OPERATING SYSTEMS, ASSIGNMENT 2 KERNEL THREADS IN XV6, SYNCHRONIZATION

Size: px
Start display at page:

Download "OPERATING SYSTEMS, ASSIGNMENT 2 KERNEL THREADS IN XV6, SYNCHRONIZATION"

Transcription

1 OPERATING SYSTEMS, ASSIGNMENT 2 KERNEL THREADS IN XV6, SYNCHRONIZATION SUBMISSION DATE: 9/5/2013 Task 0: Downloading xv6 Begin by downloading our revision of xv6, from the os112 svn repository: Open a shell, and traverse to the desired working directory. Execute the following command (in a single line): svn checkout assignment2 This will create a new folder called assignment2 which will contain all project files. Kernel level threads (KLT) are implemented and managed by the kernel. One can look at kernel threads as processes who share some of their attributes as peer threads in the same process. One key characteristic of threads is that all threads of the same process share the same virtual memory space. As such, a simple way to add threads to XV6's implantation is to use code much similar to that of the fork system call, which creates another process. To achieve a thread-like behavior we will have the newly created "process" share the same virtual memory space of the "parent process". By doing so, both "processes" share the same virtual memory space, and so may essentially be considered as two threads. You will need to mark the new "process" internally so the kernel can tell whether it is a process or one of our newly created "threads". Each thread should keep the PID of the process within which it is running. Task 1: Kernel Threads In this part of the assignment you will add system calls that will allow programs to create kernel threads. Implement the following new system calls: int thread_create( void*(*start_func)(), void* stack, uint stack_size ); Calling thread_create will create a new thread within the context of the calling process. The newly created thread state will be runnable. The caller to thread_create must allocate a stack for the new thread to use. start_func is a pointer to the function the thread will start executing. Upon success, the identifier of the newly created thread is returned. In case of an error, a non-positive value is returned. int thread_getid(); Upon success, this function returns the caller thread's id. In case of error, a non-positive error identifier is returned. The thread s ID should be unique for each of the threads in the same process.

2 int thread_getprocid(); Upon success, this function returns the process ID. When a process (say PID=7) first starts running, we say it has a single main thread, and the thread_getprocid simply returns the process pid (7). If that process later creates new threads, those threads would also return its pid (7) since they are all threads of the same simulated process. Notice that the existing system call Sys_getpid that is already implemented should not be changed, as it is used for other purposes which we would not want to harm. int thread_join(int thread_id, void** ret_val) This function suspends the execution of the calling thread until the thread identified by thread_id terminates. thread_id is the identifier of the thread that needs to be waited for. If thread thread_id already finished execution, the call to this function should return immediately after setting ret_val. ret_val is the return value of thread_id 's function (as described in thread_exit). Calling thread_join on a thread thread_id on which another thread is already waiting for should fail and return -2. On all other errors this function should return -1. On success, should return 0 and set the ret_val. void thread_exit(void * ret_val); This function terminates the execution of the calling thread. If called by the main thread while other threads exist within the same process, it shouldn t terminate the whole process. ret_val is the return value of the thread's function, and should be stored in case another thread calls thread_join on the exiting thread. Task 2: Synchronization primitives In this task you will implement two synchronization primitives: Binary Semaphores and Counting Semaphores. Task 2.1: Binary Semaphores In this part of the assignment you will add system calls that allow users to create and use binary semaphores. Before you start your implementation, you should examine the implementation of spinlocks in XV6's kernel (for example the scheduler uses a spinlock). Spinlocks are used in XV6 in order to synchronize kernel cores while they change the status of processes. Your task is to implement binary semaphores as a kernel service to users, via system calls. The locking and releasing can be based on the implementation of spinlocks (remember spinlocks are made for the kernel's internal specific use). Notice spinlocks are NOT the same as binary semaphores, for example starvation can happen with spinlocks but not with semaphores due to the queue of waiting threads that the semaphore maintains. The semantics of binary semaphores were described in class and include the two operations described below.

3 Add the following system calls to the XV6 kernel: int binary_semaphore_create(int initial_value) This function creates and initializes a new binary semaphore and returns the identifier (binary_ semaphore _ID) of the newly created semaphore. The semaphore is initialized to initial_value. The functions binary_ semaphore _down and binary_ semaphore _up work as learned in class, and return 0 if successful and -1 if an error occurs. int binary_ semaphore _down(int binary_ semaphore _ID) int binary_ semaphore _up(int binary_ semaphore _ID) Note: you will need to assign and manage the IDs of semaphores inside the kernel. Task 2.2: Counting Semaphores Implement counting semaphores. Your implementation should rely on the system calls you added in the previous task. Implementing counting semaphores using binary semaphores was taught in class. Your implementation should be done outside of the kernel, as a user-space program called semaphore.c and semaphore.h (not as system calls). Implement the following functions: struct semaphore* semaphore_create(int initial_ semaphore_value); void semaphore_down(struct semaphore* sem ); void semaphore_up(struct semaphore* sem ); You may want to write some code now to fully test your semaphores and make sure they work flawlessly. Task 2.3: Synchronized Bounded Buffer Implement a synchronized bounded buffer using semaphores. Implement this via a user space program, boundedbuffer.c and boundedbuffer.h. The buffer has a finite capacity defined at creation and behaves as expected (trying to enter an item when the buffer is full causes the thread to wait until there are free slots in the buffer. Trying to remove elements from an empty buffer causes the thread to wait as well). Implement the following functions: struct BB* BB_create(int max_capacity); This function creates a new bounded buffer, with a max_capacity capacity. void BB_put(struct BB* bb, void* element); This function will try to put the element received in the buffer. If there is no room for the element, it will wait until there is a free slot.

