OPERATING SYSTEMS, ASSIGNMENT 4 FILE SYSTEM

Size: px
Start display at page:

Download "OPERATING SYSTEMS, ASSIGNMENT 4 FILE SYSTEM"

Transcription

1 OPERATING SYSTEMS, ASSIGNMENT 4 FILE SYSTEM SUBMISSION DATE: 15/06/ :59 In this assignment you are requested to extend the file system of xv6. xv6 implements a Unix-like file system, and when running on top of QEMU, stores its data on a virtual IDE disk (fs.img) for persistence. To get familiar with xv6 s file system design and capabilities, it is recommended to read Chapter 5 of the xv6 book. Assignment overview The assignment consists of the following parts: 1. Hacking the xv6 s file system. This part includes expanding the maximal file size supported by the file system, and adding support for symbolic links. 2. File Locking. In this part you need to add a locking mechanism for file security. 3. Find application. In this part you are to implement a find application that searches the file system for files matching specified criteria. Task 0: Running xv6 Begin by downloading our revision of xv6 from the os142 svn repository: Open a shell and traverse to the desired working directory. Check-out the project files using svn by calling: svn checkout ass4 Build xv6 by calling: make Run xv6 on top of QEMU by calling: make qemu When working through a remote connection to the department s computers use: screen make qemu-nox 1

2 P A R T 1: " H A C K IN G " T H E X V 6 F IL E S Y S T E M XV6, as a variant of Unix, uses the same file system architecture based on i-nodes. In both of these systems the maximal size of files is fixed and predetermined. The i-node structure in xv6 contains 12 direct pointers to data blocks and another single indirect pointer. Each data block is of size 512 bytes, totaling 6KB pointed to by the direct pointers. The indirect pointer points to a block which maps additional 128 blocks. This one level of indirection gives access to 64KB of additional data. Due to this structure we are able to use files of size up to 70KB. Expanding the maximal file size In this part you are to extend the i-node structure in order to support files of size up to 8MB. Do this by adding a double indirection layer to the i-nodes. This requires changing the i-node structure, as well as the disk representation of i-nodes (dinode). Sanity test Hint: the file mkfs.c is written using standard C libraries and is built and executed by the makefile outside of xv6 to create the virtual drive, fs.img. One of its tasks is to write the superblock, which contains metadata characterizing the file system. You will have to modify the contents of the superblock to be consistent with the changes you make. The virtual disk, fs.img, should contain at least 2 15 blocks (totaling 16MB). Hint: the size of the dinode structure should be a divisor of the block size, i.e. an integer number of dinodes should fit in a block. You may want to add padding for this purpose. Write a simple user application which creates a text file of size 1MB and writes a notification message to the screen after writing the first 12 direct blocks, after writing the single indirect blocks, and after writing the double indirect blocks. The purpose of this application is to test your implementation, and in case it contains bugs, help you identify where the bugs are. You are free to change the output or add additional printings as you see fit. The output should look something like: Finished writing 6KB (direct) Finished writing 70KB (single indirect) Finished writing 1MB Adding support for symbolic links Xv6 supports hard links via the user space program ln. Hard links allow different file names to reference the same actual file by using the same i-node number. For example, when a hard link named "b.txt" is created for a file named "a.txt", both "a.txt" and "b.txt" refer to the same file (data) on disk. Changes made to a.txt are reflected in b.txt and vice versa. Deleting one will not affect the other (it will only decrease the link count). In this task you will expand the program ln to support symbolic links, also referred to as soft links. When a new symbolic link is created, it doesn't share the same i-node as the pointed file (target). Instead, a new file is created and a new i-node is assigned to it. The contents of the new symbolic link file will contain the path to the target. 2

3 Notice that symbolic links are a special type of files, and should be assigned a unique enumeration value in the file type enum. Also, symbolic links can point to any type of file: regular file, directory and even another symbolic link. Furthermore, they can be either absolute or relative. Naturally, moving a relative link to a different location will result in a broken link. The following syntax should be used to create a symbolic link: ln s old_path new_path Example: ln s /home/os/a.txt /home/algo/b.txt Will create the new symbolic link /home/algo/b.txt and it will point to the existing file /home/os/a.txt The following system calls should be implemented to support symbolic links: int symlink(const char *oldpath, const char *newpath); symlink() creates a symbolic link, whose name is specified by the parameter newpath, and which points to the file whose name is specified by the parameter oldpath. The latter can be of any type or may not even exist. symlink() returns 0 upon success, and a negative integer upon failure. int readlink (const char *pathname, char *buf, size_t bufsiz); readlink() reads the name of the file to which the symbolic link points. The name of the link is specified by the parameter pathname. The target path is stored in the buffer buf, whose size is specified by bufsiz. readlink() returns the number of bytes which have been placed in the buffer buf, or the value -1 upon failure. readlink() should dereference any symbolic links encountered in the path (that is, the returned name should not be a name of a symbolic link). Protection from loops Symbolic links to directories may cause infinite loops. We shall tackle this issue in the same manner as done in UNIX, by limiting the degree of a chain of links to 16. I.e. when retrieving the target of a link, which points to a link, which points to a link, and so on The max number of jumps we will allow is 16. Longer chains will be considered as loops. Extending sym-link support Extend the user applications to handle symbolic links as if it were the target file. I.e. cat some_link should display the contents of the target file, to which the symbolic link some_link points. Notice we always dereference symbolic links in the path as long as it is not the file name (for example, when Path = a/b/c.txt, where a and c.txt are symbolic links, we will always dereference a but c.txt will be dereferenced only if requested). To do so you will need to change the open, chdir and exec system calls so that: open by default dereferences symbolic links, add a mode to ignore dereferences. chdir / exec by default dereference symbolic links. The application ls should list symbolic links as they are, so it must open those files without the dereference mode. 3

