Timing Analysis of Event-Driven Programs with Directed Testing

Size: px
Start display at page:

Download "Timing Analysis of Event-Driven Programs with Directed Testing"

Transcription

1 iming Analysis of Event-Driven Programs with Directed esting Mahdi Eslamimehr Hesam Samimi {eslamimehr, Communications Design Group, SAP Labs

2 alk Outline Introduction oyota UA Case Problem Definition and Previous Work Review of Classic Directed esting Motivating Experiments Our Approach Example VICE: Algorithms and tools Experiment Results Conclusion Event-Based Directed esting improves the -ofart

3

4

5

6

7

8

9 WCE Controllers in safety time-critical embedded systems are expected to finish their tasks within reliable time bounds. Underestimation causes missing deadlines and leads to bugs Overestimation wastes process availability. Question: what is the exact WCE across all inputs? 1. Program P, K is the WCE of all executions of P, if P s WCE never grows beyond K. 2. here is a possible schedule of events and an execution of the program P such that the WCE becomes K.

10 WCE in Literature Dynamic Analysis Random Algorithms: [Bernat et. Al., RSS 02] Genetic Algorithm: [Atanassov et. Al., EWDC 01] Classic Directed esting: [N. Williams and M.Roger, AS 09] Static Analysis [Holsti et. Al., ESA 2000] [C.erdinand, BIS 04] [Gustafsson and Ermedahl, RSS 06]

11 Classic Directed esting Generate concrete inputs one by one each input leads program along a different path On each input execute program both concretely and symbolically concrete execution guides the symbolic execution concrete execution enables symbolic execution to overcome incompleteness of theorem prover End Yes Input = Random While all paths covered? No Concolically execute and collect path constraints symbolic execution helps to generate concrete input for next execution increases coverage Solving constraints and generate inputs

12 Example int double (int v) { return 2*v; void testme (int x, int y) { z = double (y); if (z == x) { if (x > y+10) { ERROR;

13 Example int double (int v) { return 2*v; void testme (int x, int y) { N 2*y == x Y z = double (y); if (z == x) { N x > y+10 Y if (x > y+10) { ERROR; ERROR

14 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); x = 22, y = 7 x = x 0, y = y 0 if (z == x) { if (x > y+10) { ERROR;

15 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); if (z == x) { x = 22, y = 7, z = 14 x = x 0, y = y 0, z = 2*y 0 if (x > y+10) { ERROR;

16 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); if (z == x) { 2*y 0!= x 0 if (x > y+10) { ERROR; x = 22, y = 7, z = 14 x = x 0, y = y 0, z = 2*y 0

17 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); Solve: 2*y 0 == x 0 Solution: x 0 = 2, y 0 = 1 if (z == x) { 2*y 0!= x 0 if (x > y+10) { ERROR; x = 22, y = 7, z = 14 x = x 0, y = y 0, z = 2*y 0

18 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); x = 2, y = 1 x = x 0, y = y 0 if (z == x) { if (x > y+10) { ERROR;

19 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); if (z == x) { x = 2, y = 1, z = 2 x = x 0, y = y 0, z = 2*y 0 if (x > y+10) { ERROR;

20 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); if (z == x) { if (x > y+10) { x = 2, y = 1, z = 2 x = x 0, y = y 0, z = 2*y 0 2*y 0 == x 0 ERROR;

21 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); if (z == x) { if (x > y+10) { 2*y 0 == x 0 x 0 < y ERROR; x = 2, y = 1, z = 2 x = x 0, y = y 0, z = 2*y 0

22 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); Solve: (2*y 0 == x 0 ) Æ (x 0 > y ) Solution: x 0 = 30, y 0 = 15 if (z == x) { if (x > y+10) { 2*y 0 == x 0 x 0 < y ERROR; x = 2, y = 1, z = 2 x = x 0, y = y 0, z = 2*y 0

23 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { z = double (y); x = 30, y = 15 x = x 0, y = y 0 if (z == x) { if (x > y+10) { ERROR;

24 Directed esting Approach int double (int v) { Concrete Symbolic return 2*v; concrete symbolic path condition void testme (int x, int y) { Program Error z = double (y); if (z == x) { if (x > y+10) { 2*y 0 == x 0 x 0 > y ERROR; x = 30, y = 15 x = x 0, y = y 0

25 Explicit Path Model Checking raverse all execution paths one by one to detect errors assertion violations program crash uncaught exceptions

26 Explicit Path Model Checking raverse all execution paths one by one to detect errors assertion violations program crash uncaught exceptions

27 Explicit Path Model Checking raverse all execution paths one by one to detect errors assertion violations program crash uncaught exceptions

28 Explicit Path Model Checking raverse all execution paths one by one to detect errors assertion violations program crash uncaught exceptions

29 Explicit Path Model Checking raverse all execution paths one by one to detect errors assertion violations program crash uncaught exceptions

30 Explicit Path Model Checking raverse all execution paths one by one to detect errors assertion violations program crash uncaught exceptions

31 Motivating Experiments branch coverage across testing techniques 100% 75% 50% 25% 0% Binaryree LinkedList BubbleSort Decoder Oscilloscpoe annkuch MsgKernel estradio estusar estspi estadc Random esting GA Classical Directed esting

32 Motivating Experiments esting VS Static Analysis of WCE 1000 WCE Logarithmic Scale Binaryree LinkedList BubbleSort Decoder Oscilloscpoe annkuch MsgKernel estradio estusar estspi estadc Random esting GA Classical Directed esting Static Analysis

33 esting Event Driven Software Classical software: tester only devices a suite of single inputs. Event-Driven software (with real-time behavior): tester must device a suite of event sequences. In each sequence: # of events, types of events, values associated with the events e.g. registers value, and timing of events. Challenge: Quickly generate a small number of challenging event sequences to improve branch coverage.

