Unix System Programming - Chapter 2, part a

Size: px
Start display at page:

Download "Unix System Programming - Chapter 2, part a"

Transcription

1 Unix System Programming - Chapter 2, part a Neal Nelson The Evergreen State College Mar 23, 2010

2 USP Chapter 2.1 to 2.6 Processes and Threads Program Storage and Linkage Library Function Calls Error Handling Robbins Rules for Functions Argument Arrays Assignment for Week 1, part a, makeargv function

3 Processes and Threads Process State of Execution Address Space Resources (open files, etc). Thread State of Execution (including stack) Threads of a Process Share address space (stacks not shared) Share resources Need explicit synchronization and mutual exclusion

4 Threads in USP Here s where threads show up in USP POSIX pthreads in Chapter 12 Signal handlers We want thread-safe code when threads are possible

5 Program Image Program Image CommandLineArgs EnironmentVariables Stack highaddress Heap UninitializedStaticData InitializedStaticData ProgramText lowaddress

6 Program Image Initialized Static Data - saved and loaded with program text i n t myarray [ ] = { 1, 2, 3, 4 } ; i n t main ( void ) { myarray [ 0 ] = 3 ; return 0 ; } Uninitialized Static Data - allocated upon load i n t myarray [ ] ; i n t main ( void ) { myarray [ 0 ] = 3 ; return 0 ; } The first program image on disk is 200,000 bytes larger with initialized static data

7 Storage Classes in C - Object Lifetimes allocated - programmer controlled malloc and free allocated in heap space static - duration of program Variables declared outside of blocks With or without the static keyword! automatic - duration of activation record Variables declared within blocks Includes value parameters and stack return values Pointers may be automatic, but what they point to usually isn t

8 Linkage Classes in C - Visibility Rules external linkage Public Globally shared with other files internal linkage Private to file Shared within file no linkage Private (local) to block Not shared

9 The static keyword and its dual meaning static keyword can 1. Change storage class (object lifetime) 2. Change linkage class (visibility) static on block-local variables changes lifetime to program static on outside-block variables changes visibility to file private static on functions changes visibility to file private

10 Storage and Linkage Summary (USP Apx A.5 p814) Object declared outside block 1. storage class is static 2. static keyword changes linkage class Object declared inside block 1. Linkage class is none 2. static keyword changes storage class

11 Static Storage Class and Threads We want thread-safe code Static storage objects are not thread-safe You must enforce mutual exclusion using concurrency tools Use Locks, critical regions, semaphores, etc.

12 Signal Handler Variables We worry in USP about thread-safe code even without explicit threads Signal handlers are concurrent threads possible in all programs Only local variables (automatic storage class) are intrinsically safe Non-local variables are not safe Allocated storage class (programmer allocated by malloc/free). Static storage class Carefully analyze all non-local variables for thread safety

13 Using Library Function Calls Man pages are in the book for convenience (Apx A.1) Always consult the man pages on your system Use man -k blah to search man pages Man pages tell you the include files you need Include files are not shown in the listings in this presentation Look ahead to the USP POSIX threads Chapter 12 pp for important notes about thread safety of lib calls

14 Library Function Call Errors You must always check and handle error returns from library calls Traditional Unix 1 on return indicates error (sometimes Null). Traditional Unix sets global variable errno (USP p432) Traditional Unix errno may not be thread-safe (consult man errno and again USP pp432) New POSIX library functions return an error number. There is an error string associated with each errno Names for error numbers are given in man errno errno is wiped out by the very next error.

15 Handling library function errors with perror Don t forget the proper include files There s a string associated with each errno that perror uses i n t f i l d e s ; i f ( c l o s e ( f i l d e s ) == 1) p e r r o r ( F a i l e d to c l o s e the f i l e ) ; Returns, eg, F a i l e d to c l o s e the f i l e : i n v a l i d f i l e d e s c r i p t o after the colon is the errno string

