Leftest Heap Structure. Leftest Heap

Size: px
Start display at page:

Download "Leftest Heap Structure. Leftest Heap"

Transcription

1 Leftest Heap Structure Each node contains the fields: Key, Dist, Left, Right If p is the parent, then p.key > p.left.key p.key > p.right.key p.dist = 1 + min(p.left.dist, p.right.dist) p.left.dist p.right.dist 2001 P.Wolfgang 1 Leftest Heap P.Wolfgang 2 1

2 Leftest Heap Properties There are at least 2 p.dist nodes below p. A Leftest Heap with n nodes has a path of lg(n+1) from the root to a leaf taking the right branch. A new node can be inserted by following this path. Thus, insertion takes O(log n) 2001 P.Wolfgang 3 Merging Leftest Heaps To merge leftest heaps P and Q: If P.Key > Q.Key, make P the root, and merge the leftest heaps P.right and Q. Make this merged heap P.right. Otherwise make Q the root, and merge Q.right and P P.Wolfgang 4 2

3 Removal from a Leftest Heap To remove the node P Merge P.Left and P.Right. Replace P with the merged heap P.Wolfgang 5 Java Implementation /** A leftestheap is a heap implemented using leftest trees as described in Knuth (vol 3, page ) */ public class LeftestHeap private class Node public Comparable Key; public int Dist; public Node Parent; public Node Left; public Node Right; Node (Comparable key, int dist, Node left, Node right) Key = key; Dist = dist; Parent = null; Left = left; Right = right; 2001 P.Wolfgang 6 3

4 private static int getdist(node n) if (n == null) return 0; else return n.dist; private Node Root; public LeftestHeap(Comparable Key) Root = new Node(Key, 1, null, null); public LeftestHeap() Root = null; private LeftestHeap(Node n) Root = n; 2001 P.Wolfgang 7 public static LeftestHeap Merge(LeftestHeap P, LeftestHeap Q) Node NewRoot; if (P.Root == null) return Q; if (Q.Root == null) return P; if (P.Root.Key.compareTo(Q.Root.Key) > 0) NewRoot = Q.Root; NewRoot.Right = Merge(P, new LeftestHeap(Q.Root.Right)).Root; else NewRoot = P.Root; NewRoot.Right = Merge(new LeftestHeap(P.Root.Right), Q).Root; if (getdist(newroot.left) < getdist(newroot.right)) Node temp = NewRoot.Left; NewRoot.Left = NewRoot.Right; NewRoot.Right = temp; NewRoot.Dist = getdist(newroot.right) + 1; if (NewRoot.Left!= null) NewRoot.Left.Parent = NewRoot; if (NewRoot.Right!= null) NewRoot.Right.Parent = NewRoot; return new LeftestHeap(NewRoot); 2001 P.Wolfgang 8 4

5 public class Handel private Node localroot; public Handel() localroot = null; public String tostring() return (localroot!= null? localroot.tostring() : "null"); public Comparable Remove() return LeftestHeap.this.Remove(localRoot); 2001 P.Wolfgang 9 public Handel Insert(Comparable newkey) LeftestHeap newheap = new LeftestHeap(newKey); Handel handel = new Handel(); handel.localroot = newheap.root; Node newroot = Merge(this, newheap).root; Root = newroot; return handel; 2001 P.Wolfgang 10 5

6 public Comparable Pop() if (Root!= null) Comparable result = Root.Key; Node newroot = Merge(new LeftestHeap(Root.Left), new LeftestHeap(Root.Right)).Root; Root = newroot; if (Root!= null) Root.Parent = null; return result; else return null; 2001 P.Wolfgang 11 private Comparable Remove(Node oldroot) if (oldroot == null) return null; Node newroot = Merge(new LeftestHeap(oldRoot.Left), new LeftestHeap(oldRoot.Right)).Root; if (oldroot.parent == null) Root = newroot; if (Root!= null) Root.Parent = null; else if (oldroot.parent.left == oldroot) oldroot.parent.left = newroot; else oldroot.parent.right = newroot; if (newroot!= null) newroot.parent = oldroot.parent; return oldroot.key; 2001 P.Wolfgang 12 6

7 boolean isempty() return Root == null; public Comparable Top() if (Root!= null) return Root.Key; else return null; 2001 P.Wolfgang 13 public Comparable Second() if (Root == null) return null; if (Root.Left == null) return Root.Right!= null? Root.Right.Key : null; if (Root.Right == null) return Root.Left.Key; if (Root.Left.Key.compareTo(Root.Right.Key) > 0) return Root.Right.Key; else return Root.Left.Key; 2001 P.Wolfgang 14 7

