Cooperative Concurrency for a Multicore World

Size: px
Start display at page:

Download "Cooperative Concurrency for a Multicore World"

Transcription

1 Cooperative Concurrency for a Multicore World Stephen Freund Williams College Cormac Flanagan, Tim Disney, Caitlin Sadowski, Jaeheon Yi, UC Santa Cruz

2 Controlling Thread Interference: #1 Manually x = 0; while (x < len) { tmp = a[x]; b[x] = tmp; x++; x = 0; while (x < len) { interference tmp = a[x]; interference b[x] = tmp; x++; + Works some of the time Easy to make mistakes

3 Controlling Thread Interference: #2 Enforce Race Freedom Race: concurrent conflicting accesses Thread A t1 = bal; bal = t1 + 10; Thread B t2 = bal; bal = t2 10; Thread A t1 = bal bal = t Thread B t2 = bal bal = t2-10

4 Controlling Thread Interference: #2 Enforce Race Freedom Race: concurrent conflicting accesses Thread A t1 = bal; bal = t1 + 10; Thread B t2 = bal; bal = t2 10; Thread A t1 = bal bal = t Thread B t2 = bal bal = t2-10

5 Controlling Thread Interference: #2 Enforce Race Freedom + Races are correlated to defects + Race-freedom ensures sequentially-consistent behavior But not sufficient Thread A t1 = bal; bal = t1 + 10; Thread B t2 = bal; bal = t2 10; Thread A t1 = bal bal = t Thread B t2 = bal bal = t2-10

6 Controlling Thread Interference: #2 Enforce Race Freedom Thread A ; t1 = bal; ; ; bal = t1 + 10; ; Thread B ; bal = 0 ; Thread A t1 = bal bal = t Thread B bal = 0

7 Controlling Thread Interference: #3 Enforce Atomicity Atomic method must behave as if it executes serially, without interleaved operations of other thread void copy() { x = 0; while (x < len) { tmp = a[x]; b[x] = tmp; x++;

8 Controlling Thread Interference: #3 Enforce Atomicity Atomic method must behave as if it executes serially, without interleaved operations of other threads atomic void copy() { x = 0; while (x < len) { tmp = a[x]; b[x] = tmp; x++; + Can use sequential reasoning in atomic methods + 90% of methods are atomic

9 Controlling Thread Interference: #3 Enforce Atomicity Atomic method must behave as if it executes serially, without interleaved operations of other threads 10% of methods aren't No information about thread interference Local atomic blocks awkward void busy_wait() { ; while (!test()) { ; ; x++;

10 Controlling Thread Interference: #3 Enforce Atomicity Atomic method must behave as if it executes serially, without interleaved operations of other threads atomic void copy() { x = 0; while (x < len) { tmp = a[x]; b[x] = tmp; x++; Bimodal Semantics atomic vs. read-modify-write void busy_wait() { ; while (!test()) { ; ; x++;

11 Controlling Thread Interference: #4 Cooperative Multitasking Cooperative scheduler performs context switches only at statements + Clean semantics Sequential reasoning valid by default except where s highlight thread interference Uses only a single processor

12 Cooperative Concurrency Cooperative Scheduler Sequential Reasoning Except at s x = 0 barrier x = 2 x = 0 s mark all interference points Preemptive Scheduler Full performance No overhead x = 0 barrier x = 2 Cooperative Coop/preemptive Equivalence Preemptive

13 Cooperative Concurrency Cooperative Scheduler Sequential Reasoning Except at s x = 0 barrier x = 2 x = 0 s mark all interference points Coop/preemptive Equivalence Preemptive Scheduler Full performance No overhead x = 0 barrier x = 2 Cooperative Preemptive

14 Benefits of Yield over Atomic Atomic methods are those with no s atomic void copy() { x = 0; while (x < len) { tmp = a[x]; b[x] = tmp; x++; void busy_wait() { ; while (!test()) { ; ; ; x++; atomic is a method-level spec. is a code-level spec.

15 Benefits of Yield over Atomic atomic void copy() { x = 0; while (x < len) { tmp = a[x]; b[x] = tmp; x++; x++ is always an atomic increment operation void busy_wait() { ; while (!test()) { ; ; ; x++;

16 Benefits of Yield over Atomic atomic void copy() { x = 0; while (x < len) { tmp = a[x]; b[x] = tmp; x++; void busy_wait() { ; while (!test()) { ; ; ; { t = x; ; x = t + 1; ead

17 Cooperability in the Design Space Policy Enforcement traditional sync + analysis new run-time systems Non-Interference Specification atomic atomicity, serializability transactional memory cooperability automatic mutual exclusion Transactional Memory, Larus & Rajwar, 2007 Automatic mutual exclusion, Isard & Birrell, HOTOS 07

18 Cooperative Concurrency Cooperative Scheduler Sequential Reasoning Except at s x = 0 barrier x = 2 x = 0 Coop/preemptive Equivalence Preemptive Scheduler Full performance No overhead x = 0 barrier x = 2 Cooperative Preemptive

