes to check whether a condition is true before continuing its execution 1 void *child(void *arg) { 2 printf("child\n"); 3 // XXX how to indicate

More information

Concurrency: Locks. Announcements

Concurrency: Locks. Announcements CS 537 Introduction to Operating Systems UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department Concurrency: Locks Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau Questions answered in this lecture:

More information

CS 211 Winter 2004 Sample Final Exam (Solutions)

CS 211 Winter 2004 Sample Final Exam (Solutions) CS 211 Winter 2004 Sample Final Exam (Solutions) Instructor: Brian Dennis, Assistant Professor TAs: Tom Lechner, Rachel Goldsborough, Bin Lin March 16, 2004 Your Name: There are 6 problems on this exam.

More information

Synchronization: Basics

Synchronization: Basics Synchronization: Basics 53: Introduction to Computer Systems 4 th Lecture, April 8, 7 Instructor: Seth Copen Goldstein, Franz Franchetti Today Threads review Sharing Mutual exclusion Semaphores Traditional

More information

Week 3. Function Definitions. Example: Function. Function Call, Return Statement. Functions & Arrays. Gaddis: Chapters 6 and 7.

Week 3. Function Definitions. Example: Function. Function Call, Return Statement. Functions & Arrays. Gaddis: Chapters 6 and 7. Week 3 Functions & Arrays Gaddis: Chapters 6 and 7 CS 5301 Fall 2015 Jill Seaman 1 Function Definitions! Function definition pattern: datatype identifier (parameter1, parameter2,...) { statements... Where

More information

CPSC 427: Object-Oriented Programming

CPSC 427: Object-Oriented Programming CPSC 427: Object-Oriented Programming Michael J. Fischer Lecture 10 October 1, 2018 CPSC 427, Lecture 10, October 1, 2018 1/20 Brackets Example (continued from lecture 8) Stack class Brackets class Main

More information

Introduc)on to pthreads. Shared memory Parallel Programming

Introduc)on to pthreads. Shared memory Parallel Programming Introduc)on to pthreads Shared memory Parallel Programming pthreads Hello world Compute pi pthread func)ons Prac)ce Problem (OpenMP to pthreads) Sum and array Thread-safe Bounded FIFO Queue pthread Hello

More information

Basic program The following is a basic program in C++; Basic C++ Source Code Compiler Object Code Linker (with libraries) Executable

Basic program The following is a basic program in C++; Basic C++ Source Code Compiler Object Code Linker (with libraries) Executable Basic C++ Overview C++ is a version of the older C programming language. This is a language that is used for a wide variety of applications and which has a mature base of compilers and libraries. C++ is

More information

CS 220: Introduction to Parallel Computing. Condition Variables. Lecture 24

CS 220: Introduction to Parallel Computing. Condition Variables. Lecture 24 CS 220: Introduction to Parallel Computing Condition Variables Lecture 24 Remember: Creating a Thread int pthread_create( pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void *),

More information

ECE 462 Exam 1. 6:30-7:30PM, September 22, 2010

ECE 462 Exam 1. 6:30-7:30PM, September 22, 2010 ECE 462 Exam 1 6:30-7:30PM, September 22, 2010 I will not receive nor provide aid to any other student for this exam. Signature: You must sign here. Otherwise, the exam is not graded. This exam is printed

More information

[537] Locks. Tyler Harter

[537] Locks. Tyler Harter [537] Locks Tyler Harter Review: Threads+Locks CPU 1 CPU 2 running thread 1 running thread 2 RAM PageDir A PageDir B CPU 1 CPU 2 running thread 1 running thread 2 RAM PageDir A PageDir B Virt Mem (PageDir

More information

Chapter 4 Threads. Images from Silberschatz 03/12/18. CS460 Pacific University 1

Chapter 4 Threads. Images from Silberschatz 03/12/18. CS460 Pacific University 1 Chapter 4 Threads Images from Silberschatz Pacific University 1 Threads Multiple lines of control inside one process What is shared? How many PCBs? Pacific University 2 Typical Usages Word Processor Web

More information

CSE 380: Homework 2: Synchronization

CSE 380: Homework 2: Synchronization CSE 380 Homework 2 1 CSE 380: Homework 2: Synchronization Due : Thursday, October 2, 2003 Submit a hardcopy solution of the problems in class on Oct 2, and submit code and documentation for the programs