34 VICE Example Round 1 [<main,(723452)>,<alt1,( 10038)>,<main,_>,<alt1, _>] Constraints: data_1 = msg data2 = msg 2048 < msg msg < 1024 Branch Coverage: 50% (3/6)

35 VICE Example Round 2 [<main,(-338)>,<alt1,(1001)>,<alt2,(6)>,<main, _>] Constraints: msg = s tmp = t s = 512 Branch Coverage: 83% (5/6)

36 VICE Example Round 3 [<main,(-338)>,<alt1,(1001)>,<alt2,(6)>,<main, _>] Constraints: data1 = data2 = msg = s = 512 Branch Coverage: 83% (5/6)

37 VICE Example Round 4 [<main,(512)>,<alt1,(512)>,<main,_>,<alt1, _>] Constraints: - Branch Coverage: 100% (6/6)

38 Event Based Directed esting (EBD) compiler: VirgilProgram! machinecode avrora : machinecode eventsequence! wcet random: ()! eventsequence timeoutcombos: eventsequence! (eventsequence list) concolic: (Virgil program eventseequence! (wcet branchcoverage constraints) solver: constraints! solution generator: solution! eventsequence

39 Algorithm

40 Experiment Results 100% Branch Coverage 75% 50% 25% 0% Binaryree LinkedList BubbleSort Decoder Oscilloscpoe annkuch MsgKernel estradio estusar estspi estadc Random esting GA Classical Directed esting VICE

41 Experiment Results 1000 WCE Logarithmic Scale Binaryree LinkedList BubbleSort Decoder Oscilloscpoe annkuch MsgKernel estradio estusar estspi estadc Random esting GA Classical Directed esting VICE Static Analysis

42 uture Works ormulating timeouts symbolically Using some static information Locate places where wcet happens, and direct execution towards candidates Replace random event generation with a IMR-certified model checker.

Timing Analysis of Event-Driven Programs with Directed Testing

Timing Analysis of Event-Driven Programs with Directed Testing Timing Analysis of Event-Driven Programs with Directed Testing Mahdi Eslamimehr and Hesam Samimi Communications Design Group, SAP Labs, Los Angeles, USA {eslamimehr,hesam@ucla}@ucla.edu Abstract Accurately

More information

DART: Directed Automated Random Testing. CUTE: Concolic Unit Testing Engine. Slide Source: Koushik Sen from Berkeley

DART: Directed Automated Random Testing. CUTE: Concolic Unit Testing Engine. Slide Source: Koushik Sen from Berkeley DAR: Directed Automated Random esting CUE: Concolic Unit esting Engine Slide Source: Koushik Sen from Berkeley Verification and esting We would like to prove programs correct Verification and esting We

More information

CUTE: A Concolic Unit Testing Engine for C

CUTE: A Concolic Unit Testing Engine for C CUTE: A Concolic Unit Testing Engine for C Koushik Sen Darko Marinov Gul Agha University of Illinois Urbana-Champaign Goal Automated Scalable Unit Testing of real-world C Programs Generate test inputs

More information

DART: Directed Automated Random Testing

DART: Directed Automated Random Testing DART: Directed Automated Random Testing Patrice Godefroid Nils Klarlund Koushik Sen Bell Labs Bell Labs UIUC Presented by Wei Fang January 22, 2015 PLDI 2005 Page 1 June 2005 Motivation Software testing:

More information

Testing versus Static Analysis of Maximum Stack Size

Testing versus Static Analysis of Maximum Stack Size Testing versus Static Analysis of Maximum Stack Size Mahdi Eslamimehr mahdi@cs.ucla.edu UCLA, University of California, Los Angeles Jens Palsberg palsberg@ucla.edu UCLA, University of California, Los Angeles

More information

Seminar in Software Engineering Presented by Dima Pavlov, November 2010

Seminar in Software Engineering Presented by Dima Pavlov, November 2010 Seminar in Software Engineering-236800 Presented by Dima Pavlov, November 2010 1. Introduction 2. Overview CBMC and SAT 3. CBMC Loop Unwinding 4. Running CBMC 5. Lets Compare 6. How does it work? 7. Conclusions

More information

Automatic Software Verification

Automatic Software Verification Automatic Software Verification Instructor: Mooly Sagiv TA: Oded Padon Slides from Eran Yahav and the Noun Project, Wikipedia Course Requirements Summarize one lecture 10% one lecture notes 45% homework

More information

Three Important Testing Questions

Three Important Testing Questions Testing Part 2 1 Three Important Testing Questions How shall we generate/select test cases? Did this test execution succeed or fail? How do we know when we ve tested enough? 65 1. How do we know when we

More information

Automatic Generation of Program Specifications

Automatic Generation of Program Specifications Automatic Generation of Program Specifications Jeremy Nimmer MIT Lab for Computer Science http://pag.lcs.mit.edu/ Joint work with Michael Ernst Jeremy Nimmer, page 1 Synopsis Specifications are useful