4 P A R T 2 : File Locking Linux systems allow the user to control access to files using a permission system. This system tags every file with different privileges according to users or groups. In xv6, however, this mechanism was not implemented. In order to add some kind of security measure you will implement a file protection mechanism based on passwords. Each i-node will now have a field to hold a password, which is made up of up to 10 ASCII characters (including \0 ). The file protection mechanism will allow the user to password-protect and unprotect a file or to temporary unlock a protected file for use of a given process. Only files can be protected (T_FILE). The following system calls should be implemented in order to support file protection: int fprot (const char *pathname, const char* password); fprot() adds the password to the i-node of the given pathname. If the file is already open by any process or already protected then the operation will fail (return a negative number). Once the file is protected any access to it via open, exec,ect should fail. Notice that the operation should only succeed for files. int funprot (const char *pathname, const char* password); funprot() compares the given password to the password written on the i-node of the given pathname. If it is equal to the password, the password will be removed, thus making the file unprotected. The operation will fail only if the i-node had a password and it does not fit the given one. int funlock (const char *pathname, const char* password); funlock(), unlocks the file for use of only the process id that called it. In this way it is different from funprot, which affects all the processes that may want to use the file. After a process unlocks a file it is able to use operations like open or exec on that file (even though the file remains protected). You may use the fact that the number of i-nodes and processes in the system is fixed. Notice that fork-ing a process should preserve unlocked files in the new process. Make sure to clear unlocked files when processes die (process ids are recycled). Sanity test Write a program that receives 2 arguments, a password and a path. The program should act as follows. 1. Protect the file in the given path with the given password. 2. Use fork: Child process: a. Unlock the file b. Open the file and print its content. c. Close the file. 4

5 Parent process: a. Wait for child process to die. b. Open the file in the given path. c. If the open failed, write failed to open file. d. Unprotect the file. After that try and read the file using the cat command. Also, try and leave the file protected and then read from it with cat (cat should fail). 5

6 PA R T 3 : F IN D A P P L I C A T I O N The Find application is required by POSIX, and is found in many UNIX-like systems. It is used to search the file system for files matching user-specified criteria, and apply a userspecified action on each matching file. It is a very useful application and you are requested to implement a (very) simplistic version of it. The syntax of find which you are to implement is: find <path> <options> <preds> The path argument, which is the only mandatory argument, specifies the location where the search should begin and descend from. In case the provided path is a file and not a directory, then only the specified file will be tested for the specified criteria. The rest of the arguments are optional and are explained below. The output of find should be the full paths of all matches. Options -follow Dereference symbolic links. If a symbolic link is encountered, apply tests to the target of the link. If a symbolic link points to a directory, then descend into it. -help Print a summary of the command-line usage of find and exit. Predicates -name filename All files named (exactly, no wildcards) filename. -size (+/-)n File is of size n (exactly), +n (more than n), -n (less than n). -type c File is of type c: d directory f regular file s soft (symbolic) link 6

7 Examples find / type d -name xv6 Search the whole file system for directories named xv6. find /src name xv6 Search /src and all its subdirectories recursively for files, directories and links named xv6. find / f size Find all files having size greater than bytes. Submission guidelines Assignment due date: 15/06/ :59 Make sure that your Makefile is properly updated and that your code compiles with no warnings whatsoever. We strongly recommend documenting your code changes with comments these are often handy when discussing your code with the graders. Due to our constrained resources, assignments are only allowed in pairs. Please note this important point and try to match up with a partner as soon as possible. Submissions are only allowed through the submission system. To avoid submitting a large number of xv6 builds you are required to submit an svn patch (i.e. a file which patches the original xv6 and applies all your changes). Tip: although graders will only apply your latest patch file, the submission system supports multiple uploads. Use this feature often and make sure you upload patches of your current work even if you haven t completed the assignment. Finally, you should note that graders are instructed to examine your code on lab computers only (!) - Test your code on lab computers prior to submission. Enjoy! 7

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEM

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEM OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEM Introduction The File system is an integral part of every operating system. The use of files enables the user to save persistent data. Files can also be used

More information

OPERATING SYSTEMS ASSIGNMENT 4 XV6 file system

OPERATING SYSTEMS ASSIGNMENT 4 XV6 file system OPERATING SYSTEMS ASSIGNMENT 4 XV6 file system Introduction In most systems the main weakness of the file system stems from the data access time, which is much longer than accessing the memory. For certain

More information

Introduction. Xv6 memory

Introduction. Xv6 memory O P E R A T I N G S Y S T E M S A S S I G N M E N T 3 M E M O R Y M A N A G E M E N T Introduction Memory management and memory abstraction is one of the most important features of any operating system.