4 void* BB_pop(struct BB* bb); This function should return a single element from the buffer. If the buffer is empty it will cause the thread to wait until there is an element to remove. You might want to consider adding some auxiliary function to support your bounded buffer. Part 3: Synchronization Problem Task 3.1: Thread test Write a program called threadtest which receives a positive integer argument n from the command line. The program creates a single binary semaphore called the lock, and n threads and runs them. Each thread runs in an infinite loop, printing a line three times (see below). Each thread must acquire the lock just before printing, and must release it immediately after printing the line three times. After releasing the lock the thread performs sleep(1). The line each thread should print is: Process < thread_getprocid()> Thread < thread_getid()> is running. Task 3.2: Synchronization Problem In this part you will write a Consumer-Producer application that will create new threads and put them to test. Your application will receive its parameters from a configuration file (described below). All printing should go to a file named Synch_problem_log.txt. Problem description The Bienstein is a student bar in Beer-Sheva that just opened right across the street from the university. It opened right at the beginning of finals period, so all the students, especially the ones that don t want to study, want to try it out. A. Data Structures: There are five data structures you need to use. 1. The first data structure is a counting semaphore, called bouncer, used to allow students to enter the Bienstein. The bouncer manages the number of students that can be at the bar at once. This counting semaphore s initial value will be M, the maximum number of students that can be at the bar at once. The bouncer must support the following synchronized actions:

5 void enter_bar() used to allow students to enter the bar, and thus is called by the students. If the bar is full (the semaphore s value is 0), the student should wait until another student leaves the bar and frees up space. void leave_bar() used to allow students to leave the bar once they are drunk, and thus is called by the students. When a student leaves the bar, he frees up a place for another student to enter. 2. The second data structure is a bounded buffer, called ABB, used to hold the students actions. This bounded buffer has A slots, is produced by the students, and consumed by the bartenders. It will use the Action struct that you will define, which is composed of: type, cup*, and tid (the thread's id). The type of the Action can be a drink order, or the returning of a cup (type=1 means a drink order, type=2 means the returning of a cup). ABB must support the following synchronized actions: void place_action(action* action) This function is called by a student whenever he wants to perform an action - place an order for a drink from the bar or return a dirty cup. The action is placed at the end of the buffer. Action* get_action() This function is called by a bartender whenever one is free to deal with students actions. The Action located at the beginning of the buffer is returned and removed. If there are no actions, the bartender will wait until more actions arrive. 3. The third data structure is a bounded buffer, called DrinkBB, used to hold the ready drinks. This bounded buffer has A slots, is produced by the bartenders, and consumed by the students. It will use the Cup struct that you should define as you see fit. DrinkBB must support the following synchronized actions: void serve_drink(cup*) This function is called by the bartender whenever he finishes to make a drink (ordered by a student). The cup the drink is made in is placed in the DrinkBB. Cup* get_drink() This function is called by a student after he places an order for a drink, while he waits for his order to be made. If there is a drink ready in the buffer, he will take it (denoted by the cup the drink was made in). If not, he will wait until a drink becomes available.

6 4. The fourth data structure is a bounded buffer, called CBB, used to hold the clean cups for the drinks. This bounded buffer has C slots, is produced by the cup boy, and is consumed by the bartenders. It will use the Cup struct. CBB must support the following synchronized actions: Cup* get_clean_cup() This function is called by a bartender whenever he wishes to make a drink and needs a clean cup for it. If there are no clean cups left, the bartender should wait until the cup boy returns with clean cups. void add_clean_cup(cup* cup) This function is called by the cup boy when he wishes to add a clean cup he just washed. 5. The fifth data structure is a bounded buffer, called DBB, used to hold the dirty cups. This bounded buffer has C slots, is produced by the students, and is consumed by the cup boy. DBB must support the following synchronized actions: void return_cup(cup* cup) This function is called by a bartender whenever a student finished to drink his drink and wishes to return the cup used (i.e when the type of the action the bartender received from ABB is 2 - returning a dirty cup). If at least 60% of the cups are dirty, the cup boy will be notified. Cup* wash_dirty() This function will be called by the cup boy when he wishes to get a dirty cup to clean. B. The Students There are S students in the simulation, where each is a thread. The students actions can be abstracted as follows: 1. Call enter_bar. 2. Repeat k (described below) times: a. Call place_action with a drink order as the action (in the struct action: type = 1, cup=null). b. Call get_drink. c. Print (to a file) Student <thread_id> is having his <drink_number> drink, with cup <cup_number> (as returned from get_drink). d. sleep(1). e. Call place_action with returning a cup as the action (in the struct action: type = 2, and cup=cup received from get_drink).