More information

Analysis/Bug-finding/Verification for Security

Analysis/Bug-finding/Verification for Security Analysis/Bug-finding/Verification for Security VIJAY GANESH University of Waterloo Winter 2013 Analysis/Test/Verify for Security Instrument code for testing Heap memory: Purify Perl tainting (information

More information

Static program checking and verification

Static program checking and verification Chair of Software Engineering Software Engineering Prof. Dr. Bertrand Meyer March 2007 June 2007 Slides: Based on KSE06 With kind permission of Peter Müller Static program checking and verification Correctness

More information

INF672 Protocol Safety and Verification. Karthik Bhargavan Xavier Rival Thomas Clausen

INF672 Protocol Safety and Verification. Karthik Bhargavan Xavier Rival Thomas Clausen INF672 Protocol Safety and Verication Karthik Bhargavan Xavier Rival Thomas Clausen 1 Course Outline Lecture 1 [Today, Sep 15] Introduction, Motivating Examples Lectures 2-4 [Sep 22,29, Oct 6] Network

More information

Automated Software Analysis Techniques For High Reliability: A Concolic Testing Approach. Moonzoo Kim

Automated Software Analysis Techniques For High Reliability: A Concolic Testing Approach. Moonzoo Kim Automated Software Analysis Techniques For High Reliability: A Concolic Testing Approach Moonzoo Kim Contents Automated Software Analysis Techniques Background Concolic testing process Example of concolic

More information

Software Testing CS 408. Lecture 11: Review 2/20/18

Software Testing CS 408. Lecture 11: Review 2/20/18 Software Testing CS 408 Lecture 11: Review 2/20/18 Lecture 1: Basics 2 Two Views Verification: Prove the absence, and conjecture the presence, of bugs Ex: types: Not all ill-typed programs are wrong But,

More information

n HW7 due in about ten days n HW8 will be optional n No CLASS or office hours on Tuesday n I will catch up on grading next week!

n HW7 due in about ten days n HW8 will be optional n No CLASS or office hours on Tuesday n I will catch up on grading next week! Announcements SMT Solvers, Symbolic Execution n HW7 due in about ten days n HW8 will be optional n No CLASS or office hours on Tuesday n I will catch up on grading next week! n Presentations n Some of

More information

Testing & Symbolic Execution

Testing & Symbolic Execution Testing & Symbolic Execution Software Testing The most common way of measuring & ensuring correctness Input 2 Software Testing The most common way of measuring & ensuring correctness Input Observed Behavior

More information

CSE 403: Software Engineering, Fall courses.cs.washington.edu/courses/cse403/16au/ Static Analysis. Emina Torlak

CSE 403: Software Engineering, Fall courses.cs.washington.edu/courses/cse403/16au/ Static Analysis. Emina Torlak CSE 403: Software Engineering, Fall 2016 courses.cs.washington.edu/courses/cse403/16au/ Static Analysis Emina Torlak emina@cs.washington.edu Outline What is static analysis? How does it work? Free and

More information

Applications of Logic in Software Engineering. CS402, Spring 2016 Shin Yoo

Applications of Logic in Software Engineering. CS402, Spring 2016 Shin Yoo Applications of Logic in Software Engineering CS402, Spring 2016 Shin Yoo Acknowledgements I borrow slides from: Moonzoo Kim Theo C. Ruys (http://spinroot.com/spin/doc/ SpinTutorial.pdf) CBMC & Daniel

More information

A Survey of Approaches for Automated Unit Testing. Outline

A Survey of Approaches for Automated Unit Testing. Outline A Survey of Approaches for Automated Unit Testing Peter Carr Ron Kneusel Outline Introduction/Motivation Concolic Testing Random Testing Evolutionary Testing Random/Evolutionary Experiment and Results

More information

Timing Analysis of Parallel Software Using Abstract Execution

Timing Analysis of Parallel Software Using Abstract Execution Timing Analysis of Parallel Software Using Abstract Execution Björn Lisper School of Innovation, Design, and Engineering Mälardalen University bjorn.lisper@mdh.se 2014-09-10 EACO Workshop 2014 Motivation

More information

Symbolic Execu.on. Suman Jana

Symbolic Execu.on. Suman Jana Symbolic Execu.on Suman Jana Acknowledgement: Baishakhi Ray (Uva), Omar Chowdhury (Purdue), Saswat Anand (GA Tech), Rupak Majumdar (UCLA), Koushik Sen (UCB) What is the goal? Tes.ng Tes%ng approaches are

More information

Random Testing of Interrupt-Driven Software. John Regehr University of Utah

Random Testing of Interrupt-Driven Software. John Regehr University of Utah Random Testing of Interrupt-Driven Software John Regehr University of Utah Integrated stress testing and debugging Random interrupt testing Source-source transformation Static stack analysis Semantics

More information

Test Automation. 20 December 2017

Test Automation. 20 December 2017 Test Automation 20 December 2017 The problem of test automation Testing has repetitive components, so automation is justified The problem is cost-benefit evaluation of automation [Kaner] Time for: test

More information

Symbolic and Concolic Execution of Programs

Symbolic and Concolic Execution of Programs Symbolic and Concolic Execution of Programs Information Security, CS 526 Omar Chowdhury 10/7/2015 Information Security, CS 526 1 Reading for this lecture Symbolic execution and program testing - James