16 Handling library function errors with strerror strerror returns the errno string more elaborate error messages can be printed function calls like strerror and other lib calls (or your own functions) can wipe out errno i n t f i l d e s ; i f ( c l o s e ( f i l d e s ) == 1) { e r r o r = e r r n o ; / s a v e e r r n o p r i v a t e l y / f p r i n t f ( s t d e r r, F a i l e d to c l o s e f i l e d e s c r i p t o r %d : %s \n, f i l d e s, s t r e r r o r ( e r r n o ) ) ; e r r n o = e r r o r ; / r e s t o r e e r r n o / }

17 Signal interrupts and library function errors Signal interrupts can cause library EINTR errno, but they aren t really errors Sample code for library call restart on USP p29 Uses while loop until no error, or an error other than EINTR The book provides a restart library for convenience, r close

18 USP error handling guidelines (p29 bottom) All your functions must check and handle library call errors Functions should not exit on their own (except main) Return errors to caller (ie, propogate errors to caller) Don t change process state outside your function, eg, if you block signals, then unblock them. Release all resources that you allocate, eg, if you malloc, then you free Be sure you release resources at all error returns as well as normal returns.

19 Robbins rules for writing functions Make a checklist of the guidelines for writing functions in Robbins and Robbins USP pp Check off each of the guideline items for each of your functions.

20 A few Robbins rules we haven t mentioned Do not make unnecessary assumptions about sizes of buffers. (This is often hard to implement.) When it is necessary to use limits, use standard system-defined limits rather than arbitrary constants. Do not modify input parameter values unless it makes sense to do so. Do not use static variables or dynamic memory allocation if automatic allocation will do just as well. Consider whether a function is ever called recursively or from a signal handler or from a thread. Functions with variables of static storage class may not behave in the desired way. (The error number can cause a big problem here.) Analyze the consequences of interruption by signals. Carefully consider how the entire program terminates.

21 Argument Arrays Some sample makeargv code Textbook makeargv code (USP p37) Sherri s makeargv code Neal s makeargv code Your makeargv code Assignment 1, part a, makeargv function 1. Analyze your makeargv code from fall quarter against the Robbins checklist. Analyze Neal s if you can t find yours. Specifically list which numbered items in the checklist are violated. 2. Choose one of the makeargv functions and modify it to work with USP Program 2.1 p Assignment details listed on the USP assignments page.

22

Unix System Programming - Chapter 8

Unix System Programming - Chapter 8 Unix System Programming - Chapter 8 Neal Nelson The Evergreen State College Apr 2010 USP Chapter 8 - Signals Section 8.1 - Basic Signal Concepts Section 8.2 - Generating Signals Section 8.3 - Signal Masks

More information

Parallel Programming Languages COMP360

Parallel Programming Languages COMP360 Parallel Programming Languages COMP360 The way the processor industry is going, is to add more and more cores, but nobody knows how to program those things. I mean, two, yeah; four, not really; eight,

More information

CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio

CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio CS 5523 Operating Systems: Midterm II - reivew Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio Fall 2017 1 Outline Inter-Process Communication (20) Threads

More information

Memory Allocation. Static Allocation. Dynamic Allocation. Dynamic Storage Allocation. CS 414: Operating Systems Spring 2008

Memory Allocation. Static Allocation. Dynamic Allocation. Dynamic Storage Allocation. CS 414: Operating Systems Spring 2008 Dynamic Storage Allocation CS 44: Operating Systems Spring 2 Memory Allocation Static Allocation (fixed in size) Sometimes we create data structures that are fixed and don t need to grow or shrink. Dynamic

More information

A student was asked to point out interface elements in this code: Answer: cout. What is wrong?

A student was asked to point out interface elements in this code: Answer: cout. What is wrong? A student was asked to point out interface elements in this code: Answer: cout. What is wrong? Clarification of the concept of INTERFACE The interface we ve been talking about in OOP is not the man-machine

More information

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other No efficient solution Involve conflicting

More information

Sharing Objects Ch. 3

Sharing Objects Ch. 3 Sharing Objects Ch. 3 Visibility What is the source of the issue? Volatile Dekker s algorithm Publication and Escape Thread Confinement Immutability Techniques of safe publication Assignment 1 Visibility

More information

Assignment 2. Purpose. Points. Part I : Command Line parsing. Description. The purpose of this assignment is two-fold

Assignment 2. Purpose. Points. Part I : Command Line parsing. Description. The purpose of this assignment is two-fold CSPP 51086: Unix Systems Programming Instructors: Todd Nugent Assignment 2 command line parsing; cat Kenneth Harris Purpose The purpose of this assignment is two-fold 1. Work with strings and pointers.