8 Hu-Tucker Algorithm Constructs the optimal binary search tree for the special case in which all of the β i s are zero. (I.E. the internal nodes have zero probability). By using leftest heaps, the algorithm can run in O(nlogn) time P.Wolfgang 15 Hu-Tucker Phase1 Start with a sequence of α i s as external nodes. Repeatedly combine two nodes α i and α j, i<j such that: No external nodes occur between α i and α j. The sum α i + α j is minimum over all (α i, α j ) The index i is the minimum The index j is the minimum 2001 P.Wolfgang 16 8

9 Result of Phase E F G H I J K L M N O 2001 P.Wolfgang 17 Hu-Tucker Phase2 Assign a level to each node starting with the root as zero. Remove the internal nodes created in Phase1 leaving a new working sequence of external nodes at the assigned levels P.Wolfgang 18 9

10 Result of Phase E H I N O F G M 6 32 L 1 5 J K 2001 P.Wolfgang 19 Ready for Phase3 103 E H I N O F G 20 M 32 L 1 5 J K 2001 P.Wolfgang 20 10

11 Hu-Tucker Phase3 Recombining the nodes into a new tree that preserves both the level of the external nodes and the sequence of the external nodes. Nodes α i and α j must be adjacent The levels l i and l j must be both the maximum of all remaining levels The index i is the minimum P.Wolfgang 21 Result of Phase E H I N O F G M 6 32 L 1 5 J K 2001 P.Wolfgang 22 11

12 Implementation in O(nlogn) time Construct a sequence of heaps that contain pairs of adjacent external nodes. Place this sequence into a master heap that is sorted by the sum of the weights of the smallest two elements of the heaps P.Wolfgang 23 Hu-Tucker in O(nlogn) time [2] Loop until the master heap has only one element: Remove the heap that has the smallest sum. Remove the smallest two nodes. If one (or both) of the nodes is (are) external Remove the heap(s) that contains the external node(s) from the master heap. Remove the external node(s) from this(these) heap(s). Combine the two (or three) heaps. Combine the two smallest nodes and insert the combined node back into the heap. Re-insert the heap into the master heap. Continue to combine the nodes of the remaining heap until it has only one node P.Wolfgang 24 12

13 Example Using the data of the figures, the initial heap of heaps looks as follows: After removing 1,5 and combining nodes we get: Next 15, 21 come out: Then 6, P.Wolfgang 25 Next 20, Then 36, Finally 57, 57 gives the final heap: Example [2] 2001 P.Wolfgang 26 13

CS 112 Introduction to Computing II. Wayne Snyder Computer Science Department Boston University

CS 112 Introduction to Computing II. Wayne Snyder Computer Science Department Boston University CS 112 Introduction to Computing II Wayne Snyder Department Boston University Today: Efficiency of binary trees; Balanced Trees 2-3 Trees Next Time: 2-3 Trees continued B-Trees and External Search Efficiency

More information

Consider the search operation FindKey (): find an element of a particular key value in a binary tree. This operation takes O(n) time in a binary

Consider the search operation FindKey (): find an element of a particular key value in a binary tree. This operation takes O(n) time in a binary 1 Consider the search operation FindKey (): find an element of a particular key value in a binary tree. This operation takes O(n) time in a binary tree. In a binary tree of 10 6 nodes 10 6 steps required

More information

1 public class BinaryTree<E extends Comparable<E>> { 2 private Node<E> root; 3 4 public BinaryTree (){ 5 root = null; 6 } 7 8 private BinaryTree

1 public class BinaryTree<E extends Comparable<E>> { 2 private Node<E> root; 3 4 public BinaryTree (){ 5 root = null; 6 } 7 8 private BinaryTree 1 public class BinaryTree { 2 private Node root; 3 4 public BinaryTree (){ 5 root = null; 6 } 7 8 private BinaryTree (Node r){ 9 root = r; 10 // null or not is controlled

More information

Introduction to Trees. D. Thiebaut CSC212 Fall 2014

Introduction to Trees. D. Thiebaut CSC212 Fall 2014 Introduction to Trees D. Thiebaut CSC212 Fall 2014 A bit of History & Data Visualization: The Book of Trees. (Link) We Concentrate on Binary-Trees, Specifically, Binary-Search Trees (BST) How Will Java

More information

: Advanced Programming Final Exam Summer 2008 June 27, 2008

: Advanced Programming Final Exam Summer 2008 June 27, 2008 15-111 : Advanced Programming Final Exam Summer 2008 June 27, 2008 Name: Andrew ID: Answer the questions in the space provided following each question. We must be able to clearly understand your answer.

More information

CSE 373 Midterm 2 2/27/06 Sample Solution. Question 1. (6 points) (a) What is the load factor of a hash table? (Give a definition.