More information

StackAnalyzer Proving the Absence of Stack Overflows

StackAnalyzer Proving the Absence of Stack Overflows StackAnalyzer Proving the Absence of Stack Overflows AbsInt GmbH 2012 2 Functional Safety Demonstration of functional correctness Well-defined criteria Automated and/or model-based testing Formal techniques:

More information

Verification and Test with Model-Based Design

Verification and Test with Model-Based Design Verification and Test with Model-Based Design Flight Software Workshop 2015 Jay Abraham 2015 The MathWorks, Inc. 1 The software development process Develop, iterate and specify requirements Create high

More information

Automated Whitebox Fuzz Testing. by - Patrice Godefroid, - Michael Y. Levin and - David Molnar

Automated Whitebox Fuzz Testing. by - Patrice Godefroid, - Michael Y. Levin and - David Molnar Automated Whitebox Fuzz Testing by - Patrice Godefroid, - Michael Y. Levin and - David Molnar OUTLINE Introduction Methods Experiments Results Conclusion Introduction Fuzz testing is an effective Software

More information

An Eclipse Plug-in for Model Checking

An Eclipse Plug-in for Model Checking An Eclipse Plug-in for Model Checking Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala Electrical Engineering and Computer Sciences University of California, Berkeley, USA Rupak Majumdar Computer Science

More information

Model Checking with Abstract State Matching

Model Checking with Abstract State Matching Model Checking with Abstract State Matching Corina Păsăreanu QSS, NASA Ames Research Center Joint work with Saswat Anand (Georgia Institute of Technology) Radek Pelánek (Masaryk University) Willem Visser

More information

Abstractions and small languages in synthesis CS294: Program Synthesis for Everyone

Abstractions and small languages in synthesis CS294: Program Synthesis for Everyone Abstractions and small languages in synthesis CS294: Program Synthesis for Everyone Ras Bodik Emina Torlak Division of Computer Science University of California, Berkeley Today Today: we describe why high-level

More information

Overview AEG Conclusion CS 6V Automatic Exploit Generation (AEG) Matthew Stephen. Department of Computer Science University of Texas at Dallas

Overview AEG Conclusion CS 6V Automatic Exploit Generation (AEG) Matthew Stephen. Department of Computer Science University of Texas at Dallas CS 6V81.005 Automatic Exploit Generation (AEG) Matthew Stephen Department of Computer Science University of Texas at Dallas February 20 th, 2012 Outline 1 Overview Introduction Considerations 2 AEG Challenges

More information

Topics. Software Testing Test Driven Development Black Box Testing Unit Testing White Box Testing Coverage Testing Software Debugging

Topics. Software Testing Test Driven Development Black Box Testing Unit Testing White Box Testing Coverage Testing Software Debugging Supplemental Materials: Software esting CS2: Data Structures and Algorithms Colorado State University Chris Wilcox, Russ Wakefield, Wim Bohm, Dave Matthews opics Software esting est Driven Development

More information

Software Testing CS 408. Lecture 6: Dynamic Symbolic Execution and Concolic Testing 1/30/18

Software Testing CS 408. Lecture 6: Dynamic Symbolic Execution and Concolic Testing 1/30/18 Software Testing CS 408 Lecture 6: Dynamic Symbolic Execution and Concolic Testing 1/30/18 Relevant Papers CUTE: A Concolic Unit Testing Engine for C Koushik Sen, Darko Marinov, Gul Agha Department of

More information

Bounded Model Checking Of C Programs: CBMC Tool Overview

Bounded Model Checking Of C Programs: CBMC Tool Overview Workshop on Formal Verification and Analysis Tools, CFDVS, IIT-Bombay - Feb 21,2017 Bounded Model Checking Of C Programs: CBMC Tool Overview Prateek Saxena CBMC Developed and Maintained by Dr Daniel Kröning

More information

Manifest Safety and Security. Robert Harper Carnegie Mellon University

Manifest Safety and Security. Robert Harper Carnegie Mellon University Manifest Safety and Security Robert Harper Carnegie Mellon University Collaborators This work is, in part, joint with Lujo Bauer, Karl Crary, Peter Lee, Mike Reiter, and Frank Pfenning at Carnegie Mellon.

More information

Combining Static and Dynamic Contract Checking for Curry

Combining Static and Dynamic Contract Checking for Curry Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 1 Combining Static and Dynamic Contract Checking for Curry Michael Hanus University of Kiel Programming Languages

More information

Advanced Java Concepts Unit 2: Linked Lists.

Advanced Java Concepts Unit 2: Linked Lists. Advanced Java Concepts Unit 2: Linked Lists. The List interface defines the structure of a linear collection. Here are some of its methods. boolean add( E element ) Appends the element to the end of the

More information

Automatic Qualification of Abstract Interpretation-based Static Analysis Tools. Christian Ferdinand, Daniel Kästner AbsInt GmbH 2013

Automatic Qualification of Abstract Interpretation-based Static Analysis Tools. Christian Ferdinand, Daniel Kästner AbsInt GmbH 2013 Automatic Qualification of Abstract Interpretation-based Static Analysis Tools Christian Ferdinand, Daniel Kästner AbsInt GmbH 2013 2 Functional Safety Demonstration of functional correctness Well-defined

More information

Outline. Introduction SDV Motivation Model vs Real Implementation SLIC SDVRP SLAM-2 Comparisons Conclusions

Outline. Introduction SDV Motivation Model vs Real Implementation SLIC SDVRP SLAM-2 Comparisons Conclusions Outline Introduction SDV Motivation Model vs Real Implementation SIC SDVRP SAM-2 Comparisons Conclusions SDV Research Platform Academic release of SDV (Static Driver Verifier), based on the code that ships

More information

Testing. ECE/CS 5780/6780: Embedded System Design. Why is testing so hard? Why do testing?