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 7: Synchronization Administrivia Homework 1 Due today by the end of day Hopefully you have started on project 1 by now? Kernel-level threads (preemptable

More information

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018 Deadlock and Monitors CS439: Principles of Computer Systems September 24, 2018 Bringing It All Together Processes Abstraction for protection Define address space Threads Share (and communicate) through

More information

Preview. The Thread Model Motivation of Threads Benefits of Threads Implementation of Thread

Preview. The Thread Model Motivation of Threads Benefits of Threads Implementation of Thread Preview The Thread Model Motivation of Threads Benefits of Threads Implementation of Thread Implement thread in User s Mode Implement thread in Kernel s Mode CS 431 Operating System 1 The Thread Model

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

D Programming Language

D Programming Language Group 14 Muazam Ali Anil Ozdemir D Programming Language Introduction and Why D? It doesn t come with a religion this is written somewhere along the overview of D programming language. If you actually take

More information

Java Threads and intrinsic locks

Java Threads and intrinsic locks Java Threads and intrinsic locks 1. Java and OOP background fundamentals 1.1. Objects, methods and data One significant advantage of OOP (object oriented programming) is data encapsulation. Each object

More information

Synchronization. CS61, Lecture 18. Prof. Stephen Chong November 3, 2011

Synchronization. CS61, Lecture 18. Prof. Stephen Chong November 3, 2011 Synchronization CS61, Lecture 18 Prof. Stephen Chong November 3, 2011 Announcements Assignment 5 Tell us your group by Sunday Nov 6 Due Thursday Nov 17 Talks of interest in next two days Towards Predictable,

More information

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018

CS 31: Intro to Systems Pointers and Memory. Kevin Webb Swarthmore College October 2, 2018 CS 31: Intro to Systems Pointers and Memory Kevin Webb Swarthmore College October 2, 2018 Overview How to reference the location of a variable in memory Where variables are placed in memory How to make

More information

Suggested Solutions (Midterm Exam October 27, 2005)

Suggested Solutions (Midterm Exam October 27, 2005) Suggested Solutions (Midterm Exam October 27, 2005) 1 Short Questions (4 points) Answer the following questions (True or False). Use exactly one sentence to describe why you choose your answer. Without

More information

SmartHeap for Multi-Core

SmartHeap for Multi-Core SmartHeap for Multi-Core Getting Started and Platform Guide for Linux Version 11.2 SmartHeap and HeapAgent are trademarks of Compuware Corporation. All other trademarks are the property of their respective

More information

Concurrent Server Design Multiple- vs. Single-Thread

Concurrent Server Design Multiple- vs. Single-Thread Concurrent Server Design Multiple- vs. Single-Thread Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology Fall 2007, TAIWAN NTUT, TAIWAN 1 Examples Using

More information

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules Brief Preview of Scheduling Concurrency Control Nan Niu (nn@cs.toronto.edu) CSC309 -- Summer 2008 Multiple threads ready to run Some mechanism for switching between them Context switches Some policy for

More information

IMPLEMENTATION OF SIGNAL HANDLING. CS124 Operating Systems Fall , Lecture 15

IMPLEMENTATION OF SIGNAL HANDLING. CS124 Operating Systems Fall , Lecture 15 IMPLEMENTATION OF SIGNAL HANDLING CS124 Operating Systems Fall 2017-2018, Lecture 15 2 Signal Handling UNIX operating systems allow es to register for and handle signals Provides exceptional control flow

More information

Programming Languages

Programming Languages TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Programming Languages Concurrency: Atomic Executions, Locks and Monitors Dr. Michael Petter Winter term 2016 Atomic Executions, Locks and Monitors

More information

Outline. CS4254 Computer Network Architecture and Programming. Introduction 2/4. Introduction 1/4. Dr. Ayman A. Abdel-Hamid.