CSE 373 Midterm 2 2/27/06 Sample Solution. Question 1. (6 points) (a) What is the load factor of a hash table? (Give a definition. Question 1. (6 points) (a) What is the load factor of a hash table? (Give a definition.) The load factor is number of items in the table / size of the table (number of buckets) (b) What is a reasonable

More information

Module 4: Dictionaries and Balanced Search Trees

Module 4: Dictionaries and Balanced Search Trees Module 4: Dictionaries and Balanced Search Trees CS 24 - Data Structures and Data Management Jason Hinek and Arne Storjohann Based on lecture notes by R. Dorrigiv and D. Roche David R. Cheriton School

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 2 Data Structures and Algorithms Chapter 6: Priority Queues (Binary Heaps) Text: Read Weiss, 6.1 6.3 Izmir University of Economics 1 A kind of queue Priority Queue (Heap) Dequeue gets element with the

More information

a graph is a data structure made up of nodes in graph theory the links are normally called edges

a graph is a data structure made up of nodes in graph theory the links are normally called edges 1 Trees Graphs a graph is a data structure made up of nodes each node stores data each node has links to zero or more nodes in graph theory the links are normally called edges graphs occur frequently in

More information

Priority queues. Priority queues. Priority queue operations

Priority queues. Priority queues. Priority queue operations Priority queues March 30, 018 1 Priority queues The ADT priority queue stores arbitrary objects with priorities. An object with the highest priority gets served first. Objects with priorities are defined

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 9: Binary Search Trees. 10/7/015 Daniel Bauer 1 Contents 1. Binary Search Trees. Implementing Maps with BSTs Map ADT A map is collection of (key, value) pairs. Keys are

More information

Binary Trees: Practice Problems

Binary Trees: Practice Problems Binary Trees: Practice Problems College of Computing & Information Technology King Abdulaziz University CPCS-204 Data Structures I Warmup Problem 1: Searching for a node public boolean recursivesearch(int

More information

CMSC351 - Fall 2014, Homework #2

CMSC351 - Fall 2014, Homework #2 CMSC351 - Fall 2014, Homework #2 Due: October 8th at the start of class Name: Section: Grades depend on neatness and clarity. Write your answers with enough detail about your approach and concepts used,

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

COSC160: Data Structures Heaps. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Heaps. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Heaps Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Priority Queue II. Heaps I. Binary Heaps II. Skew Heaps Balancing a Tree Binary trees lack a depth constraint.

More information

Advanced Java Concepts Unit 5: Trees. Notes and Exercises

Advanced Java Concepts Unit 5: Trees. Notes and Exercises Advanced Java Concepts Unit 5: Trees. Notes and Exercises A Tree is a data structure like the figure shown below. We don t usually care about unordered trees but that s where we ll start. Later we will

More information

Priority Queues. T. M. Murali. January 23, T. M. Murali January 23, 2008 Priority Queues

Priority Queues. T. M. Murali. January 23, T. M. Murali January 23, 2008 Priority Queues Priority Queues T. M. Murali January 23, 2008 Motivation: Sort a List of Numbers Sort INSTANCE: Nonempty list x 1, x 2,..., x n of integers. SOLUTION: A permutation y 1, y 2,..., y n of x 1, x 2,..., x

More information

" Which data Structure to extend to create a heap? " Two binary tree extensions are needed in a heap. n it is a binary tree (a complete one)

 Which data Structure to extend to create a heap?  Two binary tree extensions are needed in a heap. n it is a binary tree (a complete one) /7/ Queue vs Priority Queue Priority Queue Implementations queue 0 0 Keep them sorted! (Have we implemented it already?) Appropriate if the number of items is small Sorted Array-based items 0... items

More information

Priority Queues. T. M. Murali. January 29, 2009

Priority Queues. T. M. Murali. January 29, 2009 Priority Queues T. M. Murali January 29, 2009 Motivation: Sort a List of Numbers Sort INSTANCE: Nonempty list x 1, x 2,..., x n of integers. SOLUTION: A permutation y 1, y 2,..., y n of x 1, x 2,..., x

More information

Binary Trees and Huffman Encoding Binary Search Trees

Binary Trees and Huffman Encoding Binary Search Trees Binary Trees and Huffman Encoding Binary Search Trees Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary is a

More information

The smallest element is the first one removed. (You could also define a largest-first-out priority queue)

The smallest element is the first one removed. (You could also define a largest-first-out priority queue) Priority Queues Priority queue A stack is first in, last out A queue is first in, first out A priority queue is least-first-out The smallest element is the first one removed (You could also define a largest-first-out

More information

CSE143 Summer 2008 Final Exam Part B KEY August 22, 2008

CSE143 Summer 2008 Final Exam Part B KEY August 22, 2008 CSE143 Summer 2008 Final Exam Part B KEY August 22, 2008 Name : Section (eg. AA) : TA : This is an open-book/open-note exam. Space is provided for your answers. Use the backs of pages if necessary. The

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Binary Search Trees CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures

More information

Heaps 2. Recall Priority Queue ADT. Heaps 3/19/14

Heaps 2. Recall Priority Queue ADT. Heaps 3/19/14 Heaps 3// Presentation for use with the textbook Data Structures and Algorithms in Java, th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 0 Heaps Heaps Recall Priority Queue ADT

More information

Greedy Approach: Intro

Greedy Approach: Intro Greedy Approach: Intro Applies to optimization problems only Problem solving consists of a series of actions/steps Each action must be 1. Feasible 2. Locally optimal 3. Irrevocable Motivation: If always

More information

ECE 242 Data Structures and Algorithms. Heaps I. Lecture 22. Prof. Eric Polizzi

ECE 242 Data Structures and Algorithms.  Heaps I. Lecture 22. Prof. Eric Polizzi ECE 242 Data Structures and Algorithms http://www.ecs.umass.edu/~polizzi/teaching/ece242/ Heaps I Lecture 22 Prof. Eric Polizzi Motivations Review of priority queue Input F E D B A Output Input Data structure

More information

CSE 332: Data Structures & Parallelism Lecture 7: Dictionaries; Binary Search Trees. Ruth Anderson Winter 2019

CSE 332: Data Structures & Parallelism Lecture 7: Dictionaries; Binary Search Trees. Ruth Anderson Winter 2019 CSE 332: Data Structures & Parallelism Lecture 7: Dictionaries; Binary Search Trees Ruth Anderson Winter 2019 Today Dictionaries Trees 1/23/2019 2 Where we are Studying the absolutely essential ADTs of

More information

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example.

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example. Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Tree: non-recursive definition Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every node (except

More information

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic 1 Heaps Outline and Required Reading: Heaps (.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic Heap ADT 2 Heap binary tree (T) that stores a collection of keys at its internal nodes and satisfies

More information

Binary Search Trees. BinaryTree<E> Class (cont.) Section /27/2017

Binary Search Trees. BinaryTree<E> Class (cont.) Section /27/2017 Binary Search Trees Section.4 BinaryTree Class (cont.) public class BinaryTree { // Data members/fields...just the root is needed - Node root; // Constructor(s) + BinaryTree() + BinaryTree(Node

More information

HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES

HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES 2 5 6 9 7 Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H., Wiley, 2014

More information

CMPSCI 187: Programming With Data Structures. Lecture #28: Binary Search Trees 21 November 2011

CMPSCI 187: Programming With Data Structures. Lecture #28: Binary Search Trees 21 November 2011 CMPSCI 187: Programming With Data Structures Lecture #28: Binary Search Trees 21 November 2011 Binary Search Trees The Idea of a Binary Search Tree The BinarySearchTreeADT Interface The LinkedBinarySearchTree

More information

Lecture 6 Sorting and Searching

Lecture 6 Sorting and Searching Lecture 6 Sorting and Searching Sorting takes an unordered collection and makes it an ordered one. 1 2 3 4 5 6 77 42 35 12 101 5 1 2 3 4 5 6 5 12 35 42 77 101 There are many algorithms for sorting a list

More information

Adding a Node to (Min) Heap. Lecture16: Heap Sort. Priority Queue Sort. Delete a Node from (Min) Heap. Step 1: Add node at the end

Adding a Node to (Min) Heap. Lecture16: Heap Sort. Priority Queue Sort. Delete a Node from (Min) Heap. Step 1: Add node at the end Adding a Node to (Min) Heap (F) Lecture16: Heap Sort Takes log steps if nodes are added Step 1: Add node at the end Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Step 2: Make swap if parent is bigger Step

More information

Implementations. Priority Queues. Heaps and Heap Order. The Insert Operation CS206 CS206

Implementations. Priority Queues. Heaps and Heap Order. The Insert Operation CS206 CS206 Priority Queues An internet router receives data packets, and forwards them in the direction of their destination. When the line is busy, packets need to be queued. Some data packets have higher priority

More information

Heaps in C. CHAN Hou Pong, Ken CSCI2100 Data Structures Tutorial 7

Heaps in C. CHAN Hou Pong, Ken CSCI2100 Data Structures Tutorial 7 Heaps in C CHAN Hou Pong, Ken CSCI2100 Data Structures Tutorial 7 Review on Heaps A heap is implemented as a binary tree It satisfies two properties: MinHeap: parent = child]

More information

Title Description Participants Textbook

Title Description Participants Textbook Podcast Ch18c Title: BST delete operation Description: Deleting a leaf; deleting a node with one nonnull child; deleting a node with two nonnull children Participants: Barry Kurtz (instructor); John Helfert

More information

Heaps Goodrich, Tamassia. Heaps 1

Heaps Goodrich, Tamassia. Heaps 1 Heaps Heaps 1 Recall Priority Queue ADT A priority queue stores a collection of entries Each entry is a pair (key, value) Main methods of the Priority Queue ADT insert(k, x) inserts an entry with key k