7 3. print (to a file) Student <thread_id> is drunk, and trying to go home. 4. Call leave_bar. Where k equals thread_id % 5. C. The Bartender There are B bartenders, where each is a thread. The bartenders actions will be in an infinite loop composed of the following abstracted actions: 1. Call get_action. 2. If the action is a drink order: a. Call get_clean_cup. b. Print (to a file) Bartender <thread_id> is making drink with cup #<cup_id>. c. Call serve_drink. 3. If the action is returning a cup: a. Call return_cup. b. Print (to a file) Bartender <thread_id> returned cup #<cup_id>. D. The Cup Boy There is a single cup boy, who is a thread. The cup boy sleeps until it is notified that the DBB is 60% full the students returned 60% of the cups (that are now dirty). When it wakes up its actions can be abstracted as follows: 1. Repeat n times: a. Call wash_dirty. b. sleep(1). c. Call add_clean_cup. d. Print(to a file) Cup boy added clean cup #<cup_number>. Where n is the amount of dirty cups when the cup boy starts washing them (which means that if new dirty cups are added before the cup boy finishes washing them, they will not be added to n and he will not wash them now). E. Configuration File You need to add a configuration file to xv6 and name it con.conf (remember to make the necessary changes in the Makefile). Your application must be able to read parameters from the configuration file and start a simulation according to it. The configuration file has the following parameters: M = value1 A = value2 C = value3 S = value4

8 B = value5 You can assume that the number of cups is at least twice the number of students allowed to enter the bar at once. That is, 2M < C. Note: the simulation ends once the last student leaves the Bienstein. Make sure that all threads have exited gracefully, and that all memory allocated has been freed. F. The Simulation The simulation should be started with the CBB full of C clean cups, the DBB is empty of dirty cups, and there are no students in the bar. When the simulation starts all the students try to enter the bar. Then the simulation continues as described above. Your implementation should not use busy wait, but use the data structures defined above. Using busy wait will reduce your grade. Submission guidelines Assignment due date: 9/5/2013 Make sure that your Makefile is properly updated and that your code compiles with no warnings whatsoever. We strongly recommend documenting your code changes with remarks these are often handy when discussing your code with the graders. Due to our constrained resources, assignments are only allowed in pairs. Please note this important point and try to match up with a partner as soon as possible. Submissions are only allowed through the submission system. To avoid submitting a large number of xv6 builds you are required to submit a patch (i.e. a file which patches the original xv6 and applies all your changes). You may use the following instructions to guide you through the process: Back-up your work before proceeding! Before creating the patch review the change list and make sure it contains all the changes that you applied and noting more. Modified files are automatically detected by svn but new files should be added explicitly with the svn add command: > svn add <filename> In case you need to revert to a previous version: > svn revert <filename> At this point you may examine the differences (the patch): > svn diff Alternatively, if you have a diff utility such as kompare: > svn diff kompare o -

9 Once you are ready to create a patch simply make sure the output is redirected to the patch file: > svn diff > ID1_ID2.patch Tip: Although graders will only apply your latest patch file, the submission system supports multiple uploads. Use this feature often and make sure you upload patches of your current work even if you haven t completed the assignment. Finally, you should note that graders are instructed to examine your code on lab computers only(!) - Test your code on lab computers prior to submission. Enjoy!

OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS

OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS Introduction In this assignment we will add synchronization tools\methods to the xv6 kernel. We start with a simple binary semaphore and then

More information

Operating Systems, Assignment 2 Threads and Synchronization

Operating Systems, Assignment 2 Threads and Synchronization Operating Systems, Assignment 2 Threads and Synchronization Responsible TA's: Zohar and Matan Assignment overview The assignment consists of the following parts: 1) Kernel-level threads package 2) Synchronization

More information

OPERATING SYSTEMS ASSIGNMENT 3 MEMORY MANAGEMENT

OPERATING SYSTEMS ASSIGNMENT 3 MEMORY MANAGEMENT OPERATING SYSTEMS ASSIGNMENT 3 MEMORY MANAGEMENT Introduction Memory management and memory abstraction is one of the most important features of any operating system. In this assignment we will examine

More information

OPERATING SYSTEMS ASSIGNMENT 4 XV6 file system

OPERATING SYSTEMS ASSIGNMENT 4 XV6 file system OPERATING SYSTEMS ASSIGNMENT 4 XV6 file system Introduction In most systems the main weakness of the file system stems from the data access time, which is much longer than accessing the memory. For certain

More information

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION Responsible TAs: Vadim Levit & Benny Lutati Introduction In this assignment we will extend xv6 to support a simple signal

More information

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEM

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEM OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEM Introduction The File system is an integral part of every operating system. The use of files enables the user to save persistent data. Files can also be used

More information

Introduction. Xv6 memory

Introduction. Xv6 memory O P E R A T I N G S Y S T E M S A S S I G N M E N T 3 M E M O R Y M A N A G E M E N T Introduction Memory management and memory abstraction is one of the most important features of any operating system.