More information

CSci 4061 Introduction to Operating Systems. Synchronization Basics: Locks

CSci 4061 Introduction to Operating Systems. Synchronization Basics: Locks CSci 4061 Introduction to Operating Systems Synchronization Basics: Locks Synchronization Outline Basics Locks Condition Variables Semaphores Basics Race condition: threads + shared data Outcome (data

More information

Pre-lab #2 tutorial. ECE 254 Operating Systems and Systems Programming. May 24, 2012

Pre-lab #2 tutorial. ECE 254 Operating Systems and Systems Programming. May 24, 2012 Pre-lab #2 tutorial ECE 254 Operating Systems and Systems Programming May 24, 2012 Content Concurrency Concurrent Programming Thread vs. Process POSIX Threads Synchronization and Critical Sections Mutexes

More information

Lecture Notes CPSC 224 (Spring 2012) Today... Java basics. S. Bowers 1 of 8

Lecture Notes CPSC 224 (Spring 2012) Today... Java basics. S. Bowers 1 of 8 Today... Java basics S. Bowers 1 of 8 Java main method (cont.) In Java, main looks like this: public class HelloWorld { public static void main(string[] args) { System.out.println("Hello World!"); Q: How

More information

Variables. Data Types.

Variables. Data Types. Variables. Data Types. The usefulness of the "Hello World" programs shown in the previous section is quite questionable. We had to write several lines of code, compile them, and then execute the resulting

More information

Review Questions for Final Exam

Review Questions for Final Exam CS 102 / ECE 206 Spring 11 Review Questions for Final Exam The following review questions are similar to the kinds of questions you will be expected to answer on the Final Exam, which will cover LCR, chs.

More information

Introduction to Programming

Introduction to Programming Introduction to Programming session 6 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Spring 2011 These slides are created using Deitel s slides Sharif University of Technology Outlines

More information

Programming RT systems with pthreads

Programming RT systems with pthreads Programming RT systems with pthreads Giuseppe Lipari http://www.lifl.fr/~lipari CRIStAL - University de Lille 1 October 4, 2015 G. Lipari (CRIStAL) Programming RT systems with pthreads October 4, 2015

More information

COSC 6374 Parallel Computation. Shared memory programming with POSIX Threads. Edgar Gabriel. Fall References

COSC 6374 Parallel Computation. Shared memory programming with POSIX Threads. Edgar Gabriel. Fall References COSC 6374 Parallel Computation Shared memory programming with POSIX Threads Fall 2012 References Some of the slides in this lecture is based on the following references: http://www.cobweb.ecn.purdue.edu/~eigenman/ece563/h

More information

Introduction to C++ Systems Programming

Introduction to C++ Systems Programming Introduction to C++ Systems Programming Introduction to C++ Syntax differences between C and C++ A Simple C++ Example C++ Input/Output C++ Libraries C++ Header Files Another Simple C++ Example Inline Functions

More information

Programming RT systems with pthreads

Programming RT systems with pthreads Programming RT systems with pthreads Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa December 1, 2011 Outline 1 Timing utilities 2 Periodic threads 3 Scheduler selection

More information

Functions. CS111 Lab Queens College, CUNY Instructor: Kent Chin

Functions. CS111 Lab Queens College, CUNY Instructor: Kent Chin Functions CS111 Lab Queens College, CUNY Instructor: Kent Chin Functions They're everywhere! Input: x Function: f Output: f(x) Input: Sheets of Paper Function: Staple Output: Stapled Sheets of Paper C++

More information

Operating System Labs. Yuanbin Wu

Operating System Labs. Yuanbin Wu Operating System Labs Yuanbin Wu CS@ECNU Operating System Labs Project 4 Due: 10 Dec. Oral tests of Project 3 Date: Nov. 27 How 5min presentation 2min Q&A Operating System Labs Oral tests of Lab 3 Who

More information

Carnegie Mellon Concurrency and Synchronization

Carnegie Mellon Concurrency and Synchronization Concurrency and Synchronization CMPSCI 3: Computer Systems Principles int pthread_join (pthread_t thread, void **value_ptr) { int result; ptw3_thread_t * tp = (ptw3_thread_t *) thread.p; if (NULL == tp

More information

Object oriented programming

Object oriented programming Exercises 7 Version 1.0, 11 April, 2017 Table of Contents 1. Inheritance.................................................................. 1 1.1. Tennis Player...........................................................

More information