19 Cooperative Concurrency Cooperative Scheduler Sequential Reasoning Except at s x = 0 barrier x = 2 x = 0 JCC Preemptive Scheduler Full performance No overhead x = 0 barrier x = 2 Cooperative Input: Java source + s + race info Preemptive

20 volatile int x; Version 1 void update_x() { x = slow_f(x); No between accesses to xaaa Cooperative Coop/preemptive Equivalence Preemptive

21 void update_x() { synchronized(m) { x = slow_f(x); Version 2 But Bad performance Cooperative Coop/preemptive Equivalence Preemptive

22 void update_x() { int fx = slow_f(x); Version 3 synchronized(m) { x = fx; No between accesses to xaaa Cooperative Coop/preemptive Equivalence Preemptive

23 void update_x() { int fx = slow_f(x); ; synchronized(m) { x = fx; Version 4 Stale value after Cooperative Coop/preemptive Equivalence Preemptive

24 void update_x() { int y = x; for (;;) { ; int fy = slow_f(y); Version 5 (test and retry) if (x == y) { x = fy; return; y = x; No between accesses to xaaa Cooperative Coop/preemptive Equivalence Preemptive

25 void update_x() { int y = x; for (;;) { ; int fy = slow_f(y); if (x == y) { ; x = fy; return; y = x; Stale value after Version 6 Cooperative Coop/preemptive Equivalence Preemptive

26 void update_x() { int y = x; for (;;) { ; int fy = slow_f(y); synchronized(m) { if (x == y) { x = fy; return; y = x; Version 7 Cooperative Coop/preemptive Equivalence Preemptive

27 Identifying Cooperable Code Commuting Classifications [Lipton 76] M Both-mover N Non-mover R Right-mover L Left-mover Y Yielding Race-Free Access Racy Access Acquire Release Serializable blocks have pattern: R* [N] L* Cooperable blocks have the pattern: ((R* [N] L*) Y)* [R* [N] L*]

28 ((R* [N] L*) Y)* [R* [N] L*] void deposit(int n) { synchronized(m) { t1 = bal; bal = t1 + n; acquire(m) t1 = bal bal = t1 + n release(m) acquire(m) t1 = bal bal = t1 + n release(m) R M M L

29 ((R* [N] L*) Y)* [R* [N] L*] void deposit(int n) { synchronized(m) { t1 = bal; bal = t1 + n; acquire(m) t1 = bal bal = t1 + n release(m) acquire(m) t1 = bal bal = t1 + n release(m) void deposit(int n) { synchronized(m) { t1 = bal; synchronized(m) { bal = t1 + n; acquire(m) R t1 = bal release(m) acquire(m) bal = t1 + n release(m) M L R M L R M L R M L

30 ((R* [N] L*) Y)* [R* [N] L*] void deposit(int n) { synchronized(m) { t1 = bal; ; synchronized(m) { bal = t1 + n; R M L Y R M L acquire(m) t1 = bal release(m) acquire(m) bal = t1 + n release(m) R M L Y R M L

31 Cooperative Trace acquire(m) t1 = bal release(m) acquire(m) bal = t1 + n release(m) acquire(m) t1 = bal release(m) acquire(m) bal = t1 + n release(m)

32 N Effect Language Commuting Effects Lattice if (test) s1 else s2 L M R Atomicity Effects: Y Atomic or Compound Method specs to enable modular checking: atomic mover void m1() atomic non-mover void m2() compound non-mover void m3()

33 Effect Language Conditional Effects class Vector { int count; this? atomic mover : atomic non-mover public synchronized int length() { return count;

34 class TSP { Object lock; volatile int shortestpathlength; // lock held on writes non-mover void searchfrom(path path) { if (path.length() >=..shortestpathlength) return; if (path.iscomplete()) {..synchronized(lock) { if (path.length() < shortestpathlength) shortestpathlength = path.length(); else { for (Path c : path.extendtoadj()) {..searchfrom(c);

35 Program Number of Interference Points No Spec Race Atomic Atomic Race Yield Unintended Yields java.util.zip.inflater java.util.zip.deflater Interference 49 13at: Interference at: Interference at: java.lang.stringbuffer java.lang.string field racy field accesses accesses all racy 6 field field 2accesses 1 0 java.io.printwriter all lock acquires all lock acquires java.util.vector atomic method calls java.util.zip.zipfile in non-atomic methods points sparse tsp elevator Fewer Interference Points: Easier to Reason about Code raytracer-fixed sor-fixed moldyn-fixed Total 3,928 1,291 1, Total per KLOC ~35 Annotations/KLOC

36 Cooperability Thread interference is notoriously problematic awkward semantics hard to reason about correctness destructive interference syntactically hidden, often ignored Document interference with s (10-20/KLOC) Tools verify cooperative-preemptive equivalence Cooperative scheduling for reasoning Preemptive scheduling for performance Next steps: user studies, hybrid checkers, inference