More information

CISC 235: Topic 4. Balanced Binary Search Trees

CISC 235: Topic 4. Balanced Binary Search Trees CISC 235: Topic 4 Balanced Binary Search Trees Outline Rationale and definitions Rotations AVL Trees, Red-Black, and AA-Trees Algorithms for searching, insertion, and deletion Analysis of complexity CISC

More information

Spring 2018 Mentoring 8: March 14, Binary Trees

Spring 2018 Mentoring 8: March 14, Binary Trees CSM 6B Binary Trees Spring 08 Mentoring 8: March 4, 08 Binary Trees. Define a procedure, height, which takes in a Node and outputs the height of the tree. Recall that the height of a leaf node is 0. private

More information

Topic: Heaps and priority queues

Topic: Heaps and priority queues David Keil Data Structures 8/05 1 Topic: Heaps and priority queues The priority-queue problem The heap solution Binary trees and complete binary trees Running time of heap operations Array implementation

More information

Priority Queue. How to implement a Priority Queue? queue. priority queue

Priority Queue. How to implement a Priority Queue? queue. priority queue Priority Queue cs cs cs0 cs cs cs queue cs cs cs cs0 cs cs cs cs cs0 cs cs cs Reading LDC Ch 8 priority queue cs0 cs cs cs cs cs How to implement a Priority Queue? Keep them sorted! (Haven t we implemented

More information

Computer Science E-22 Practice Final Exam

Computer Science E-22 Practice Final Exam name Computer Science E-22 This exam consists of three parts. Part I has 10 multiple-choice questions that you must complete. Part II consists of 4 multi-part problems, of which you must complete 3, and

More information

Breadth-First Search, 1. Slides for CIS 675 DPV Chapter 4. Breadth-First Search, 3. Breadth-First Search, 2

Breadth-First Search, 1. Slides for CIS 675 DPV Chapter 4. Breadth-First Search, 3. Breadth-First Search, 2 Breadth-First Search, Slides for CIS DPV Chapter Jim Royer EECS October, 00 Definition In an undirected graph, the distance between two vertices is the length of the shortest path between them. (If there

More information

Advanced Java Concepts Unit 5: Trees. Notes and Exercises

Advanced Java Concepts Unit 5: Trees. Notes and Exercises dvanced Java Concepts Unit 5: Trees. Notes and Exercises Tree is a data structure like the figure shown below. We don t usually care about unordered trees but that s where we ll start. Later we will focus

More information

COMP 250. Lecture 22. binary search trees. Oct. 30, 2017

COMP 250. Lecture 22. binary search trees. Oct. 30, 2017 COMP 250 Lecture 22 binary search trees Oct. 30, 2017 1 (binary search) tree binary (search tree) 2 class BSTNode< K >{ K BSTNode< K > BSTNode< K > : } key; leftchild; rightchild; The keys are comparable

More information

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT.

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT. Week 10 1 2 3 4 5 6 Sorting 7 8 General remarks We return to sorting, considering and. Reading from CLRS for week 7 1 Chapter 6, Sections 6.1-6.5. 2 Chapter 7, Sections 7.1, 7.2. Discover the properties

More information

Self-Balancing Search Trees. Chapter 11

Self-Balancing Search Trees. Chapter 11 Self-Balancing Search Trees Chapter 11 Chapter Objectives To understand the impact that balance has on the performance of binary search trees To learn about the AVL tree for storing and maintaining a binary

More information

Heaps. 2/13/2006 Heaps 1

Heaps. 2/13/2006 Heaps 1 Heaps /13/00 Heaps 1 Outline and Reading What is a heap ( 8.3.1) Height of a heap ( 8.3.) Insertion ( 8.3.3) Removal ( 8.3.3) Heap-sort ( 8.3.) Arraylist-based implementation ( 8.3.) Bottom-up construction

More information

Figure 18.4 A Unix directory. 02/10/04 Lecture 9 1

Figure 18.4 A Unix directory. 02/10/04 Lecture 9 1 Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss 2002 Addison Wesley Figure 18.4 A Unix directory 02/10/04 Lecture 9 1 Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss 2002

More information

Priority Queues (Heaps)

Priority Queues (Heaps) Priority Queues (Heaps) 1 Priority Queues Many applications require that we process records with keys in order, but not necessarily in full sorted order. Often we collect a set of items and process the

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Marcel Turcotte School of Electrical Engineering and Computer Science Binary search tree (part I) Version of March 24, 2013 Abstract These lecture notes are meant

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Marcel Turcotte School of Electrical Engineering and Computer Science Binary search tree (part I) Version of March 24, 2013 Abstract These lecture notes are meant

More information

The beautiful binary heap.