More information

OPERATING SYSTEMS ASSIGNMENT 3 MEMORY MANAGEMENT

OPERATING SYSTEMS ASSIGNMENT 3 MEMORY MANAGEMENT OPERATING SYSTEMS ASSIGNMENT 3 MEMORY MANAGEMENT Introduction Memory management and memory abstraction is one of the most important features of any operating system. In this assignment we will examine

More information

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEMS

OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEMS OPERATING SYSTEMS ASSIGNMENT 4 FILE SYSTEMS The xv6 file system provides Unix-like files, directories, and pathnames, and stores its data on an IDE disk for persistence. The file-system addresses several

More information

Operating Systems, Assignment 2 Threads and Synchronization

Operating Systems, Assignment 2 Threads and Synchronization Operating Systems, Assignment 2 Threads and Synchronization Responsible TA's: Zohar and Matan Assignment overview The assignment consists of the following parts: 1) Kernel-level threads package 2) Synchronization

More information

OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS

OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS Introduction In this assignment we will add synchronization tools\methods to the xv6 kernel. We start with a simple binary semaphore and then

More information

OPERATING SYSTEMS, ASSIGNMENT 2 KERNEL THREADS IN XV6, SYNCHRONIZATION

OPERATING SYSTEMS, ASSIGNMENT 2 KERNEL THREADS IN XV6, SYNCHRONIZATION OPERATING SYSTEMS, ASSIGNMENT 2 KERNEL THREADS IN XV6, SYNCHRONIZATION SUBMISSION DATE: 9/5/2013 Task 0: Downloading xv6 Begin by downloading our revision of xv6, from the os112 svn repository: Open a

More information

Files and File Systems

Files and File Systems File Systems 1 Files and File Systems files: persistent, named data objects data consists of a sequence of numbered bytes alternatively, a file may have some internal structure, e.g., a file may consist

More information

Fall 2017 :: CSE 306. File Systems Basics. Nima Honarmand

Fall 2017 :: CSE 306. File Systems Basics. Nima Honarmand File Systems Basics Nima Honarmand File and inode File: user-level abstraction of storage (and other) devices Sequence of bytes inode: internal OS data structure representing a file inode stands for index

More information

Last Week: ! Efficiency read/write. ! The File. ! File pointer. ! File control/access. This Week: ! How to program with directories

Last Week: ! Efficiency read/write. ! The File. ! File pointer. ! File control/access. This Week: ! How to program with directories Overview Unix System Programming Directories and File System Last Week:! Efficiency read/write! The File! File pointer! File control/access This Week:! How to program with directories! Brief introduction

More information

Universidad Carlos III de Madrid Computer Science and Engineering Department Operating Systems Course

Universidad Carlos III de Madrid Computer Science and Engineering Department Operating Systems Course Exercise 1 (20 points). Autotest. Answer the quiz questions in the following table. Write the correct answer with its corresponding letter. For each 3 wrong answer, one correct answer will be subtracted

More information

Files and File Systems

Files and File Systems File Systems 1 files: persistent, named data objects Files and File Systems data consists of a sequence of numbered bytes file may change size over time file has associated meta-data examples: owner, access

More information

The UNIX File System

The UNIX File System The UNIX File System Magnus Johansson May 9, 2007 1 UNIX file system A file system is created with mkfs. It defines a number of parameters for the system, such as: bootblock - contains a primary boot program

More information

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION Responsible TAs: Vadim Levit & Benny Lutati Introduction In this assignment we will extend xv6 to support a simple signal

More information

ADVANCED OPERATING SYSTEMS

ADVANCED OPERATING SYSTEMS ADVANCED OPERATING SYSTEMS UNIT I INTRODUCTION TO UNIX/LINUX KERNEL BY MR.PRASAD SAWANT Prof.Prasad Sawant,Assitiant Professor,Dept. Of CS PCCCS PREREQUISITES: 1. Working knowledge of C programming. 2.

More information

The UNIX File System

The UNIX File System The UNIX File System Magnus Johansson (May 2007) 1 UNIX file system A file system is created with mkfs. It defines a number of parameters for the system as depicted in figure 1. These paremeters include

More information

5/8/2012. Creating and Changing Directories Chapter 7

5/8/2012. Creating and Changing Directories Chapter 7 Creating and Changing Directories Chapter 7 Types of files File systems concepts Using directories to create order. Managing files in directories. Using pathnames to manage files in directories. Managing

More information

Creating a Shell or Command Interperter Program CSCI411 Lab

Creating a Shell or Command Interperter Program CSCI411 Lab Creating a Shell or Command Interperter Program CSCI411 Lab Adapted from Linux Kernel Projects by Gary Nutt and Operating Systems by Tannenbaum Exercise Goal: You will learn how to write a LINUX shell

More information

CS140 Operating Systems Final December 12, 2007 OPEN BOOK, OPEN NOTES

CS140 Operating Systems Final December 12, 2007 OPEN BOOK, OPEN NOTES CS140 Operating Systems Final December 12, 2007 OPEN BOOK, OPEN NOTES Your name: SUNet ID: In accordance with both the letter and the spirit of the Stanford Honor Code, I did not cheat on this exam. Furthermore,

More information

Project #1: Tracing, System Calls, and Processes

Project #1: Tracing, System Calls, and Processes Project #1: Tracing, System Calls, and Processes Objectives In this project, you will learn about system calls, process control and several different techniques for tracing and instrumenting process behaviors.