Testing. ECE/CS 5780/6780: Embedded System Design. Why is testing so hard? Why do testing? Testing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 24: Introduction to Software Testing and Verification What is software testing? Running a program in order to find bugs (faults,

More information

A and Branch-and-Bound Search

A and Branch-and-Bound Search A and Branch-and-Bound Search CPSC 322 Lecture 7 January 17, 2006 Textbook 2.5 A and Branch-and-Bound Search CPSC 322 Lecture 7, Slide 1 Lecture Overview Recap A Search Optimality of A Optimal Efficiency

More information

Software security, secure programming

Software security, secure programming Software security, secure programming Fuzzing and Dynamic Analysis Master on Cybersecurity Master MoSiG Academic Year 2017-2018 Outline Fuzzing (or how to cheaply produce useful program inputs) A concrete

More information

Static Analysis and Bugfinding

Static Analysis and Bugfinding Static Analysis and Bugfinding Alex Kantchelian 09/12/2011 Last week we talked about runtime checking methods: tools for detecting vulnerabilities being exploited in deployment. So far, these tools have

More information

Automated Unit Testing of Large Industrial Embedded Software using Concolic Testing

Automated Unit Testing of Large Industrial Embedded Software using Concolic Testing Automated Unit Testing of Large Industrial Embedded Software using Concolic Testing, Moonzoo Kim SW Testing & Verification Group KAIST, South Korea Youil Kim, Taeksu Kim, Gunwoo Lee, Yoonkyu Jang Samsung

More information

Eliminating Annotations by Automatic Flow Analysis of Real-Time Programs

Eliminating Annotations by Automatic Flow Analysis of Real-Time Programs Eliminating Annotations by Automatic Flow Analysis of Real-Time Programs Jan Gustafsson Department of Computer Engineering, Mälardalen University Box 883, S-721 23 Västerås, Sweden jangustafsson@mdhse

More information

Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 The MathWorks, Inc. 1

Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 The MathWorks, Inc. 1 Simulink 모델과 C/C++ 코드에대한매스웍스의정형검증툴소개 2012 The MathWorks, Inc. 1 Agenda Formal Verification Key concept Applications Verification of designs against (functional) requirements Design error detection Test

More information

Satisfiability Modulo Theories: ABsolver

Satisfiability Modulo Theories: ABsolver Satisfiability Modulo Theories: ABsolver Michael Tautschnig Joint work with: Andreas Bauer Martin Leucker Christian Schallhart Michael Tautschnig 1 Outline 1. Introduction Michael Tautschnig 2 Outline

More information

Testing, Fuzzing, & Symbolic Execution

Testing, Fuzzing, & Symbolic Execution Testing, Fuzzing, & Symbolic Execution Software Testing The most common way of measuring & ensuring correctness Input 2 Software Testing The most common way of measuring & ensuring correctness Input Observed

More information

Automated Test-Input Generation

Automated Test-Input Generation Automated Test-Input Generation Tao Xie North Carolina State University Department of Computer Science Nov 2005 http://www.csc.ncsu.edu/faculty/xie/ Why Automate Testing? Software testing is important

More information

6.1 Motivation. Fixed Priorities. 6.2 Context Switch. Real-time is about predictability, i.e. guarantees. Real-Time Systems

6.1 Motivation. Fixed Priorities. 6.2 Context Switch. Real-time is about predictability, i.e. guarantees. Real-Time Systems Real-Time Systems Summer term 2017 6.1 Motivation 6.1 Motivation Real-Time Systems 6 th Chapter Practical Considerations Jafar Akhundov, M.Sc. Professur Betriebssysteme Real-time is about predictability,

More information

Program Analysis and Code Verification

Program Analysis and Code Verification Program Analysis and Code Verification http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Language Lectures: English Labs: English Homework: Czech/English

More information

Testing Error Handling Code in Device Drivers Using Characteristic Fault Injection

Testing Error Handling Code in Device Drivers Using Characteristic Fault Injection 1 Testing Error Handling Code in Device Drivers Using Characteristic Fault Injection Jia-Ju Bai, Yu-Ping Wang, Jie Yin, Shi-Min Hu Department of Computer Science and Technology Tsinghua University Beijing,

More information

An Empirical Comparison of Automated Generation and Classification Techniques for Object-Oriented Unit Testing

An Empirical Comparison of Automated Generation and Classification Techniques for Object-Oriented Unit Testing An Empirical Comparison of Automated Generation and Classification Techniques for Object-Oriented Unit Testing Marcelo d Amorim (UIUC) Carlos Pacheco (MIT) Tao Xie (NCSU) Darko Marinov (UIUC) Michael D.