The beautiful binary heap. The beautiful binary heap. Weiss has a chapter on the binary heap - chapter 20, pp581-601. It s a very neat implementation of the binary tree idea, using an array. We can use the binary heap to sort an

More information

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT.

Week 10. Sorting. 1 Binary heaps. 2 Heapification. 3 Building a heap 4 HEAP-SORT. 5 Priority queues 6 QUICK-SORT. 7 Analysing QUICK-SORT. Week 10 1 Binary s 2 3 4 5 6 Sorting Binary s 7 8 General remarks Binary s We return to sorting, considering and. Reading from CLRS for week 7 1 Chapter 6, Sections 6.1-6.5. 2 Chapter 7, Sections 7.1,

More information

Stack ADT. ! push(x) puts the element x on top of the stack! pop removes the topmost element from the stack.

Stack ADT. ! push(x) puts the element x on top of the stack! pop removes the topmost element from the stack. STACK Stack ADT 2 A stack is an abstract data type based on the list data model All operations are performed at one end of the list called the top of the stack (TOS) LIFO (for last-in first-out) list is

More information

Priority Queues and Heaps. Heaps and Priority Queues 1

Priority Queues and Heaps. Heaps and Priority Queues 1 Priority Queues and Heaps 2 5 6 9 7 Heaps and Priority Queues 1 Priority Queue ADT A priority queue stores a collection of items An item is a pair (key, element) Main methods of the Priority Queue ADT

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

IMPLEMENTING BINARY TREES

IMPLEMENTING BINARY TREES IMPLEMENTING BINARY TREES Chapter 6 A Binary Tree BinaryTree a = new BinaryTree(); a A B C D E F 1 A Binary Tree BinaryTree a = new BinaryTree(); a A B C D E F A Binary

More information

CS 2230 CS II: Data structures. Meeting 21: trees Brandon Myers University of Iowa

CS 2230 CS II: Data structures. Meeting 21: trees Brandon Myers University of Iowa CS 2230 CS II: Data structures Meeting 21: trees Brandon Myers University of Iowa Today s learning objectives Define tree (a data structure that can store data hierarchically) and describe trees in terms

More information

Generic BST Interface

Generic BST Interface Generic BST Interface Here s a partial generic BST interface: public class BST

More information

Maintain binary search tree property nodes to the left are less than the current node, nodes to the right are greater

Maintain binary search tree property nodes to the left are less than the current node, nodes to the right are greater CS61B, Summer 2002 Lecture #8 Barath Raghavan UC Berkeley Topics: Binary Search Trees, Priority queues 1 Binary search trees (BSTs) Represented as ordinary binary trees Maintain binary search tree property

More information

CSE 326: Data Structures Binary Search Trees

CSE 326: Data Structures Binary Search Trees nnouncements (1/3/0) S 36: ata Structures inary Search Trees Steve Seitz Winter 0 HW # due now HW #3 out today, due at beginning of class next riday. Project due next Wed. night. Read hapter 4 1 Ts Seen

More information

Heaps. A complete binary tree can be easily stored in an array - place the root in position 1 (for convenience)

Heaps. A complete binary tree can be easily stored in an array - place the root in position 1 (for convenience) Binary heap data structure Heaps A binary heap is a special kind of binary tree - has a restricted structure (must be complete) - has an ordering property (parent value is smaller than child values) Used

More information

CSCI 136 Data Structures & Advanced Programming. Lecture 22 Fall 2018 Instructor: Bills

CSCI 136 Data Structures & Advanced Programming. Lecture 22 Fall 2018 Instructor: Bills CSCI 136 Data Structures & Advanced Programming Lecture 22 Fall 2018 Instructor: Bills Last Time Lab 7: Two Towers Array Representations of (Binary) Trees Application: Huffman Encoding 2 Today Improving

More information

CMSC 341. Binary Heaps. Priority Queues

CMSC 341. Binary Heaps. Priority Queues CMSC 341 Binary Heaps Priority Queues Priority Queues Priority: some property of an object that allows it to be prioritized with respect to other objects of the same type Min Priority Queue: homogeneous

More information

Final- ECE 242 Fall 2016 Closed book/notes- no calculator- no phone- no computer

Final- ECE 242 Fall 2016 Closed book/notes- no calculator- no phone- no computer Final- ECE 242 Fall 2016 Closed book/notes- no calculator- no phone- no computer NAME: ID: Problem 1- Binary Search Trees (30pts) 2- Heap and Heapsort (22pts) 3- Sorting (10pts) 4- Graphs (20pts) 5- Hash-Table

More information

Lecture 27. Binary Search Trees. Binary Search Trees

Lecture 27. Binary Search Trees. Binary Search Trees Lecture Binary Search Trees Binary Search Trees In the previous lecture, we defined the concept of binary search tree as a binary tree of nodes containing an ordered key with the following additional property.