More information

Introduction to Linux. Fundamentals of Computer Science

Introduction to Linux. Fundamentals of Computer Science Introduction to Linux Fundamentals of Computer Science Outline Operating Systems Linux History Linux Architecture Logging in to Linux Command Format Linux Filesystem Directory and File Commands Wildcard

More information

CS 307: UNIX PROGRAMMING ENVIRONMENT FIND COMMAND

CS 307: UNIX PROGRAMMING ENVIRONMENT FIND COMMAND CS 307: UNIX PROGRAMMING ENVIRONMENT FIND COMMAND Prof. Michael J. Reale Fall 2014 Finding Files in a Directory Tree Suppose you want to find a file with a certain filename (or with a filename matching

More information

Overview. Unix System Programming. Outline. Directory Implementation. Directory Implementation. Directory Structure. Directories & Continuation

Overview. Unix System Programming. Outline. Directory Implementation. Directory Implementation. Directory Structure. Directories & Continuation Overview Unix System Programming Directories & Continuation Maria Hybinette, UGA 1 Last Week: Efficiency read/write The File File pointer File control/access Permissions, Meta Data, Ownership, umask, holes

More information

ENGR 3950U / CSCI 3020U (Operating Systems) Simulated UNIX File System Project Instructor: Dr. Kamran Sartipi

ENGR 3950U / CSCI 3020U (Operating Systems) Simulated UNIX File System Project Instructor: Dr. Kamran Sartipi ENGR 3950U / CSCI 3020U (Operating Systems) Simulated UNIX File System Project Instructor: Dr. Kamran Sartipi Your project is to implement a simple file system using C language. The final version of your

More information

CSC209H Lecture 1. Dan Zingaro. January 7, 2015

CSC209H Lecture 1. Dan Zingaro. January 7, 2015 CSC209H Lecture 1 Dan Zingaro January 7, 2015 Welcome! Welcome to CSC209 Comments or questions during class? Let me know! Topics: shell and Unix, pipes and filters, C programming, processes, system calls,

More information

Operating Systems Synchronization and Signals

Operating Systems Synchronization and Signals OS162: Assignment 2 Operating Systems Synchronization and Signals TAs in charge Vadim Levit levitv@post.bgu.ac.il Benny Lutati bennyl@post.bgu.ac.il Due Date: 30.04.2016 1 Introduction The assignment main

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST - 2 Date : 20/09/2016 Max Marks : 0 Subject & Code : Unix Shell Programming (15CS36) Section : 3 rd Sem ISE/CSE Name of faculty : Prof Ajoy Time : 11:30am to 1:00pm SOLUTIONS 1

More information

Operating Systems. Lecture 06. System Calls (Exec, Open, Read, Write) Inter-process Communication in Unix/Linux (PIPE), Use of PIPE on command line

Operating Systems. Lecture 06. System Calls (Exec, Open, Read, Write) Inter-process Communication in Unix/Linux (PIPE), Use of PIPE on command line Operating Systems Lecture 06 System Calls (Exec, Open, Read, Write) Inter-process Communication in Unix/Linux (PIPE), Use of PIPE on command line March 04, 2013 exec() Typically the exec system call is

More information

CST8207: GNU/Linux Operating Systems I Lab Ten Boot Process and GRUB. Boot Process and GRUB

CST8207: GNU/Linux Operating Systems I Lab Ten Boot Process and GRUB. Boot Process and GRUB Student Name: Lab Section: Boot Process and GRUB 1 Due Date - Upload to Blackboard by 8:30am Monday April 16, 2012 Submit the completed lab to Blackboard following the Rules for submitting Online Labs

More information

Windows architecture. user. mode. Env. subsystems. Executive. Device drivers Kernel. kernel. mode HAL. Hardware. Process B. Process C.

Windows architecture. user. mode. Env. subsystems. Executive. Device drivers Kernel. kernel. mode HAL. Hardware. Process B. Process C. Structure Unix architecture users Functions of the System tools (shell, editors, compilers, ) standard library System call Standard library (printf, fork, ) OS kernel: processes, memory management, file

More information

1 The Var Shell (vsh)

1 The Var Shell (vsh) CS 470G Project 1 The Var Shell Due Date: February 7, 2011 In this assignment, you will write a shell that allows the user to interactively execute Unix programs. Your shell, called the Var Shell (vsh),

More information

CSC209S Midterm (L0101) Spring 1999 University of Toronto Department of Computer Science

CSC209S Midterm (L0101) Spring 1999 University of Toronto Department of Computer Science CSC209S Midterm (L0101) Spring 1999 University of Toronto Department of Computer Science Date: February 26, 1999 Time: 12:10 pm Duration: 50 minutes Notes: 1. This is a closed book test, no aids are allowed.

More information

Basic OS Progamming Abstrac7ons

Basic OS Progamming Abstrac7ons Basic OS Progamming Abstrac7ons Don Porter Recap We ve introduced the idea of a process as a container for a running program And we ve discussed the hardware- level mechanisms to transi7on between the

More information

AC109/AT109 UNIX & SHELL PROGRAMMING DEC 2014

AC109/AT109 UNIX & SHELL PROGRAMMING DEC 2014 Q.2 a. Explain the principal components: Kernel and Shell, of the UNIX operating system. Refer Page No. 22 from Textbook b. Explain absolute and relative pathnames with the help of examples. Refer Page

More information

Basic OS Progamming Abstrac2ons

Basic OS Progamming Abstrac2ons Basic OS Progamming Abstrac2ons Don Porter Recap We ve introduced the idea of a process as a container for a running program And we ve discussed the hardware- level mechanisms to transi2on between the