More information

Operating Systems Synchronization and Signals

Operating Systems Synchronization and Signals OS162: Assignment 2 Operating Systems Synchronization and Signals TAs in charge Vadim Levit levitv@post.bgu.ac.il Benny Lutati bennyl@post.bgu.ac.il Due Date: 30.04.2016 1 Introduction The assignment main

More information

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEMS

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEMS OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEMS The xv6 file system provides Unix-like files, directories, and pathnames, and stores its data on an IDE disk for persistence. The file-system addresses several

More information

Operating Systems. Lab. Class Project #5

Operating Systems. Lab. Class Project #5 Operating Systems Lab. Class Project #5 Project Plan 6 projects 0. Install xv6 1. System call 2. Scheduling 3. Memory 4. Virtual memory 5. Concurrency 1 6. Concurrency 2 Individual projects 2017-05-16

More information

OPERATING SYSTEMS, ASSIGNMENT 4 FILE SYSTEM

OPERATING SYSTEMS, ASSIGNMENT 4 FILE SYSTEM OPERATING SYSTEMS, ASSIGNMENT 4 FILE SYSTEM SUBMISSION DATE: 15/06/2014 23:59 In this assignment you are requested to extend the file system of xv6. xv6 implements a Unix-like file system, and when running

More information

Problem Set 2. CS347: Operating Systems

Problem Set 2. CS347: Operating Systems CS347: Operating Systems Problem Set 2 1. Consider a clinic with one doctor and a very large waiting room (of infinite capacity). Any patient entering the clinic will wait in the waiting room until the

More information

CS355 Hw 4. Interface. Due by the end of day Tuesday, March 20.

CS355 Hw 4. Interface. Due by the end of day Tuesday, March 20. Due by the end of day Tuesday, March 20. CS355 Hw 4 User-level Threads You will write a library to support multiple threads within a single Linux process. This is a user-level thread library because the

More information

There are 8 total numbered pages, 6 Questions. You have 60 minutes. Budget your time carefully!

There are 8 total numbered pages, 6 Questions. You have 60 minutes. Budget your time carefully! UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, March, 2017 Third Year Materials ECE344H1 - Operating Systems Calculator Type: 2 Exam Type: A Examiner D. Yuan Please

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Fall 2014 Project 1: Review Geoffrey M. Voelker Locks & CVs Lock issues A thread cannot Acquire a lock it already holds A thread cannot Release a lock it does not

More information

There are 10 total numbered pages, 5 Questions. You have 60 minutes. Budget your time carefully!

There are 10 total numbered pages, 5 Questions. You have 60 minutes. Budget your time carefully! UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, February, 2018 Third Year Materials ECE344H1 - Operating Systems Calculator Type: 2 Exam Type: A Examiner D. Yuan Please

More information

REVIEW OF COMMONLY USED DATA STRUCTURES IN OS

REVIEW OF COMMONLY USED DATA STRUCTURES IN OS REVIEW OF COMMONLY USED DATA STRUCTURES IN OS NEEDS FOR EFFICIENT DATA STRUCTURE Storage complexity & Computation complexity matter Consider the problem of scheduling tasks according to their priority

More information

CMSC 412 Project #3 Threads & Synchronization Due March 17 th, 2017, at 5:00pm

CMSC 412 Project #3 Threads & Synchronization Due March 17 th, 2017, at 5:00pm CMSC 412 Project #3 Threads & Synchronization Due March 17 th, 2017, at 5:00pm Overview User level threads. You will implement user level threads where each thread has it s own stack, but shares the program,

More information

Interprocess Communication By: Kaushik Vaghani

Interprocess Communication By: Kaushik Vaghani Interprocess Communication By: Kaushik Vaghani Background Race Condition: A situation where several processes access and manipulate the same data concurrently and the outcome of execution depends on the

More information

CS 385 Operating Systems Fall 2011 Homework Assignment 5 Process Synchronization and Communications

CS 385 Operating Systems Fall 2011 Homework Assignment 5 Process Synchronization and Communications CS 385 Operating Systems Fall 2011 Homework Assignment 5 Process Synchronization and Communications Due: Friday December 2 at 8:00 P.M. via Blackboard Overall Assignment Man Pages For this assignment,