Types for Precise Thread Interference

Types for Precise Thread Interference Types for Precise Thread Interference Jaeheon Yi, Tim Disney, Cormac Flanagan UC Santa Cruz Stephen Freund Williams College October 23, 2011 2 Multiple Threads Single Thread is a non-atomic read-modify-write

More information

Atomicity for Reliable Concurrent Software. Race Conditions. Motivations for Atomicity. Race Conditions. Race Conditions. 1. Beyond Race Conditions

Atomicity for Reliable Concurrent Software. Race Conditions. Motivations for Atomicity. Race Conditions. Race Conditions. 1. Beyond Race Conditions Towards Reliable Multithreaded Software Atomicity for Reliable Concurrent Software Cormac Flanagan UC Santa Cruz Joint work with Stephen Freund Shaz Qadeer Microsoft Research 1 Multithreaded software increasingly

More information

FastTrack: Efficient and Precise Dynamic Race Detection (+ identifying destructive races)

FastTrack: Efficient and Precise Dynamic Race Detection (+ identifying destructive races) FastTrack: Efficient and Precise Dynamic Race Detection (+ identifying destructive races) Cormac Flanagan UC Santa Cruz Stephen Freund Williams College Multithreading and Multicore! Multithreaded programming

More information

11/19/2013. Imperative programs

11/19/2013. Imperative programs if (flag) 1 2 From my perspective, parallelism is the biggest challenge since high level programming languages. It s the biggest thing in 50 years because industry is betting its future that parallel programming

More information

Part 3: Beyond Reduction

Part 3: Beyond Reduction Lightweight Analyses For Reliable Concurrency Part 3: Beyond Reduction Stephen Freund Williams College joint work with Cormac Flanagan (UCSC), Shaz Qadeer (MSR) Busy Acquire Busy Acquire void busy_acquire()

More information

C. Flanagan Dynamic Analysis for Atomicity 1

C. Flanagan Dynamic Analysis for Atomicity 1 1 Atomicity The method inc() is atomic if concurrent threads do not interfere with its behavior Guarantees that for every execution acq(this) x t=i y i=t+1 z rel(this) acq(this) x y t=i i=t+1 z rel(this)

More information

Atomicity. Experience with Calvin. Tools for Checking Atomicity. Tools for Checking Atomicity. Tools for Checking Atomicity

Atomicity. Experience with Calvin. Tools for Checking Atomicity. Tools for Checking Atomicity. Tools for Checking Atomicity 1 2 Atomicity The method inc() is atomic if concurrent ths do not interfere with its behavior Guarantees that for every execution acq(this) x t=i y i=t+1 z rel(this) acq(this) x y t=i i=t+1 z rel(this)

More information

More BSOD Embarrassments. Moore s Law. Programming With Threads. Moore s Law is Over. Analysis of Concurrent Software. Types for Race Freedom

More BSOD Embarrassments. Moore s Law. Programming With Threads. Moore s Law is Over. Analysis of Concurrent Software. Types for Race Freedom Moore s Law Analysis of Concurrent Software Types for Race Freedom Transistors per chip doubles every 18 months Cormac Flanagan UC Santa Cruz Stephen N. Freund Williams College Shaz Qadeer Microsoft Research

More information

7/6/2015. Motivation & examples Threads, shared memory, & synchronization. Imperative programs

7/6/2015. Motivation & examples Threads, shared memory, & synchronization. Imperative programs Motivation & examples Threads, shared memory, & synchronization How do locks work? Data races (a lower level property) How do data race detectors work? Atomicity (a higher level property) Concurrency exceptions

More information

Motivation & examples Threads, shared memory, & synchronization

Motivation & examples Threads, shared memory, & synchronization 1 Motivation & examples Threads, shared memory, & synchronization How do locks work? Data races (a lower level property) How do data race detectors work? Atomicity (a higher level property) Concurrency

More information

Parallel & Concurrent Programming

Parallel & Concurrent Programming Program Parallel & Concurrent Programming CSCI 334 Stephen Freund Memory Count Words A.html Count cow: cow:28 moo: moo:3 the: the:35 wombat: wombat:16 purple: purple:3

More information

Cooperative Reasoning for Preemptive Execution

Cooperative Reasoning for Preemptive Execution Cooperative Reasoning for Preemptive Execution Jaeheon Yi Caitlin Sadowski Cormac Flanagan Computer Science Department University of California at Santa Cruz Santa Cruz, CA 95064 {jaeheon,supertri,cormac@cs.ucsc.edu

More information

Part II: Atomicity for Software Model Checking. Analysis of concurrent programs is difficult (1) Transaction. The theory of movers (Lipton 75)

Part II: Atomicity for Software Model Checking. Analysis of concurrent programs is difficult (1) Transaction. The theory of movers (Lipton 75) Part II: Atomicity for Software Model Checking Class Account { int balance; static int MIN = 0, MAX = 00; bool synchronized deposit(int n) { int t = balance + n; if (t > MAX) return false; bool synchronized