More information

CS Lab 1 xv6 Introduction Setup and exercise

CS Lab 1 xv6 Introduction Setup and exercise CS 1550 Lab 1 xv6 Introduction Setup and exercise CS 1550 Kernel Space vs User Space OS manages hardware, services and user processes CPU Memory (Address space) I/O devices (Disk, mouse, video card, sound,

More information

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions. Linux File System Permissions (modes) - Part 1

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions. Linux File System Permissions (modes) - Part 1 Student Name: Lab Section: Linux File System Permissions (modes) - Part 1 Due Date - Upload to Blackboard by 8:30am Monday March 12, 2012 Submit the completed lab to Blackboard following the Rules for

More information

Systems Programming and Computer Architecture ( ) Exercise Session 01 Data Lab

Systems Programming and Computer Architecture ( ) Exercise Session 01 Data Lab Systems Programming and Computer Architecture (252-0061-00) Exercise Session 01 Data Lab 1 Goal Get familiar with bit level representations, C and Linux Thursday, September 22, 2016 Systems Programming

More information

Files and Directories

Files and Directories Files and Directories Stat functions Given pathname, stat function returns structure of information about file fstat function obtains information about the file that is already open lstat same as stat

More information

User Programs. Computer Systems Laboratory Sungkyunkwan University

User Programs. Computer Systems Laboratory Sungkyunkwan University Project 2: User Programs Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Supporting User Programs What should be done to run user programs? 1. Provide

More information

Lecture 19: File System Implementation. Mythili Vutukuru IIT Bombay

Lecture 19: File System Implementation. Mythili Vutukuru IIT Bombay Lecture 19: File System Implementation Mythili Vutukuru IIT Bombay File System An organization of files and directories on disk OS has one or more file systems Two main aspects of file systems Data structures

More information

Lecture 17. Log into Linux. Copy two subdirectories in /home/hwang/cs375/lecture17/ $ cp r /home/hwang/cs375/lecture17/*.

Lecture 17. Log into Linux. Copy two subdirectories in /home/hwang/cs375/lecture17/ $ cp r /home/hwang/cs375/lecture17/*. Lecture 17 Log into Linux. Copy two subdirectories in /home/hwang/cs375/lecture17/ $ cp r /home/hwang/cs375/lecture17/*. Both subdirectories have makefiles that will make all the programs. The "unnamed"

More information

Project 2: Shell with History1

Project 2: Shell with History1 Project 2: Shell with History1 See course webpage for due date. Submit deliverables to CourSys: https://courses.cs.sfu.ca/ Late penalty is 10% per calendar day (each 0 to 24 hour period past due). Maximum

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Information Sciences and Engineering

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Information Sciences and Engineering INTERNAL ASSESSMENT TEST 2 Solutions 1. Explain the working of the waitpid() API with the help of a program. The program needs to take 2 command line arguments: the first argument should be used as the

More information

$Id: asg4-shell-tree.mm,v :36: $

$Id: asg4-shell-tree.mm,v :36: $ cmps012b 2002q2 Assignment 4 Shell and Tree Structure page 1 $Id: asg4-shell-tree.mm,v 323.32 2002-05-08 15:36:09-07 - - $ 1. Overview A data structure that is useful in many applications is the Tree.

More information

(In columns, of course.)

(In columns, of course.) CPS 310 first midterm exam, 10/9/2013 Your name please: Part 1. Fun with forks (a) What is the output generated by this program? In fact the output is not uniquely defined, i.e., it is not always the same.

More information

File Systems. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

File Systems. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University File Systems Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) File System Layers

More information

Shell Project Part 1 (140 points)

Shell Project Part 1 (140 points) CS 453: Operating Systems Project 1 Shell Project Part 1 (140 points) 1 Setup All the programming assignments for Linux will be graded on the onyx cluster(onyx.boisestate.edu). Please test your programs

More information

File Systems. CS170 Fall 2018

File Systems. CS170 Fall 2018 File Systems CS170 Fall 2018 Table of Content File interface review File-System Structure File-System Implementation Directory Implementation Allocation Methods of Disk Space Free-Space Management Contiguous

More information

Programming Assignment #1: A Simple Shell

Programming Assignment #1: A Simple Shell Programming Assignment #1: A Simple Shell Due: Check My Courses In this assignment you are required to create a C program that implements a shell interface that accepts user commands and executes each

More information

518 Lecture Notes Week 3

518 Lecture Notes Week 3 518 Lecture Notes Week 3 (Sept. 15, 2014) 1/8 518 Lecture Notes Week 3 1 Topics Process management Process creation with fork() Overlaying an existing process with exec Notes on Lab 3 2 Process management

More information

Operating Systems 2014 Assignment 4: File Systems

Operating Systems 2014 Assignment 4: File Systems Operating Systems 2014 Assignment 4: File Systems Deadline: Sunday, May 25 before 23:59 hours. 1 Introduction A disk can be accessed as an array of disk blocks, often each block is 512 bytes in length.

More information

18-Sep CSCI 2132 Software Development Lecture 6: Links and Inodes. Faculty of Computer Science, Dalhousie University. Lecture 6 p.