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

Synchronization. CS 475, Spring 2018 Concurrent & Distributed Systems

Synchronization. CS 475, Spring 2018 Concurrent & Distributed Systems Synchronization CS 475, Spring 2018 Concurrent & Distributed Systems Review: Threads: Memory View code heap data files code heap data files stack stack stack stack m1 m1 a1 b1 m2 m2 a2 b2 m3 m3 a3 m4 m4

More information

CS 475. Process = Address space + one thread of control Concurrent program = multiple threads of control

CS 475. Process = Address space + one thread of control Concurrent program = multiple threads of control Processes & Threads Concurrent Programs Process = Address space + one thread of control Concurrent program = multiple threads of control Multiple single-threaded processes Multi-threaded process 2 1 Concurrent

More information

CS 105, Spring 2015 Ring Buffer

CS 105, Spring 2015 Ring Buffer CS 105, Spring 2015 Ring Buffer March 10, 2015 1 Introduction A ring buffer, also called a circular buffer, is a common method of sharing information between a producer and a consumer. In class, we have

More information

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018 SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T 2. 3. 8 A N D 2. 3. 1 0 S P R I N G 2018 INTER-PROCESS COMMUNICATION 1. How a process pass information to another process

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION PROCESS SYNCHRONIZATION Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization

More information

Process Management And Synchronization

Process Management And Synchronization Process Management And Synchronization In a single processor multiprogramming system the processor switches between the various jobs until to finish the execution of all jobs. These jobs will share the

More information

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems University of Waterloo Midterm Examination Model Solution CS350 Operating Systems Fall, 2003 1. (10 total marks) Suppose that two processes, a and b, are running in a uniprocessor system. a has three threads.

More information

CPSC 545 Computing Systems Project 2: Hungary Eagles Need Feeding Due: April 27 th, 23:59PM

CPSC 545 Computing Systems Project 2: Hungary Eagles Need Feeding Due: April 27 th, 23:59PM CPSC 545 Computing Systems Project 2: Hungary Eagles Need Feeding Due: April 27 th, 23:59PM 1. Goal To develop a C/C++ multi-threading program that uses Pthread synchronization mechanisms to solve real-world

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Outline o Process concept o Process creation o Process states and scheduling o Preemption and context switch o Inter-process communication

More information

Introduction. This project will focus primarily on processes.

Introduction. This project will focus primarily on processes. Project 2 Processes Introduction This project will focus primarily on processes. In this project, you will become familiar with: 1. Locks for kernel-level data structures; concurrency. 2. Implementing

More information

CS 105, Spring 2007 Ring Buffer

CS 105, Spring 2007 Ring Buffer CS 105, Spring 2007 Ring Buffer April 11, 2007 1 Introduction A ring buffer, also called a circular buffer, is a common method of sharing information between a producer and a consumer. In class, we have

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 8: Semaphores, Monitors, & Condition Variables 8.0 Main Points: Definition of semaphores Example of use

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

Pebbles Kernel Specification September 26, 2004

Pebbles Kernel Specification September 26, 2004 15-410, Operating System Design & Implementation Pebbles Kernel Specification September 26, 2004 Contents 1 Introduction 2 1.1 Overview...................................... 2 2 User Execution Environment

More information

1. Overview This project will help you understand address spaces and virtual memory management.

1. Overview This project will help you understand address spaces and virtual memory management. Project 2--Memory Worth: 12 points Assigned: Due: 1. Overview This project will help you understand address spaces and virtual memory management. In this project, you will implement an external pager,

More information

Systems Programming/ C and UNIX

Systems Programming/ C and UNIX Systems Programming/ C and UNIX Alice E. Fischer November 22, 2013 Alice E. Fischer () Systems Programming Lecture 12... 1/27 November 22, 2013 1 / 27 Outline 1 Jobs and Job Control 2 Shared Memory Concepts

More information

Synchronization I. Jo, Heeseung

Synchronization I. Jo, Heeseung Synchronization I Jo, Heeseung Today's Topics Synchronization problem Locks 2 Synchronization Threads cooperate in multithreaded programs To share resources, access shared data structures Also, to coordinate

More information

Process Synchronization(2)

Process Synchronization(2) CSE 3221.3 Operating System Fundamentals No.6 Process Synchronization(2) Prof. Hui Jiang Dept of Computer Science and Engineering York University Semaphores Problems with the software solutions. Not easy

More information

CPS 310 midterm exam #1, 2/19/2016

CPS 310 midterm exam #1, 2/19/2016 CPS 310 midterm exam #1, 2/19/2016 Your name please: NetID: Answer all questions. Please attempt to confine your answers to the boxes provided. For the execution tracing problem (P3) you may wish to use

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information

Recap: Thread. What is it? What does it need (thread private)? What for? How to implement? Independent flow of control. Stack

Recap: Thread. What is it? What does it need (thread private)? What for? How to implement? Independent flow of control. Stack What is it? Recap: Thread Independent flow of control What does it need (thread private)? Stack What for? Lightweight programming construct for concurrent activities How to implement? Kernel thread vs.