More information

Runtime Atomicity Analysis of Multi-threaded Programs

Runtime Atomicity Analysis of Multi-threaded Programs Runtime Atomicity Analysis of Multi-threaded Programs Focus is on the paper: Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs by C. Flanagan and S. Freund presented by Sebastian Burckhardt

More information

Part IV: Exploiting Purity for Atomicity

Part IV: Exploiting Purity for Atomicity Busy Acquire Part IV: Exploiting Purity for Atomicity atomic void busy_acquire() { if (CAS(m,0,1)) break; CAS(m,0,1) CAS(m,0,1) CAS(m,0,1) (fails) (fails) (succeeds) boolean b[max]; // b[i]==true iff block

More information

Semantic Atomicity for Multithreaded Programs!

Semantic Atomicity for Multithreaded Programs! P A R A L L E L C O M P U T I N G L A B O R A T O R Y Semantic Atomicity for Multithreaded Programs! Jacob Burnim, George Necula, Koushik Sen! Parallel Computing Laboratory! University of California, Berkeley!

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II Synchronization in Java Department of Computer Science University of Maryland, College Park Multithreading Overview Motivation & background Threads Creating Java

More information

Exploiting Purity for Atomicity

Exploiting Purity for Atomicity Exploiting Purity for Atomicity Cormac Flanagan Stephen N. Freund Shaz Qadeer Department of Computer Science Computer Science Department Microsoft Research University of California, Santa Cruz Williams

More information

Hybrid Static-Dynamic Analysis for Statically Bounded Region Serializability

Hybrid Static-Dynamic Analysis for Statically Bounded Region Serializability Hybrid Static-Dynamic Analysis for Statically Bounded Region Serializability Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond and Milind Kulkarni ASPLOS 2015, ISTANBUL, TURKEY Programming

More information

Checking Concise Specifications For Multithreaded

Checking Concise Specifications For Multithreaded Vol. 3, No. 6, June 2004 Checking Concise Specifications For Multithreaded Software Stephen N. Freund, Department of Computer Science, Williams College, Williamstown, MA 01267 Shaz Qadeer, Microsoft Research,

More information

Programming Languages

Programming Languages TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Programming Languages Concurrency: Atomic Executions, Locks and Monitors Dr. Michael Petter Winter term 2016 Atomic Executions, Locks and Monitors

More information

CS510 Advanced Topics in Concurrency. Jonathan Walpole

CS510 Advanced Topics in Concurrency. Jonathan Walpole CS510 Advanced Topics in Concurrency Jonathan Walpole Threads Cannot Be Implemented as a Library Reasoning About Programs What are the valid outcomes for this program? Is it valid for both r1 and r2 to

More information

1. Beyond Race Conditions 2. Enables Sequential Reasoning 3. Simple Specification

1. Beyond Race Conditions 2. Enables Sequential Reasoning 3. Simple Specification Motivations for Atomicity Lightweight Analyses For Reliable Concurrency Stephen Freund Williams College 1. Beyond Race Conditions 2. Enables Sequential Reasoning 3. Simple Specification joint work with

More information

Potential violations of Serializability: Example 1

Potential violations of Serializability: Example 1 CSCE 6610:Advanced Computer Architecture Review New Amdahl s law A possible idea for a term project Explore my idea about changing frequency based on serial fraction to maintain fixed energy or keep same

More information

Foundations of the C++ Concurrency Memory Model

Foundations of the C++ Concurrency Memory Model Foundations of the C++ Concurrency Memory Model John Mellor-Crummey and Karthik Murthy Department of Computer Science Rice University johnmc@rice.edu COMP 522 27 September 2016 Before C++ Memory Model

More information

Synchronization in Java

Synchronization in Java Synchronization in Java Nelson Padua-Perez Bill Pugh Department of Computer Science University of Maryland, College Park Synchronization Overview Unsufficient atomicity Data races Locks Deadlock Wait /

More information

Mutual Exclusion and Synchronization

Mutual Exclusion and Synchronization Mutual Exclusion and Synchronization Concurrency Defined Single processor multiprogramming system Interleaving of processes Multiprocessor systems Processes run in parallel on different processors Interleaving

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 9: Implementing Synchronization (Chapter 6) Multiprocessor Memory Models Uniprocessor memory is simple Every load from a location retrieves the last value stored to that

More information

Threads Synchronization

Threads Synchronization Synchronization Threads Synchronization Threads share memory so communication can be based on shared references. This is a very effective way to communicate but is prone to two types of errors: Interference

More information

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016 Java Memory Model Jian Cao Department of Electrical and Computer Engineering Rice University Sep 22, 2016 Content Introduction Java synchronization mechanism Double-checked locking Out-of-Thin-Air violation