More information

Title Description Participants Textbook

Title Description Participants Textbook Podcast Ch18d Title: Binary Search Tree Iterator Description: Additional operations first and last; the BST iterator Participants: Barry Kurtz (instructor); John Helfert and Tobie Williams (students) Textbook:

More information

Definition of a Heap. Heaps. Priority Queues. Example. Implementation using a heap. Heap ADT

Definition of a Heap. Heaps. Priority Queues. Example. Implementation using a heap. Heap ADT Heaps Definition of a heap What are they for: priority queues Insertion and deletion into heaps Implementation of heaps Heap sort Not to be confused with: heap as the portion of computer memory available

More information

Priority Queues and Binary Heaps. See Chapter 21 of the text, pages

Priority Queues and Binary Heaps. See Chapter 21 of the text, pages Priority Queues and Binary Heaps See Chapter 21 of the text, pages 807-839. A priority queue is a queue-like data structure that assumes data is comparable in some way (or at least has some field on which

More information

Announcements. Problem Set 2 is out today! Due Tuesday (Oct 13) More challenging so start early!

Announcements. Problem Set 2 is out today! Due Tuesday (Oct 13) More challenging so start early! CSC263 Week 3 Announcements Problem Set 2 is out today! Due Tuesday (Oct 13) More challenging so start early! NOT This week ADT: Dictionary Data structure: Binary search tree (BST) Balanced BST - AVL tree

More information

Priority Queues 1 / 15

Priority Queues 1 / 15 Priority Queues 1 / 15 Outline 1 API 2 Elementary Implementations 3 Heap Definitions 4 Algorithms on Heaps 5 Heap Sort 6 Heap Sort and Other Sorts 2 / 15 API Many applications require that we process items

More information

CSE 214 Computer Science II Heaps and Priority Queues

CSE 214 Computer Science II Heaps and Priority Queues CSE 214 Computer Science II Heaps and Priority Queues Spring 2018 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu http://www3.cs.stonybrook.edu/~cse214/sec02/ Introduction

More information

INFO1x05 Tutorial 6. Exercise 1: Heaps and Priority Queues

INFO1x05 Tutorial 6. Exercise 1: Heaps and Priority Queues INFO1x05 Tutorial 6 Heaps and Priority Queues Exercise 1: 1. How long would it take to remove the log n smallest elements from a heap that contains n entries, using the operation? 2. Suppose you label

More information

CSE373 Fall 2013, Midterm Examination October 18, 2013

CSE373 Fall 2013, Midterm Examination October 18, 2013 CSE373 Fall 2013, Midterm Examination October 18, 2013 Please do not turn the page until the bell rings. Rules: The exam is closed-book, closed-note, closed calculator, closed electronics. Please stop

More information

Data Structures. Giri Narasimhan Office: ECS 254A Phone: x-3748

Data Structures. Giri Narasimhan Office: ECS 254A Phone: x-3748 Data Structures Giri Narasimhan Office: ECS 254A Phone: x-3748 giri@cs.fiu.edu Motivation u Many applications where Items have associated priorities Job scheduling Long print jobs vs short ones; OS jobs

More information

Describe how to implement deque ADT using two stacks as the only instance variables. What are the running times of the methods

Describe how to implement deque ADT using two stacks as the only instance variables. What are the running times of the methods Describe how to implement deque ADT using two stacks as the only instance variables. What are the running times of the methods 1 2 Given : Stack A, Stack B 3 // based on requirement b will be reverse of

More information

Priority Queues and Binary Heaps. See Chapter 21 of the text, pages

Priority Queues and Binary Heaps. See Chapter 21 of the text, pages Priority Queues and Binary Heaps See Chapter 21 of the text, pages 807-839. A priority queue is a queue-like data structure that assumes data is comparable in some way (or at least has some field on which

More information

Overview of Presentation. Heapsort. Heap Properties. What is Heap? Building a Heap. Two Basic Procedure on Heap

Overview of Presentation. Heapsort. Heap Properties. What is Heap? Building a Heap. Two Basic Procedure on Heap Heapsort Submitted by : Hardik Parikh(hjp0608) Soujanya Soni (sxs3298) Overview of Presentation Heap Definition. Adding a Node. Removing a Node. Array Implementation. Analysis What is Heap? A Heap is a

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

COMP : Trees. COMP20012 Trees 219

COMP : Trees. COMP20012 Trees 219 COMP20012 3: Trees COMP20012 Trees 219 Trees Seen lots of examples. Parse Trees Decision Trees Search Trees Family Trees Hierarchical Structures Management Directories COMP20012 Trees 220 Trees have natural

More information

Arrays aren t going to work. What can we do? Use pointers Copy a large section of a heap, with a single pointer assignment