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Midterm Review Midterm in class on Monday Covers material through scheduling and deadlock Based upon lecture material and modules of the book indicated on

More information

CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization. October 9, 2002

CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization. October 9, 2002 Name: Student Id: General instructions: CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization October 9, 2002 This examination booklet has 10 pages. Do not forget

More information

Lecture 9: Midterm Review

Lecture 9: Midterm Review Project 1 Due at Midnight Lecture 9: Midterm Review CSE 120: Principles of Operating Systems Alex C. Snoeren Midterm Everything we ve covered is fair game Readings, lectures, homework, and Nachos Yes,

More information

ArdOS The Arduino Operating System Reference Guide Contents

ArdOS The Arduino Operating System Reference Guide Contents ArdOS The Arduino Operating System Reference Guide Contents 1. Introduction... 2 2. Error Handling... 2 3. Initialization and Startup... 2 3.1 Initializing and Starting ArdOS... 2 4. Task Creation... 3

More information

Process Synchronization(2)

Process Synchronization(2) EECS 3221.3 Operating System Fundamentals No.6 Process Synchronization(2) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Semaphores Problems with the software solutions.

More information

SE350: Operating Systems. Lecture 3: Concurrency

SE350: Operating Systems. Lecture 3: Concurrency SE350: Operating Systems Lecture 3: Concurrency Main Points Thread abstraction What are threads and what is the thread abstraction? Thread life cycle What states does a thread go through? Thread Implementation

More information

First Midterm Exam September 28, 2017 CS162 Operating Systems

First Midterm Exam September 28, 2017 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Fall 2017 Ion Stoica First Midterm Exam September 28, 2017 CS162 Operating Systems Your Name: SID AND 162 Login

More information

The Process Abstraction. CMPU 334 Operating Systems Jason Waterman

The Process Abstraction. CMPU 334 Operating Systems Jason Waterman The Process Abstraction CMPU 334 Operating Systems Jason Waterman How to Provide the Illusion of Many CPUs? Goal: run N processes at once even though there are M CPUs N >> M CPU virtualizing The OS can

More information

CSC209 Review. Yeah! We made it!

CSC209 Review. Yeah! We made it! CSC209 Review Yeah! We made it! 1 CSC209: Software tools Unix files and directories permissions utilities/commands Shell programming quoting wild cards files 2 ... and C programming... C basic syntax functions

More information

UNIX Processes. by Armin R. Mikler. 1: Introduction

UNIX Processes. by Armin R. Mikler. 1: Introduction UNIX Processes by Armin R. Mikler Overview The UNIX Process What is a Process Representing a process States of a process Creating and managing processes fork() wait() getpid() exit() etc. Files in UNIX

More information

CS4411 Intro. to Operating Systems Exam 1 Fall points 9 pages

CS4411 Intro. to Operating Systems Exam 1 Fall points 9 pages CS4411 Intro. to Operating Systems Exam 1 Fall 2009 1 CS4411 Intro. to Operating Systems Exam 1 Fall 2009 150 points 9 pages Name: Most of the following questions only require very short answers. Usually

More information

Creating a Shell or Command Interperter Program CSCI411 Lab

Creating a Shell or Command Interperter Program CSCI411 Lab Creating a Shell or Command Interperter Program CSCI411 Lab Adapted from Linux Kernel Projects by Gary Nutt and Operating Systems by Tannenbaum Exercise Goal: You will learn how to write a LINUX shell

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall CSE 451: Operating Systems Winter 2003 Lecture 7 Synchronization Hank Levy Levy@cs.washington.edu 412 Sieg Hall Synchronization Threads cooperate in multithreaded programs to share resources, access shared

More information

Project 3 Improved Process Management

Project 3 Improved Process Management Project 3 Improved Process Management Introduction This project will modernize process management in xv6. All process management will be impacted. New console control sequences will be implemented to support

More information

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology Process Synchronization: Semaphores CSSE 332 Operating Systems Rose-Hulman Institute of Technology Critical-section problem solution 1. Mutual Exclusion - If process Pi is executing in its critical section,

More information

Performance Throughput Utilization of system resources

Performance Throughput Utilization of system resources Concurrency 1. Why concurrent programming?... 2 2. Evolution... 2 3. Definitions... 3 4. Concurrent languages... 5 5. Problems with concurrency... 6 6. Process Interactions... 7 7. Low-level Concurrency

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

FINE-GRAINED SYNCHRONIZATION. Operating Systems Engineering. Sleep & Wakeup [chapter #5] 15-Jun-14. in the previous lecture.

FINE-GRAINED SYNCHRONIZATION. Operating Systems Engineering. Sleep & Wakeup [chapter #5] 15-Jun-14. in the previous lecture. Operating Systems Engineering Sleep & Wakeup [chapter #5] By Dan Tsafrir, 2014-04-02 1 in the previous lecture. When critical section is very short FINE-GRAINED SYNCHRONIZATION 2 1 in this lecture. When

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 11 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel Feedback Queue: Q0, Q1,

More information

Operating Systems. Operating Systems Summer 2017 Sina Meraji U of T

Operating Systems. Operating Systems Summer 2017 Sina Meraji U of T Operating Systems Operating Systems Summer 2017 Sina Meraji U of T More Special Instructions Swap (or Exchange) instruction Operates on two words atomically Can also be used to solve critical section problem

More information

There are 13 total numbered pages, 7 Questions.