More information

Atomicity via Source-to-Source Translation

Atomicity via Source-to-Source Translation Atomicity via Source-to-Source Translation Benjamin Hindman Dan Grossman University of Washington 22 October 2006 Atomic An easier-to-use and harder-to-implement primitive void deposit(int x){ synchronized(this){

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

Programmazione di sistemi multicore

Programmazione di sistemi multicore Programmazione di sistemi multicore A.A. 2015-2016 LECTURE 14 IRENE FINOCCHI http://wwwusers.di.uniroma1.it/~finocchi/ Programming with locks and critical sections MORE BAD INTERLEAVINGS GUIDELINES FOR

More information

The Java Memory Model

The Java Memory Model The Java Memory Model The meaning of concurrency in Java Bartosz Milewski Plan of the talk Motivating example Sequential consistency Data races The DRF guarantee Causality Out-of-thin-air guarantee Implementation

More information

Data Races and Locks

Data Races and Locks Data Races and Locks Unit 2.a 1 Acknowledgments Authored by Sebastian Burckhardt, MSR Redmond 9/20/2010 2 Concepts Correctness Concept Atomicity Violations Data Races Data-Race-Free Discipline Immutability

More information

Towards Transactional Memory Semantics for C++

Towards Transactional Memory Semantics for C++ Towards Transactional Memory Semantics for C++ Tatiana Shpeisman Intel Corporation Santa Clara, CA tatiana.shpeisman@intel.com Yang Ni Intel Corporation Santa Clara, CA yang.ni@intel.com Ali-Reza Adl-Tabatabai

More information

10/17/ Gribble, Lazowska, Levy, Zahorjan 2. 10/17/ Gribble, Lazowska, Levy, Zahorjan 4

10/17/ Gribble, Lazowska, Levy, Zahorjan 2. 10/17/ Gribble, Lazowska, Levy, Zahorjan 4 Temporal relations CSE 451: Operating Systems Autumn 2010 Module 7 Synchronization Instructions executed by a single thread are totally ordered A < B < C < Absent synchronization, instructions executed

More information

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007 CMSC 433 Programming Language Technologies and Paradigms Spring 2007 Threads and Synchronization May 8, 2007 Computation Abstractions t1 t1 t4 t2 t1 t2 t5 t3 p1 p2 p3 p4 CPU 1 CPU 2 A computer Processes

More information

Synchronization. CS61, Lecture 18. Prof. Stephen Chong November 3, 2011

Synchronization. CS61, Lecture 18. Prof. Stephen Chong November 3, 2011 Synchronization CS61, Lecture 18 Prof. Stephen Chong November 3, 2011 Announcements Assignment 5 Tell us your group by Sunday Nov 6 Due Thursday Nov 17 Talks of interest in next two days Towards Predictable,

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

CSE 332: Locks and Deadlocks. Richard Anderson, Steve Seitz Winter 2014

CSE 332: Locks and Deadlocks. Richard Anderson, Steve Seitz Winter 2014 CSE 332: Locks and Deadlocks Richard Anderson, Steve Seitz Winter 2014 1 Recall Bank Account Problem class BankAccount { private int balance = 0; synchronized int getbalance() { return balance; } synchronized

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall CSE 451: Operating Systems Winter 2003 Lecture 7 Synchronization Hank Levy Levy@cs.washington.edu 412 Sieg Hall Synchronization Threads cooperate in multithreaded programs to share resources, access shared

More information

Advanced MEIC. (Lesson #18)

Advanced MEIC. (Lesson #18) Advanced Programming @ MEIC (Lesson #18) Last class Data races Java Memory Model No out-of-thin-air values Data-race free programs behave as expected Today Finish with the Java Memory Model Introduction

More information

FastTrack: Efficient and Precise Dynamic Race Detection By Cormac Flanagan and Stephen N. Freund

FastTrack: Efficient and Precise Dynamic Race Detection By Cormac Flanagan and Stephen N. Freund FastTrack: Efficient and Precise Dynamic Race Detection By Cormac Flanagan and Stephen N. Freund doi:10.1145/1839676.1839699 Abstract Multithreaded programs are notoriously prone to race conditions. Prior

More information

Synchronization COMPSCI 386

Synchronization COMPSCI 386 Synchronization COMPSCI 386 Obvious? // push an item onto the stack while (top == SIZE) ; stack[top++] = item; // pop an item off the stack while (top == 0) ; item = stack[top--]; PRODUCER CONSUMER Suppose

More information

Toward Efficient Strong Memory Model Support for the Java Platform via Hybrid Synchronization

Toward Efficient Strong Memory Model Support for the Java Platform via Hybrid Synchronization Toward Efficient Strong Memory Model Support for the Java Platform via Hybrid Synchronization Aritra Sengupta, Man Cao, Michael D. Bond and Milind Kulkarni 1 PPPJ 2015, Melbourne, Florida, USA Programming

More information

Adversarial Memory for Detecting Destructive Races

Adversarial Memory for Detecting Destructive Races Adversarial Memory for Detecting Destructive Races Cormac Flanagan Computer Science Department University of California at Santa Cruz Santa Cruz, CA 95064 Stephen N. Freund Computer Science Department