Arrays aren t going to work. What can we do? Use pointers Copy a large section of a heap, with a single pointer assignment CS5-008S-0 Leftist Heaps 0-0: Leftist Heaps Operations: Add an element Remove smallest element Merge two heaps together 0-: Leftist Heaps Operations: Add an element Remove smallest element Merge two heaps

More information

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am Announcements Midterm exam 2, Thursday, May 18 Closed book/notes but one sheet of paper allowed Covers up to stacks and queues Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps

More information

Binary heaps (chapters ) Leftist heaps

Binary heaps (chapters ) Leftist heaps Binary heaps (chapters 20.3 20.5) Leftist heaps Binary heaps are arrays! A binary heap is really implemented using an array! 8 18 29 20 28 39 66 Possible because of completeness property 37 26 76 32 74

More information

The heap is essentially an array-based binary tree with either the biggest or smallest element at the root.

The heap is essentially an array-based binary tree with either the biggest or smallest element at the root. The heap is essentially an array-based binary tree with either the biggest or smallest element at the root. Every parent in a Heap will always be smaller or larger than both of its children. This rule

More information

Heaps and Priority Queues

Heaps and Priority Queues Heaps and Priority Queues Lecture delivered by: Venkatanatha Sarma Y Assistant Professor MSRSAS-Bangalore 11 Objectives To introduce Priority Queue ADT To discuss and illustrate Priority Queues for sorting

More information

Priority Queues (Heaps)

Priority Queues (Heaps) Priority Queues (Heaps) October 11, 2016 CMPE 250 Priority Queues October 11, 2016 1 / 29 Priority Queues Many applications require that we process records with keys in order, but not necessarily in full

More information

Priority Queues. 04/10/03 Lecture 22 1

Priority Queues. 04/10/03 Lecture 22 1 Priority Queues It is a variant of queues Each item has an associated priority value. When inserting an item in the queue, the priority value is also provided for it. The data structure provides a method

More information

Priority Queues. T. M. Murali. January 26, T. M. Murali January 26, 2016 Priority Queues

Priority Queues. T. M. Murali. January 26, T. M. Murali January 26, 2016 Priority Queues Priority Queues T. M. Murali January 26, 2016 Motivation: Sort a List of Numbers Sort INSTANCE: Nonempty list x 1, x 2,..., x n of integers. SOLUTION: A permutation y 1, y 2,..., y n of x 1, x 2,..., x

More information

and 6.855J February 6, Data Structures

and 6.855J February 6, Data Structures 15.08 and 6.855J February 6, 003 Data Structures 1 Overview of this Lecture A very fast overview of some data structures that we will be using this semester lists, sets, stacks, queues, networks, trees

More information

Heaps. Heaps. A heap is a complete binary tree.

Heaps. Heaps. A heap is a complete binary tree. A heap is a complete binary tree. 1 A max-heap is a complete binary tree in which the value in each internal node is greater than or equal to the values in the children of that node. A min-heap is defined

More information

Summer Final Exam Review Session August 5, 2009

Summer Final Exam Review Session August 5, 2009 15-111 Summer 2 2009 Final Exam Review Session August 5, 2009 Exam Notes The exam is from 10:30 to 1:30 PM in Wean Hall 5419A. The exam will be primarily conceptual. The major emphasis is on understanding

More information

Tree Structures. Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest

Tree Structures. Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest Tree Structures Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest o A tree is a connected digraph with these properties: There is exactly one node (Root)

More information

Implementations III 1

Implementations III 1 Implementations III 1 Agenda Hash tables Implementation methods Applications Hashing vs. binary search trees The binary heap Properties Logarithmic-time operations Heap construction in linear time Java

More information

Heaps and Priority Queues

Heaps and Priority Queues CpSc2120 Goddard Notes Chapter 15 Heaps and Priority Queues 15.1 Priority Queue The (min)-priority queue ADT supports: insertitem(e): Insert new item e. removemin(): Remove and return item with minimum

More information

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min Binary Search Trees FRIDAY ALGORITHMS Sorted Arrays Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min 6 10 11 17 2 0 6 Running Time O(1) O(lg n) O(1) O(1)

More information

CMSC 341 Leftist Heaps

CMSC 341 Leftist Heaps CMSC 341 Leftist Heaps Based on slides from previous iterations of this course Today s Topics Review of Min Heaps Introduction of Left-ist Heaps Merge Operation Heap Operations Review of Heaps Min Binary

More information

CSE373: Data Structures & Algorithms Lecture 4: Dictionaries; Binary Search Trees. Kevin Quinn Fall 2015

CSE373: Data Structures & Algorithms Lecture 4: Dictionaries; Binary Search Trees. Kevin Quinn Fall 2015 CSE373: Data Structures & Algorithms Lecture 4: Dictionaries; Binary Search Trees Kevin Quinn Fall 2015 Where we are Studying the absolutely essential ADTs of computer science and classic data structures

More information