18-Sep CSCI 2132 Software Development Lecture 6: Links and Inodes. Faculty of Computer Science, Dalhousie University. Lecture 6 p. Lecture 6 p.1 Faculty of Computer Science, Dalhousie University CSCI 2132 Software Development Lecture 6: Links and s 18-Sep-2017 Location: Goldberg CS 127 Time: 14:35 15:25 Instructor: Vlado Keselj Previous

More information

File Descriptors and Piping

File Descriptors and Piping File Descriptors and Piping CSC209: Software Tools and Systems Programming Furkan Alaca & Paul Vrbik University of Toronto Mississauga https://mcs.utm.utoronto.ca/~209/ Week 8 Today s topics File Descriptors

More information

The bigger picture. File systems. User space operations. What s a file. A file system is the user space implementation of persistent storage.

The bigger picture. File systems. User space operations. What s a file. A file system is the user space implementation of persistent storage. The bigger picture File systems Johan Montelius KTH 2017 A file system is the user space implementation of persistent storage. a file is persistent i.e. it survives the termination of a process a file

More information

Operating Systems Lab

Operating Systems Lab Operating Systems Lab Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 4010: Operating Systems Lab Eng: Ahmed M. Ayash Lab # 4 Paths, Links & File Permissions

More information

Machine Problem 3: UNIX System Programming. 100 points + 10 bonus points Due date: To Be Announced

Machine Problem 3: UNIX System Programming. 100 points + 10 bonus points Due date: To Be Announced Machine Problem 3: UNIX System Programming 1 Introduction 100 points + 10 bonus points Due date: To Be Announced As opposed to the previous projects in this course, MP3 focuses on system programming as

More information

CS 470 Operating Systems Spring 2013 Shell Project

CS 470 Operating Systems Spring 2013 Shell Project CS 470 Operating Systems Spring 2013 Shell Project 40 points Out: January 11, 2013 Due: January 25, 2012 (Friday) The purpose of this project is provide experience with process manipulation and signal

More information

FILE SYSTEMS. Tanzir Ahmed CSCE 313 Fall 2018

FILE SYSTEMS. Tanzir Ahmed CSCE 313 Fall 2018 FILE SYSTEMS Tanzir Ahmed CSCE 313 Fall 2018 References Previous offerings of the same course by Prof Tyagi and Bettati Textbook: Operating System Principles and Practice 2 The UNIX File System File Systems

More information

Lab #1 Installing a System Due Friday, September 6, 2002

Lab #1 Installing a System Due Friday, September 6, 2002 Lab #1 Installing a System Due Friday, September 6, 2002 Name: Lab Time: Grade: /10 The Steps of Installing a System Today you will install a software package. Implementing a software system is only part

More information

CS 4410, Fall 2017 Project 1: My First Shell Assigned: August 27, 2017 Due: Monday, September 11:59PM

CS 4410, Fall 2017 Project 1: My First Shell Assigned: August 27, 2017 Due: Monday, September 11:59PM CS 4410, Fall 2017 Project 1: My First Shell Assigned: August 27, 2017 Due: Monday, September 11th @ 11:59PM Introduction The purpose of this assignment is to become more familiar with the concepts of

More information

Operating Systems 2015 Assignment 4: File Systems

Operating Systems 2015 Assignment 4: File Systems Operating Systems 2015 Assignment 4: File Systems Deadline: Tuesday, May 26 before 23:59 hours. 1 Introduction A disk can be accessed as an array of disk blocks, often each block is 512 bytes in length.

More information

Project 4: File System Implementation 1

Project 4: File System Implementation 1 Project 4: File System Implementation 1 Submit a gzipped tarball of your code to CourseWeb. Due: Friday, December 7, 2018 @11:59pm Late: Sunday, December 9, 2018 @11:59pm with 10% reduction per late day

More information

CS 1550 Project 3: File Systems Directories Due: Sunday, July 22, 2012, 11:59pm Completed Due: Sunday, July 29, 2012, 11:59pm

CS 1550 Project 3: File Systems Directories Due: Sunday, July 22, 2012, 11:59pm Completed Due: Sunday, July 29, 2012, 11:59pm CS 1550 Project 3: File Systems Directories Due: Sunday, July 22, 2012, 11:59pm Completed Due: Sunday, July 29, 2012, 11:59pm Description FUSE (http://fuse.sourceforge.net/) is a Linux kernel extension

More information

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Fall Programming Assignment 1 (updated 9/16/2017)

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Fall Programming Assignment 1 (updated 9/16/2017) UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Fall 2017 Programming Assignment 1 (updated 9/16/2017) Introduction The purpose of this programming assignment is to give you

More information

Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring Topic Notes: C and Unix Overview

Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring Topic Notes: C and Unix Overview Computer Science 2500 Computer Organization Rensselaer Polytechnic Institute Spring 2009 Topic Notes: C and Unix Overview This course is about computer organization, but since most of our programming is

More information

CS Operating Systems Lab 3: UNIX Processes

CS Operating Systems Lab 3: UNIX Processes CS 346 - Operating Systems Lab 3: UNIX Processes Due: February 15 Purpose: In this lab you will become familiar with UNIX processes. In particular you will examine processes with the ps command and terminate

More information

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017 ECE 550D Fundamentals of Computer Systems and Engineering Fall 2017 The Operating System (OS) Prof. John Board Duke University Slides are derived from work by Profs. Tyler Bletsch and Andrew Hilton (Duke)

More information

Basic OS Programming Abstractions (and Lab 1 Overview)