More information

Synchronization I. Jo, Heeseung

Synchronization I. Jo, Heeseung Synchronization I Jo, Heeseung Today's Topics Synchronization problem Locks 2 Synchronization Threads cooperate in multithreaded programs To share resources, access shared data structures Also, to coordinate

More information

A Parameterized Type System for Race-Free Java Programs

A Parameterized Type System for Race-Free Java Programs A Parameterized Type System for Race-Free Java Programs Chandrasekhar Boyapati Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology {chandra, rinard@lcs.mit.edu Data races

More information

Thread-Local. Lecture 27: Concurrency 3. Dealing with the Rest. Immutable. Whenever possible, don t share resources

Thread-Local. Lecture 27: Concurrency 3. Dealing with the Rest. Immutable. Whenever possible, don t share resources Thread-Local Lecture 27: Concurrency 3 CS 62 Fall 2016 Kim Bruce & Peter Mawhorter Some slides based on those from Dan Grossman, U. of Washington Whenever possible, don t share resources Easier to have

More information

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers 1 Critical sections and atomicity We have been seeing that sharing mutable objects between different threads is tricky We need some

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Operating Systems. Synchronization

Operating Systems. Synchronization Operating Systems Fall 2014 Synchronization Myungjin Lee myungjin.lee@ed.ac.uk 1 Temporal relations Instructions executed by a single thread are totally ordered A < B < C < Absent synchronization, instructions

More information

SideTrack: Generalizing Dynamic Atomicity Analysis

SideTrack: Generalizing Dynamic Atomicity Analysis SideTrack: Generalizing Dynamic Atomicity Analysis Jaeheon Yi jaeheon@cs.ucsc.edu Caitlin Sadowski supertri@cs.ucsc.edu Computer Science Department University of California at Santa Cruz Santa Cruz, CA

More information

Static Detection of Atomicity Violations in Object-Oriented Programs

Static Detection of Atomicity Violations in Object-Oriented Programs Vol. 3, No. 2, March April 2004 Static Detection of Atomicity Violations in Object-Oriented Programs Christoph von Praun and Thomas Gross Laboratory for Software Technology, ETH Zurich, Switzerland Violations

More information

Synchronization via Transactions

Synchronization via Transactions Synchronization via Transactions 1 Concurrency Quiz If two threads execute this program concurrently, how many different final values of X are there? Initially, X == 0. Thread 1 Thread 2 void increment()

More information

Synchronizing the Asynchronous

Synchronizing the Asynchronous Synchronizing the Asynchronous Bernhard Kragl IST Austria Shaz Qadeer Microsoft Thomas A. Henzinger IST Austria Concurrency is Ubiquitous Asynchronous Concurrency is Ubiquitous Asynchronous programs are

More information

The New Java Technology Memory Model

The New Java Technology Memory Model The New Java Technology Memory Model java.sun.com/javaone/sf Jeremy Manson and William Pugh http://www.cs.umd.edu/~pugh 1 Audience Assume you are familiar with basics of Java technology-based threads (

More information

CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable)

CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable) CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable) Past & Present Have looked at two constraints: Mutual exclusion constraint between two events is a requirement that

More information

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Multiple Processes OS design is concerned with the management of processes and threads: Multiprogramming Multiprocessing Distributed processing

More information

Concurrent & Distributed Systems Supervision Exercises

Concurrent & Distributed Systems Supervision Exercises Concurrent & Distributed Systems Supervision Exercises Stephen Kell Stephen.Kell@cl.cam.ac.uk November 9, 2009 These exercises are intended to cover all the main points of understanding in the lecture

More information

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008 Process Synchronization Mehdi Kargahi School of ECE University of Tehran Spring 2008 Producer-Consumer (Bounded Buffer) Producer Consumer Race Condition Producer Consumer Critical Sections Structure of

More information

CMSC421: Principles of Operating Systems

CMSC421: Principles of Operating Systems CMSC421: Principles of Operating Systems Nilanjan Banerjee Assistant Professor, University of Maryland Baltimore County nilanb@umbc.edu http://www.csee.umbc.edu/~nilanb/teaching/421/ Principles of Operating

More information

Optimized Run-Time Race Detection And Atomicity Checking Using Partial Discovered Types

Optimized Run-Time Race Detection And Atomicity Checking Using Partial Discovered Types Optimized Run-Time Race Detection And Atomicity Checking Using Partial Discovered Types Rahul Agarwal Amit Sasturkar Liqiang Wang Scott D. Stoller ABSTRACT Concurrent programs are notorious for containing

More information

A Type and Effect System for Atomicity

A Type and Effect System for Atomicity A Type and Effect System for Atomicity Cormac Flanagan Shaz Qadeer HP Systems Research Center Microsoft Research 1501 Page Mill Road One Microsoft Way Palo Alto, CA 94304 Redmond, WA 98052 ABSTRACT Ensuring