More information

Application of Propositional Logic II - How to Test/Verify my C program? Moonzoo Kim

Application of Propositional Logic II - How to Test/Verify my C program? Moonzoo Kim Application of Propositional Logic II - How to Test/Verify my C program? Moonzoo Kim 2 Solving Various Problems using SAT Solver Sudoku Puzzle Encoding 1 Encoding 2 Verify/Testing C Programs Encoding 3

More information

Memory Safety for Embedded Devices with nescheck

Memory Safety for Embedded Devices with nescheck Memory Safety for Embedded Devices with nescheck Daniele MIDI, Mathias PAYER, Elisa BERTINO Purdue University AsiaCCS 2017 Ubiquitous Computing and Security Sensors and WSNs are pervasive Small + cheap

More information

On the Generation of Test Cases for Embedded Software in Avionics or Overview of CESAR

On the Generation of Test Cases for Embedded Software in Avionics or Overview of CESAR 1 / 16 On the Generation of Test Cases for Embedded Software in Avionics or Overview of CESAR Philipp Rümmer Oxford University, Computing Laboratory philr@comlab.ox.ac.uk 8th KeY Symposium May 19th 2009

More information

Principles of Software Construction: Objects, Design, and Concurrency (Part 2: Designing (Sub )Systems)

Principles of Software Construction: Objects, Design, and Concurrency (Part 2: Designing (Sub )Systems) Principles of Software Construction: Objects, Design, and Concurrency (Part 2: Designing (Sub )Systems) More Analysis for Functional Correctness Jonathan Aldrich Charlie Garrod School of Computer Science

More information

Operational Semantics. One-Slide Summary. Lecture Outline

Operational Semantics. One-Slide Summary. Lecture Outline Operational Semantics #1 One-Slide Summary Operational semantics are a precise way of specifying how to evaluate a program. A formal semantics tells you what each expression means. Meaning depends on context:

More information

Assertions & Design-by-Contract using JML Erik Poll University of Nijmegen

Assertions & Design-by-Contract using JML Erik Poll University of Nijmegen Assertions & Design-by-Contract using JML Erik Poll University of Nijmegen Erik Poll - JML p.1/39 Overview Assertions Design-by-Contract for Java using JML Contracts and Inheritance Tools for JML Demo

More information

Achievements and Challenges

Achievements and Challenges Improving Automation in Developer Testing: Achievements and Challenges Tao Xie Department of Computer Science North Carolina State University http://ase.csc.ncsu.edu/ An up-to-date version of the slides

More information

Lecture Outline. COOL operational semantics. Operational Semantics of Cool. Motivation. Notation. The rules. Evaluation Rules So Far.

Lecture Outline. COOL operational semantics. Operational Semantics of Cool. Motivation. Notation. The rules. Evaluation Rules So Far. Lecture Outline Operational Semantics of Cool COOL operational semantics Motivation Adapted from Lectures by Profs. Alex Aiken and George Necula (UCB) Notation The rules CS781(Prasad) L24CG 1 CS781(Prasad)

More information

Program Analysis and Constraint Programming

Program Analysis and Constraint Programming Program Analysis and Constraint Programming Joxan Jaffar National University of Singapore CPAIOR MasterClass, 18-19 May 2015 1 / 41 Program Testing, Verification, Analysis (TVA)... VS... Satifiability/Optimization

More information

Program Testing via Symbolic Execution

Program Testing via Symbolic Execution Program Testing via Symbolic Execution Daniel Dunbar Program Testing via Symbolic Execution p. 1/26 Introduction Motivation Manual testing is difficult Program Testing via Symbolic Execution p. 2/26 Introduction

More information

Predicate Refinement Heuristics in Program Verification with CEGAR

Predicate Refinement Heuristics in Program Verification with CEGAR Predicate Refinement Heuristics in Program Verification with CEGAR Tachio Terauchi (JAIST) Part of this is joint work with Hiroshi Unno (U. Tsukuba) 1 Predicate Abstraction with CEGAR Iteratively generate

More information

Handling Cyclic Execution Paths in Timing Analysis of Component-based Software

Handling Cyclic Execution Paths in Timing Analysis of Component-based Software Handling Cyclic Execution Paths in Timing Analysis of Component-based Software Luka Lednicki, Jan Carlson Mälardalen Real-time Research Centre Mälardalen University Västerås, Sweden Email: {luka.lednicki,

More information

Microsoft SAGE and LLVM KLEE. Julian Cohen Manual and Automatic Program Analysis

Microsoft SAGE and LLVM KLEE. Julian Cohen Manual and Automatic Program Analysis Microsoft SAGE and LLVM KLEE Julian Cohen HockeyInJune@isis.poly.edu Manual and Automatic Program Analysis KLEE KLEE [OSDI 2008, Best Paper Award] Based on symbolic execution and constraint solving techniques

More information

Profile-Guided Program Simplification for Effective Testing and Analysis

Profile-Guided Program Simplification for Effective Testing and Analysis Profile-Guided Program Simplification for Effective Testing and Analysis Lingxiao Jiang Zhendong Su Program Execution Profiles A profile is a set of information about an execution, either succeeded or

More information

SimGrid MC 101. Getting Started with the SimGrid Model-Checker. Da SimGrid Team. April 11, 2017

SimGrid MC 101. Getting Started with the SimGrid Model-Checker. Da SimGrid Team. April 11, 2017 SimGrid MC 101 Getting Started with the SimGrid Model-Checker Da SimGrid Team April 11, 2017 About this Presentation Goals and Contents Understanding the basics of Model checking Running SimGrid as a Model