There are 13 total numbered pages, 7 Questions. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April, 2017 Third Year Materials ECE344H1 - Operating Systems Calculator Type: 4 Exam Type: A Examiner D. Yuan Please

More information

Concurrency: Signaling and Condition Variables

Concurrency: Signaling and Condition Variables Concurrency: Signaling and Condition Variables Questions Answered in this Lecture: How do we make fair locks perform better? How do we notify threads of that some condition has been met? Hale CS450 Thanks

More information

ANKARA UNIVERSITY COMPUTER ENGINEERING DEPARTMENT BLM334-COM334 PROJECT

ANKARA UNIVERSITY COMPUTER ENGINEERING DEPARTMENT BLM334-COM334 PROJECT ANKARA UNIVERSITY COMPUTER ENGINEERING DEPARTMENT BLM334-COM334 PROJECT Due date: 08.05.2013 Lab Hours You re expected to implement Producer-Consumer Problem that is described below. (Any form of cheating

More information

CPS 310 second midterm exam, 11/14/2014

CPS 310 second midterm exam, 11/14/2014 CPS 310 second midterm exam, 11/14/2014 Your name please: Part 1. Sticking points Consider the Java code snippet below. Is it a legal use of Java synchronization? What happens if two threads A and B call

More information

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem?

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem? What is the Race Condition? And what is its solution? Race Condition: Where several processes access and manipulate the same data concurrently and the outcome of the execution depends on the particular

More information

User Programs. Computer Systems Laboratory Sungkyunkwan University

User Programs. Computer Systems Laboratory Sungkyunkwan University Project 2: User Programs Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Supporting User Programs What should be done to run user programs? 1. Provide

More information

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019 CS 31: Introduction to Computer Systems 22-23: Threads & Synchronization April 16-18, 2019 Making Programs Run Faster We all like how fast computers are In the old days (1980 s - 2005): Algorithm too slow?

More information

Systèmes d Exploitation Avancés

Systèmes d Exploitation Avancés Systèmes d Exploitation Avancés Instructor: Pablo Oliveira ISTY Instructor: Pablo Oliveira (ISTY) Systèmes d Exploitation Avancés 1 / 32 Review : Thread package API tid thread create (void (*fn) (void

More information

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files CSC209 Review CSC209: Software tools Unix files and directories permissions utilities/commands Shell programming quoting wild cards files ... and systems programming C basic syntax functions arrays structs

More information

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files. Compiler vs.

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files. Compiler vs. CSC209 Review CSC209: Software tools Unix files and directories permissions utilities/commands Shell programming quoting wild cards files... and systems programming C basic syntax functions arrays structs

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Midterm Review Ryan Huang 10/12/17 CS 318 Midterm Review 2 Midterm October 17 th Tuesday 9:00-10:20 am at classroom Covers material before virtual memory

More information

Processes and Threads. Processes and Threads. Processes (2) Processes (1)

Processes and Threads. Processes and Threads. Processes (2) Processes (1) Processes and Threads (Topic 2-1) 2 홍성수 Processes and Threads Question: What is a process and why is it useful? Why? With many things happening at once in a system, need some way of separating them all

More information

CPS 310 first midterm exam, 10/6/2014

CPS 310 first midterm exam, 10/6/2014 CPS 310 first midterm exam, 10/6/2014 Your name please: Part 1. More fun with fork and exec* What is the output generated by this program? Please assume that each executed print statement completes, e.g.,

More information

Processes (Intro) Yannis Smaragdakis, U. Athens

Processes (Intro) Yannis Smaragdakis, U. Athens Processes (Intro) Yannis Smaragdakis, U. Athens Process: CPU Virtualization Process = Program, instantiated has memory, code, current state What kind of memory do we have? registers + address space Let's

More information

Section 7: Wait/Exit, Address Translation

Section 7: Wait/Exit, Address Translation William Liu October 15, 2014 Contents 1 Wait and Exit 2 1.1 Thinking about what you need to do.............................. 2 1.2 Code................................................ 2 2 Vocabulary 4

More information

Lab 4. Out: Friday, February 25th, 2005

Lab 4. Out: Friday, February 25th, 2005 CS034 Intro to Systems Programming Doeppner & Van Hentenryck Lab 4 Out: Friday, February 25th, 2005 What you ll learn. In this lab, you ll learn to use function pointers in a variety of applications. You

More information

Process Synchronization(2)

Process Synchronization(2) EECS 3221.3 Operating System Fundamentals No.6 Process Synchronization(2) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Semaphores Problems with the software solutions.