More information

A Causality-Based Runtime Check for (Rollback) Atomicity

A Causality-Based Runtime Check for (Rollback) Atomicity A Causality-Based Runtime Check for (Rollback) Atomicity Serdar Tasiran Koc University Istanbul, Turkey Tayfun Elmas Koc University Istanbul, Turkey RV 2007 March 13, 2007 Outline This paper: Define rollback

More information

The Java Memory Model

The Java Memory Model The Java Memory Model What is it and why would I want one? Jörg Domaschka. ART Group, Institute for Distributed Systems Ulm University, Germany December 14, 2009 public class WhatDoIPrint{ static int x

More information

Multi-threading in Java. Jeff HUANG

Multi-threading in Java. Jeff HUANG Multi-threading in Java Jeff HUANG Software Engineering Group @HKUST Do you use them? 2 Do u know their internals? 3 Let s see File DB How can they service so many clients simultaneously? l 4 Multi-threading

More information

MULTIPLE threads of control are widely used in software

MULTIPLE threads of control are widely used in software IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 4, APRIL 2005 1 Exploiting Purity for Atomicity Cormac Flanagan, Member, IEEE, Stephen N. Freund, and Shaz Qadeer Abstract Multithreaded programs

More information

Indistinguishability: Friend and Foe of Concurrent Data Structures. Hagit Attiya CS, Technion

Indistinguishability: Friend and Foe of Concurrent Data Structures. Hagit Attiya CS, Technion Indistinguishability: Friend and Foe of Concurrent Data Structures Hagit Attiya CS, Technion Uncertainty is a main obstacle for designing correct applications in concurrent systems Formally captured by

More information

Process Synchronization

Process Synchronization Process Synchronization Concurrent access to shared data may result in data inconsistency Multiple threads in a single process Maintaining data consistency requires mechanisms to ensure the orderly execution

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Synchronization I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Synchronization problem Locks 2 Synchronization Threads cooperate

More information

Concurrency with Threads and Actors

Concurrency with Threads and Actors Shared- Memory Multithreading Concurrency with Threads and Actors Shared: heap and globals Implicit communication through sharing. pc pc pc Unshared: locals and control Adapted from slides by Steve Freund

More information

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction : A Distributed Shared Memory System Based on Multiple Java Virtual Machines X. Chen and V.H. Allan Computer Science Department, Utah State University 1998 : Introduction Built on concurrency supported

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 9: Readers-Writers and Language Support for Synchronization 9.1.2 Constraints 1. Readers can access database

More information

A Scalable Lock Manager for Multicores

A Scalable Lock Manager for Multicores A Scalable Lock Manager for Multicores Hyungsoo Jung Hyuck Han Alan Fekete NICTA Samsung Electronics University of Sydney Gernot Heiser NICTA Heon Y. Yeom Seoul National University @University of Sydney

More information

10/17/2011. Cooperating Processes. Synchronization 1. Example: Producer Consumer (3) Example

10/17/2011. Cooperating Processes. Synchronization 1. Example: Producer Consumer (3) Example Cooperating Processes Synchronization 1 Chapter 6.1 4 processes share something (devices such as terminal, keyboard, mouse, etc., or data structures) and can affect each other non deterministic Not exactly

More information

NDSeq: Runtime Checking for Nondeterministic Sequential Specs of Parallel Correctness

NDSeq: Runtime Checking for Nondeterministic Sequential Specs of Parallel Correctness EECS Electrical Engineering and Computer Sciences P A R A L L E L C O M P U T I N G L A B O R A T O R Y NDSeq: Runtime Checking for Nondeterministic Sequential Specs of Parallel Correctness Jacob Burnim,

More information

7: Interprocess Communication

7: Interprocess Communication 7: Interprocess Communication Mark Handley Interprocess Communication Processes frequently need to communicate to perform tasks. Shared memory. Shared files. Message passing. Whenever processes communicate,

More information

The Java Memory Model

The Java Memory Model Jeremy Manson 1, William Pugh 1, and Sarita Adve 2 1 University of Maryland 2 University of Illinois at Urbana-Champaign Presented by John Fisher-Ogden November 22, 2005 Outline Introduction Sequential

More information

Monitors; Software Transactional Memory

Monitors; Software Transactional Memory Monitors; Software Transactional Memory Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 18, 2012 CPD (DEI / IST) Parallel and

More information

Tom Ball Sebastian Burckhardt Madan Musuvathi Microsoft Research

Tom Ball Sebastian Burckhardt Madan Musuvathi Microsoft Research Tom Ball (tball@microsoft.com) Sebastian Burckhardt (sburckha@microsoft.com) Madan Musuvathi (madanm@microsoft.com) Microsoft Research P&C Parallelism Concurrency Performance Speedup Responsiveness Correctness

More information

ECE 462 Object-Oriented Programming using C++ and Java. Scheduling and Critical Section