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University dissertation Author: Gouw, Stijn de Title: Combining monitoring with run-time assertion checking Issue

More information

Dynamic Test Generation to Find Bugs in Web Application

Dynamic Test Generation to Find Bugs in Web Application Dynamic Test Generation to Find Bugs in Web Application C.SathyaPriya 1 and S.Thiruvenkatasamy 2 1 Department of IT, Shree Venkateshwara Hi-Tech Engineering College, Gobi, Tamilnadu, India. 2 Department

More information

Outline. Introduction Concepts and terminology The case for static typing. Implementing a static type system Basic typing relations Adding context

Outline. Introduction Concepts and terminology The case for static typing. Implementing a static type system Basic typing relations Adding context Types 1 / 15 Outline Introduction Concepts and terminology The case for static typing Implementing a static type system Basic typing relations Adding context 2 / 15 Types and type errors Type: a set of

More information

Manuel Oriol, CHCRC-C, Software Testing ABB

Manuel Oriol, CHCRC-C, Software Testing ABB Manuel Oriol, CHCRC-C, 08.11.2017 Software Testing Slide 1 About me 1998 2004 2005 2008 2011 Slide 2 Introduction Why do we test? Did you have to deal with testing in the past? Slide 3 Ariane 5 http://www.youtube.com/watch?v=kyurqduyepi

More information

Ballista Design and Methodology

Ballista Design and Methodology Ballista Design and Methodology October 1997 Philip Koopman Institute for Complex Engineered Systems Carnegie Mellon University Hamershlag Hall D-202 Pittsburgh, PA 15213 koopman@cmu.edu (412) 268-5225

More information

Directed Random Testing*

Directed Random Testing* Directed Random Testing* Wolfram Schulte Microsoft Research Soqua 11/2006 Wasformerlyanouncedas: ChalengeProblemsinTesting 1 What my team does Static program verification & language design Verifying multi-threaded

More information

Automated Software Testing in the Absence of Specifications

Automated Software Testing in the Absence of Specifications Automated Software Testing in the Absence of Specifications Tao Xie North Carolina State University Department of Computer Science Nov 2005 http://www.csc.ncsu.edu/faculty/xie/ Why Automate Testing? Software

More information

Large-Scale API Protocol Mining for Automated Bug Detection

Large-Scale API Protocol Mining for Automated Bug Detection Large-Scale API Protocol Mining for Automated Bug Detection Michael Pradel Department of Computer Science ETH Zurich 1 Motivation LinkedList pinconnections =...; Iterator i = pinconnections.iterator();

More information

COL106: Data Structures and Algorithms. Ragesh Jaiswal, IIT Delhi

COL106: Data Structures and Algorithms. Ragesh Jaiswal, IIT Delhi Stack and Queue How do we implement a Queue using Array? : A collection of nodes with linear ordering defined on them. Each node holds an element and points to the next node in the order. The first node

More information

On the Reliability of Correct Programs

On the Reliability of Correct Programs On the Reliability of Correct Programs Marie-Claude Gaudel LRI, Université de Paris-Sud & CNRS April 2010 LAAS 1 Programs? Everybody knows what it is Let us try: A program is a piece of text in a (hopefully)

More information

Automatic Test Generation. Galeotti/Gorla/Rau Saarland University

Automatic Test Generation. Galeotti/Gorla/Rau Saarland University Automatic Test Generation Galeotti/Gorla/Rau Saarland University Testing : Find inputs that make the program fail Debugging : The process of finding the cause of a failure. Test Case Values/Test Input/Test

More information

Type Checking in COOL (II) Lecture 10

Type Checking in COOL (II) Lecture 10 Type Checking in COOL (II) Lecture 10 1 Lecture Outline Type systems and their expressiveness Type checking with SELF_TYPE in COOL Error recovery in semantic analysis 2 Expressiveness of Static Type Systems

More information

Software System Design and Implementation

Software System Design and Implementation Software System Design and Implementation Motivation & Introduction Gabriele Keller (Manuel M. T. Chakravarty) The University of New South Wales School of Computer Science and Engineering Sydney, Australia

More information

Classification of Code Annotations and Discussion of Compiler-Support for Worst-Case Execution Time Analysis

Classification of Code Annotations and Discussion of Compiler-Support for Worst-Case Execution Time Analysis Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 41 of 49 Classification of Code Annotations and Discussion of Compiler-Support for Worst-Case Execution Time Analysis

More information

CSE507. Practical Applications of SAT. Computer-Aided Reasoning for Software. Emina Torlak

CSE507. Practical Applications of SAT. Computer-Aided Reasoning for Software. Emina Torlak Computer-Aided Reasoning for Software CSE507 Practical Applications of SAT courses.cs.washington.edu/courses/cse507/18sp/ Emina Torlak emina@cs.washington.edu Today Past 2 lectures The theory and mechanics

More information

Static and dynamic analysis: synergy and duality

Static and dynamic analysis: synergy and duality Static and dynamic analysis: synergy and duality Michael Ernst MIT Computer Science & Artificial Intelligence Lab http://pag.csail.mit.edu/~mernst/ PASTE June 7, 2004 Michael Ernst, page 1 Goals Theme:

More information

ECE 587 Hardware/Software Co-Design Lecture 11 Verification I

ECE 587 Hardware/Software Co-Design Lecture 11 Verification I ECE 587 Hardware/Software Co-Design Spring 2018 1/23 ECE 587 Hardware/Software Co-Design Lecture 11 Verification I Professor Jia Wang Department of Electrical and Computer Engineering Illinois Institute

More information

Verifying Temporal Properties via Dynamic Program Execution. Zhenhua Duan Xidian University, China

Verifying Temporal Properties via Dynamic Program Execution. Zhenhua Duan Xidian University, China Verifying Temporal Properties via Dynamic Program Execution Zhenhua Duan Xidian University, China Main Points Background & Motivation MSVL and Compiler PPTL Unified Program Verification Tool Demo Conclusion

More information

Using Model Checking with Symbolic Execution to Verify Parallel Numerical Programs

Using Model Checking with Symbolic Execution to Verify Parallel Numerical Programs Using Model Checking with Symbolic Execution to Verify Parallel Numerical Programs Stephen F. Siegel 1 Anastasia Mironova 2 George S. Avrunin 1 Lori A. Clarke 1 1 University of Massachusetts Amherst 2

More information

Today Program Analysis for finding bugs, especially security bugs problem specification motivation approaches remaining issues

Today Program Analysis for finding bugs, especially security bugs problem specification motivation approaches remaining issues Finding Bugs Last time Run-time reordering transformations Today Program Analysis for finding bugs, especially security bugs problem specification motivation approaches remaining issues CS553 Lecture Finding

More information

KLEE: Effective Testing of Systems Programs Cristian Cadar

KLEE: Effective Testing of Systems Programs Cristian Cadar KLEE: Effective Testing of Systems Programs Cristian Cadar Joint work with Daniel Dunbar and Dawson Engler April 16th, 2009 Writing Systems Code Is Hard Code complexity Tricky control flow Complex dependencies

More information

Is Coincidental Correctness Less Prevalent in Unit Testing? Wes Masri American University of Beirut Electrical and Computer Engineering Department

Is Coincidental Correctness Less Prevalent in Unit Testing? Wes Masri American University of Beirut Electrical and Computer Engineering Department Is Coincidental Correctness Less Prevalent in Unit Testing? Wes Masri American University of Beirut Electrical and Computer Engineering Department Outline Definitions Weak CC vs. Strong CC Causes of Coincidental

More information

Graph Coverage for Source Code. Data Flow Graph Coverage for Source Code

Graph Coverage for Source Code. Data Flow Graph Coverage for Source Code Graph Coverage for Source Code Data Flow Graph Coverage for Source Code 1 Graph Coverage for Design Elements Use of data abstraction and object oriented software has increased importance on modularity

More information

From Symbolic Execution to Concolic Testing. Daniel Paqué

From Symbolic Execution to Concolic Testing. Daniel Paqué From Symbolic Execution to Concolic Testing Daniel Paqué Structure Symbolic Execution Concolic Testing Execution Generated Testing Concurrency in Concolic Testing 2 Motivation Software Testing usually

More information

Verifying control systems using CSP, FDR, and Handel-C.

Verifying control systems using CSP, FDR, and Handel-C. erifying control systems using CSP, FDR, and Handel-C. 01 Verifying control systems using CSP, FDR, and Handel-C. Alistair A. McEwan University of Surrey erifying control systems using CSP, FDR, and Handel-C.

More information

Advanced Programming Methods. Introduction in program analysis

Advanced Programming Methods. Introduction in program analysis Advanced Programming Methods Introduction in program analysis What is Program Analysis? Very broad topic, but generally speaking, automated analysis of program behavior Program analysis is about developing

More information

Applications of Program analysis in Model-Based Design

Applications of Program analysis in Model-Based Design Applications of Program analysis in Model-Based Design Prahlad Sampath (Prahlad.Sampath@mathworks.com) 2018 by The MathWorks, Inc., MATLAB, Simulink, Stateflow, are registered trademarks of The MathWorks,

More information

Security Testing. Ulf Kargén Department of Computer and Information Science (IDA) Division for Database and Information Techniques (ADIT)

Security Testing. Ulf Kargén Department of Computer and Information Science (IDA) Division for Database and Information Techniques (ADIT) Security Testing TDDC90 Software Security Ulf Kargén Department of Computer and Information Science (IDA) Division for Database and Information Techniques (ADIT) Security testing vs regular testing Regular

More information

Fitness-Guided Path Exploration in Automated Test Generation

Fitness-Guided Path Exploration in Automated Test Generation Fitness-Guided Path Exploration in Automated Test Generation Tao Xie Department of North Carolina State University http://ase.csc.ncsu.edu/ Joint work with Nikolai Tillmann, Peli de Halleux, Wolfram Schulte

More information

System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360. Floating Point September 16, 2008 System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

More information

Timing Analysis Enhancement for Synchronous Program

Timing Analysis Enhancement for Synchronous Program Timing Analysis Enhancement for Synchronous Program Extended Abstract Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Fabienne Carrier, and Mihail Asavoae Grenoble-Alpes University Verimag, Centre

More information

Leveraging Test Generation and Specification Mining for Automated Bug Detection without False Positives

Leveraging Test Generation and Specification Mining for Automated Bug Detection without False Positives Leveraging Test Generation and Specification Mining for Automated Bug Detection without False Positives Michael Pradel and Thomas R. Gross Department of Computer Science ETH Zurich 1 Motivation API usage

More information