More information

Lecture 5: Concurrency and Threads

Lecture 5: Concurrency and Threads CS 422/522 Design & Implementation of Operating Systems Lecture 5: Concurrency and Threads Zhong Shao Dept of Computer Science Yale University Acknowledgement: some slides are taken from previous versions

More information

ECE 5750 Advanced Computer Architecture Programming Assignment #1

ECE 5750 Advanced Computer Architecture Programming Assignment #1 ECE 5750 Advanced Computer Architecture Programming Assignment #1 Objective The objective of this assignment is to gain hands-on experience in writing parallel programs for shared-memory machines. You

More information

Threads. Threads The Thread Model (1) CSCE 351: Operating System Kernels Witawas Srisa-an Chapter 4-5

Threads. Threads The Thread Model (1) CSCE 351: Operating System Kernels Witawas Srisa-an Chapter 4-5 Threads CSCE 351: Operating System Kernels Witawas Srisa-an Chapter 4-5 1 Threads The Thread Model (1) (a) Three processes each with one thread (b) One process with three threads 2 1 The Thread Model (2)

More information

LSN 13 Linux Concurrency Mechanisms

LSN 13 Linux Concurrency Mechanisms LSN 13 Linux Concurrency Mechanisms ECT362 Operating Systems Department of Engineering Technology LSN 13 Creating Processes fork() system call Returns PID of the child process created The new process is

More information

Process Concept. Minsoo Ryu. Real-Time Computing and Communications Lab. Hanyang University.

Process Concept. Minsoo Ryu. Real-Time Computing and Communications Lab. Hanyang University. Process Concept Minsoo Ryu Real-Time Computing and Communications Lab. Hanyang University msryu@hanyang.ac.kr Topics Covered Process Concept Definition, states, PCB Process Scheduling Scheduling queues,

More information

Operating Systems (234123) Spring (Homework 3 Wet) Homework 3 Wet

Operating Systems (234123) Spring (Homework 3 Wet) Homework 3 Wet Due date: Monday, 4/06/2012 12:30 noon Teaching assistants in charge: Operating Systems (234123) Spring-2012 Homework 3 Wet Anastasia Braginsky All emails regarding this assignment should be sent only

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

* What are the different states for a task in an OS?

* What are the different states for a task in an OS? * Kernel, Services, Libraries, Application: define the 4 terms, and their roles. The kernel is a computer program that manages input/output requests from software, and translates them into data processing

More information

4. The Abstraction: The Process

4. The Abstraction: The Process 4. The Abstraction: The Process Operating System: Three Easy Pieces AOS@UC 1 How to provide the illusion of many CPUs? p CPU virtualizing w The OS can promote the illusion that many virtual CPUs exist.

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

TDDB68 Lesson 3. Simon Ståhlberg

TDDB68 Lesson 3. Simon Ståhlberg TDDB68 Lesson 3 Simon Ståhlberg Contents Overview of lab 3 A: Exec, wait, exit B: Program arguments C: Termination of ill-behaving user processes Testing your implementation Overview of lab 4 File system

More information

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition,

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition, Chapter 6: Process Synchronization, Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

Chapter 3: Processes. Operating System Concepts 8 th Edition,

Chapter 3: Processes. Operating System Concepts 8 th Edition, Chapter 3: Processes, Silberschatz, Galvin and Gagne 2009 Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Silberschatz, Galvin and Gagne 2009

More information

Midterm Exam #1 February 28, 2018 CS162 Operating Systems

Midterm Exam #1 February 28, 2018 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2018 Anthony D. Joseph and Jonathan Ragan-Kelley Midterm Exam #1 February 28, 2018 CS162 Operating Systems

More information

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ!

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ! Last Class: CPU Scheduling! Scheduling Algorithms: FCFS Round Robin SJF Multilevel Feedback Queues Lottery Scheduling Review questions: How does each work? Advantages? Disadvantages? Lecture 7, page 1

More information

Synchronization Spinlocks - Semaphores

Synchronization Spinlocks - Semaphores CS 4410 Operating Systems Synchronization Spinlocks - Semaphores Summer 2013 Cornell University 1 Today How can I synchronize the execution of multiple threads of the same process? Example Race condition

More information

Process Description and Control. Chapter 3

Process Description and Control. Chapter 3 Process Description and Control 1 Chapter 3 2 Processes Working definition: An instance of a program Processes are among the most important abstractions in an OS all the running software on a computer,

More information

Models of concurrency & synchronization algorithms

Models of concurrency & synchronization algorithms Models of concurrency & synchronization algorithms Lecture 3 of TDA383/DIT390 (Concurrent Programming) Carlo A. Furia Chalmers University of Technology University of Gothenburg SP3 2016/2017 Today s menu

More information

Threads and Parallelism in Java

Threads and Parallelism in Java Threads and Parallelism in Java Java is one of the few main stream programming languages to explicitly provide for user-programmed parallelism in the form of threads. A Java programmer may organize a program

More information