Basic OS Programming Abstractions (and Lab 1 Overview) Basic OS Programming Abstractions (and Lab 1 Overview) Don Porter Portions courtesy Kevin Jeffay 1 Recap We ve introduced the idea of a process as a container for a running program This lecture: Introduce

More information

Operating systems. Lecture 7

Operating systems. Lecture 7 Operating systems. Lecture 7 Michał Goliński 2018-11-13 Introduction Recall Plan for today History of C/C++ Compiler on the command line Automating builds with make CPU protection rings system calls pointers

More information

CS2028 -UNIX INTERNALS

CS2028 -UNIX INTERNALS DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY,SIRUVACHUR-621113. CS2028 -UNIX INTERNALS PART B UNIT 1 1. Explain briefly details about History of UNIX operating system? In 1965, Bell Telephone

More information

use File::Find; find({ wanted => \&process, follow => 1 }, '.');

use File::Find; find({ wanted => \&process, follow => 1 }, '.'); NAME SYNOPSIS File::Find - Traverse a directory tree. find(\&wanted, @directories_to_search); sub wanted {... } finddepth(\&wanted, @directories_to_search); sub wanted {... } DESCRIPTION find({ wanted

More information

Unix Internal Assessment-2 solution. Ans:There are two ways of starting a job in the background with the shell s & operator and the nohup command.

Unix Internal Assessment-2 solution. Ans:There are two ways of starting a job in the background with the shell s & operator and the nohup command. Unix Internal Assessment-2 solution 1 a.explain the mechanism of process creation. Ans: There are three distinct phases in the creation of a process and uses three important system calls viz., fork, exec,

More information

File Systems Overview. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University

File Systems Overview. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University File Systems Overview Jin-Soo Kim ( jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics File system basics Directory structure File system mounting

More information

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing. Bash Scripting. Alessandro Barenghi

Introduction Variables Helper commands Control Flow Constructs Basic Plumbing. Bash Scripting. Alessandro Barenghi Bash Scripting Alessandro Barenghi Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano alessandro.barenghi - at - polimi.it April 28, 2015 Introduction The bash command shell

More information

Implementation of Pipe under C in Linux. Tushar B. Kute,

Implementation of Pipe under C in Linux. Tushar B. Kute, Implementation of Pipe under C in Linux Tushar B. Kute, http://tusharkute.com Pipe We use the term pipe to mean connecting a data flow from one process to another. Generally you attach, or pipe, the output

More information

CSC209 Review. Yeah! We made it!

CSC209 Review. Yeah! We made it! CSC209 Review Yeah! We made it! 1 CSC209: Software tools Unix files and directories permissions utilities/commands Shell programming quoting wild cards files 2 ... and C programming... C basic syntax functions

More information

This is Worksheet and Assignment 12. Disks, Partitions, and File Systems

This is Worksheet and Assignment 12. Disks, Partitions, and File Systems This is Worksheet and Assignment 12 This is a combined Worksheet and Assignment.. Quizzes and tests may refer to work done in this Worksheet and Assignment; save your answers. You will use a checking program

More information

Each terminal window has a process group associated with it this defines the current foreground process group. Keyboard-generated signals are sent to

Each terminal window has a process group associated with it this defines the current foreground process group. Keyboard-generated signals are sent to Each terminal window has a process group associated with it this defines the current foreground process group. Keyboard-generated signals are sent to all processes in the current window s process group.

More information

CSI 402 Lecture 11 (Unix Discussion on Files continued) 11 1 / 19

CSI 402 Lecture 11 (Unix Discussion on Files continued) 11 1 / 19 CSI 402 Lecture 11 (Unix Discussion on Files continued) 11 1 / 19 User and Group IDs Ref: Chapter 3 of [HGS]. Each user is given an ID (integer) called uid. (Most system programs use uid instead of the

More information

NAME SYNOPSIS DESCRIPTION. Behavior of other Perl features in forked pseudo-processes. Perl version documentation - perlfork

NAME SYNOPSIS DESCRIPTION. Behavior of other Perl features in forked pseudo-processes. Perl version documentation - perlfork NAME SYNOPSIS DESCRIPTION perlfork - Perl's fork() emulation NOTE: As of the 5.8.0 release, fork() emulation has considerably matured. However, there are still a few known bugs and differences from real

More information

VIRTUAL FILE SYSTEM AND FILE SYSTEM CONCEPTS Operating Systems Design Euiseong Seo

VIRTUAL FILE SYSTEM AND FILE SYSTEM CONCEPTS Operating Systems Design Euiseong Seo VIRTUAL FILE SYSTEM AND FILE SYSTEM CONCEPTS 2016 Operating Systems Design Euiseong Seo (euiseong@skku.edu) File Layout An entity that separates and isolates data Files have meanings only to applications

More information

Compiler Design: Lab 3 Fall 2009

Compiler Design: Lab 3 Fall 2009 15-411 Compiler Design: Lab 3 Fall 2009 Instructor: Frank Pfenning TAs: Ruy Ley-Wild and Miguel Silva Test Programs Due: 11:59pm, Thursday, October 8, 2009 Compilers Due: 11:59pm, Thursday, October 15,

More information

File and Directories. Advanced Programming in the UNIX Environment

File and Directories. Advanced Programming in the UNIX Environment File and Directories Advanced Programming in the UNIX Environment stat Function #include int stat(const char *restrict pathname, struct stat *restrict buf ); int fstat(int fd, struct stat

More information

reclaim disk space by shrinking files

reclaim disk space by shrinking files Sandeep Sahore reclaim disk space by shrinking files Sandeep Sahore holds a Master s degree in computer science from the University of Toledo and has nearly 15 years of experience in the computing industry.