ECE 462 Object-Oriented Programming using C++ and Java. Scheduling and Critical Section ECE 462 Object-Oriented Programming g using C++ and Java Scheduling and Critical Section Yung-Hsiang Lu yunglu@purdue.edu d YHL Scheduling and Critical Section 1 Thread States born terminated ready running

More information

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules Brief Preview of Scheduling Concurrency Control Nan Niu (nn@cs.toronto.edu) CSC309 -- Summer 2008 Multiple threads ready to run Some mechanism for switching between them Context switches Some policy for

More information

Pre- and post- CS protocols. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7. Other requirements for a mutual exclusion algorithm

Pre- and post- CS protocols. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7. Other requirements for a mutual exclusion algorithm CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce

More information

M4 Parallelism. Implementation of Locks Cache Coherence

M4 Parallelism. Implementation of Locks Cache Coherence M4 Parallelism Implementation of Locks Cache Coherence Outline Parallelism Flynn s classification Vector Processing Subword Parallelism Symmetric Multiprocessors, Distributed Memory Machines Shared Memory

More information

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008

1 of 6 Lecture 7: March 4. CISC 879 Software Support for Multicore Architectures Spring Lecture 7: March 4, 2008 1 of 6 Lecture 7: March 4 CISC 879 Software Support for Multicore Architectures Spring 2008 Lecture 7: March 4, 2008 Lecturer: Lori Pollock Scribe: Navreet Virk Open MP Programming Topics covered 1. Introduction

More information

A Serializability Violation Detector for Shared-Memory Server Programs

A Serializability Violation Detector for Shared-Memory Server Programs A Serializability Violation Detector for Shared-Memory Server Programs Min Xu Rastislav Bodík Mark Hill University of Wisconsin Madison University of California, Berkeley Serializability Violation Detector:

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages The Dining Philosophers Problem CMSC 0: Organization of Programming Languages Threads Classic Concurrency Problems Philosophers either eat or think They must have two forks to eat Can only use forks on

More information

CSCI-1200 Data Structures Fall 2009 Lecture 25 Concurrency & Asynchronous Computing

CSCI-1200 Data Structures Fall 2009 Lecture 25 Concurrency & Asynchronous Computing CSCI-1200 Data Structures Fall 2009 Lecture 25 Concurrency & Asynchronous Computing Final Exam General Information The final exam will be held Monday, Dec 21st, 2009, 11:30am-2:30pm, DCC 308. A makeup

More information

+ Today. Lecture 26: Concurrency 3/31/14. n Reading. n Objectives. n Announcements. n P&C Section 7. n Race conditions.

+ Today. Lecture 26: Concurrency 3/31/14. n Reading. n Objectives. n Announcements. n P&C Section 7. n Race conditions. + Lecture 26: Concurrency Slides adapted from Dan Grossman + Today n Reading n P&C Section 7 n Objectives n Race conditions n Announcements n Quiz on Friday 1 + This week s programming assignment n Answer

More information

Testing Concurrent Java Programs Using Randomized Scheduling

Testing Concurrent Java Programs Using Randomized Scheduling Testing Concurrent Java Programs Using Randomized Scheduling Scott D. Stoller Computer Science Department State University of New York at Stony Brook http://www.cs.sunysb.edu/ stoller/ 1 Goal Pillars of

More information

Multi-core Architecture and Programming

Multi-core Architecture and Programming Multi-core Architecture and Programming Yang Quansheng( 杨全胜 ) http://www.njyangqs.com School of Computer Science & Engineering 1 http://www.njyangqs.com Process, threads and Parallel Programming Content

More information

Mohamed M. Saad & Binoy Ravindran

Mohamed M. Saad & Binoy Ravindran Mohamed M. Saad & Binoy Ravindran VT-MENA Program Electrical & Computer Engineering Department Virginia Polytechnic Institute and State University TRANSACT 11 San Jose, CA An operation (or set of operations)

More information

CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections. Tyler Robison Summer 2010

CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections. Tyler Robison Summer 2010 CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections Tyler Robison Summer 2010 1 Concurrency: where are we Done: The semantics of locks Locks in Java Using locks for mutual

More information

Concurrency in Java Prof. Stephen A. Edwards

Concurrency in Java Prof. Stephen A. Edwards Concurrency in Java Prof. Stephen A. Edwards The Java Language Developed by James Gosling et al. at Sun Microsystems in the early 1990s Originally called Oak, first intended application was as an OS for

More information

Synchronization. Announcements. Concurrent Programs. Race Conditions. Race Conditions 11/9/17. Purpose of this lecture. A8 released today, Due: 11/21

Synchronization. Announcements. Concurrent Programs. Race Conditions. Race Conditions 11/9/17. Purpose of this lecture. A8 released today, Due: 11/21 Announcements Synchronization A8 released today, Due: 11/21 Late deadline is after Thanksgiving You can use your A6/A7 solutions or ours A7 correctness scores have been posted Next week's recitation will

More information