More information

Project 1: Implementing a Shell

Project 1: Implementing a Shell Assigned: August 28, 2015, 12:20am Due: September 21, 2015, 11:59:59pm Project 1: Implementing a Shell Purpose The purpose of this project is to familiarize you with the mechanics of process control through

More information

CS 450 Introduction to Networking Spring 2014 Homework Assignment 1 File Transfer and Data Bandwidth Analysis Tool

CS 450 Introduction to Networking Spring 2014 Homework Assignment 1 File Transfer and Data Bandwidth Analysis Tool CS 450 Introduction to Networking Spring 2014 Homework Assignment 1 File Transfer and Data Bandwidth Analysis Tool Due: Monday 17 February. Electronic copy due at 10:30 A.M., Optional paper copy may be

More information

CSC374, Spring 2010 Lab Assignment 1: Writing Your Own Unix Shell

CSC374, Spring 2010 Lab Assignment 1: Writing Your Own Unix Shell CSC374, Spring 2010 Lab Assignment 1: Writing Your Own Unix Shell Contact me (glancast@cs.depaul.edu) for questions, clarification, hints, etc. regarding this assignment. Introduction The purpose of this

More information

INTRODUCTION...2 REQUIREMENTS...2 INSTALLATION...2 DISTRIBUTION...2 SAMPLE APPLICATION...3 FUNCTION: WinsockRCP...4

INTRODUCTION...2 REQUIREMENTS...2 INSTALLATION...2 DISTRIBUTION...2 SAMPLE APPLICATION...3 FUNCTION: WinsockRCP...4 Copyright 2002 Denicomp Systems. All rights reserved. INTRODUCTION...2 REQUIREMENTS...2 INSTALLATION...2 DISTRIBUTION...2 SAMPLE APPLICATION...3 FUNCTION: WinsockRCP...4 Usage... 4 Parameters... 4 Source

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 15: Software Security II Department of Computer Science and Engineering University at Buffalo 1 Software Vulnerabilities Buffer overflow vulnerabilities account

More information

RCU. ò Walk through two system calls in some detail. ò Open and read. ò Too much code to cover all FS system calls. ò 3 Cases for a dentry:

RCU. ò Walk through two system calls in some detail. ò Open and read. ò Too much code to cover all FS system calls. ò 3 Cases for a dentry: Logical Diagram VFS, Continued Don Porter CSE 506 Binary Formats RCU Memory Management File System Memory Allocators System Calls Device Drivers Networking Threads User Today s Lecture Kernel Sync CPU

More information

VFS, Continued. Don Porter CSE 506

VFS, Continued. Don Porter CSE 506 VFS, Continued Don Porter CSE 506 Logical Diagram Binary Formats Memory Allocators System Calls Threads User Today s Lecture Kernel RCU File System Networking Sync Memory Management Device Drivers CPU

More information

Lab 09 - Virtual Memory

Lab 09 - Virtual Memory Lab 09 - Virtual Memory Due: November 19, 2017 at 4:00pm 1 mmapcopy 1 1.1 Introduction 1 1.1.1 A door predicament 1 1.1.2 Concepts and Functions 2 1.2 Assignment 3 1.2.1 mmap copy 3 1.2.2 Tips 3 1.2.3

More information

Project 4: Application Security

Project 4: Application Security CS461/ECE422 October 23, 2015 Computer Security I Project 4: Application Security Project 4: Application Security This project is split into two parts, with the first checkpoint due on Friday, October

More information

SE350: Operating Systems

SE350: Operating Systems SE350: Operating Systems Tutorial: The Programming Interface Main Points Creating and managing processes fork, exec, wait Example: implementing a shell Shell A shell is a job control system Allows programmer

More information

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files CSC209 Review CSC209: Software tools Unix files and directories permissions utilities/commands Shell programming quoting wild cards files ... and systems programming C basic syntax functions arrays structs

More information

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files. Compiler vs.

CSC209: Software tools. Unix files and directories permissions utilities/commands Shell programming quoting wild cards files. Compiler vs. CSC209 Review CSC209: Software tools Unix files and directories permissions utilities/commands Shell programming quoting wild cards files... and systems programming C basic syntax functions arrays structs

More information

CSCI 4061: Pipes and FIFOs

CSCI 4061: Pipes and FIFOs 1 CSCI 4061: Pipes and FIFOs Chris Kauffman Last Updated: Thu Oct 26 12:44:54 CDT 2017 2 Logistics Reading Robbins and Robbins Ch 6.1-6.5 OR Stevens/Rago Ch 15.1-5 Goals Sending Signals in C Signal Handlers

More information

ENGR 3950U / CSCI 3020U Midterm Exam SOLUTIONS, Fall 2012 SOLUTIONS

ENGR 3950U / CSCI 3020U Midterm Exam SOLUTIONS, Fall 2012 SOLUTIONS SOLUTIONS ENGR 3950U / CSCI 3020U (Operating Systems) Midterm Exam October 23, 2012, Duration: 80 Minutes (10 pages, 12 questions, 100 Marks) Instructor: Dr. Kamran Sartipi Question 1 (Computer Systgem)

More information