Outline. CS4254 Computer Network Architecture and Programming. Introduction 2/4. Introduction 1/4. Dr. Ayman A. Abdel-Hamid. Threads Dr. Ayman Abdel-Hamid, CS4254 Spring 2006 1 CS4254 Computer Network Architecture and Programming Dr. Ayman A. Abdel-Hamid Computer Science Department Virginia Tech Threads Outline Threads (Chapter

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14 SYSTEM CALL IMPLEMENTATION CS124 Operating Systems Fall 2017-2018, Lecture 14 2 User Processes and System Calls Previously stated that user applications interact with the kernel via system calls Typically

More information

QUIZ How do we implement run-time constants and. compile-time constants inside classes?

QUIZ How do we implement run-time constants and. compile-time constants inside classes? QUIZ How do we implement run-time constants and compile-time constants inside classes? Compile-time constants in classes The static keyword inside a class means there s only one instance, regardless of

More information

CS 31: Intro to Systems Pointers and Memory. Martin Gagne Swarthmore College February 16, 2016

CS 31: Intro to Systems Pointers and Memory. Martin Gagne Swarthmore College February 16, 2016 CS 31: Intro to Systems Pointers and Memory Martin Gagne Swarthmore College February 16, 2016 So we declared a pointer How do we make it point to something? 1. Assign it the address of an existing variable

More information

Guidelines for Writing C Code

Guidelines for Writing C Code Guidelines for Writing C Code Issue 01-bugfix Martin Becker Institute for Real-Time Computer Systems (RCS) Technische Universität München becker@rcs.ei.tum.de June 9, 2014 Contents 1 Introduction 1 2 Pragmatic

More information

Threads. lightweight processes

Threads. lightweight processes Threads lightweight processes 1 Motivation Processes are expensive to create. It takes quite a bit of time to switch between processes Communication between processes must be done through an external kernel

More information

Motivation of Threads. Preview. Motivation of Threads. Motivation of Threads. Motivation of Threads. Motivation of Threads 9/12/2018.

Motivation of Threads. Preview. Motivation of Threads. Motivation of Threads. Motivation of Threads. Motivation of Threads 9/12/2018. Preview Motivation of Thread Thread Implementation User s space Kernel s space Inter-Process Communication Race Condition Mutual Exclusion Solutions with Busy Waiting Disabling Interrupt Lock Variable

More information

Threads. CS-3013 Operating Systems Hugh C. Lauer. CS-3013, C-Term 2012 Threads 1

Threads. CS-3013 Operating Systems Hugh C. Lauer. CS-3013, C-Term 2012 Threads 1 Threads CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed., by Andrew Tanenbaum and from Operating System Concepts,

More information

CSE 153 Design of Operating Systems Fall 2018

CSE 153 Design of Operating Systems Fall 2018 CSE 153 Design of Operating Systems Fall 2018 Lecture 5: Threads/Synchronization Implementing threads l Kernel Level Threads l u u All thread operations are implemented in the kernel The OS schedules all

More information

CS 450 Exam 2 Mon. 11/7/2016

CS 450 Exam 2 Mon. 11/7/2016 CS 450 Exam 2 Mon. 11/7/2016 Name: Rules and Hints You may use one handwritten 8.5 11 cheat sheet (front and back). This is the only additional resource you may consult during this exam. No calculators.

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 19 Lecture 7/8: Synchronization (1) Administrivia How is Lab going? Be prepared with questions for this weeks Lab My impression from TAs is that you are on track

More information

Concurrency, Thread. Dongkun Shin, SKKU

Concurrency, Thread. Dongkun Shin, SKKU Concurrency, Thread 1 Thread Classic view a single point of execution within a program a single PC where instructions are being fetched from and executed), Multi-threaded program Has more than one point

More information

THREADS: (abstract CPUs)

THREADS: (abstract CPUs) CS 61 Scribe Notes (November 29, 2012) Mu, Nagler, Strominger TODAY: Threads, Synchronization - Pset 5! AT LONG LAST! Adversarial network pong handling dropped packets, server delays, overloads with connection

More information

! Why is synchronization needed? ! Synchronization Language/Definitions: ! How are locks implemented? Maria Hybinette, UGA

! Why is synchronization needed? ! Synchronization Language/Definitions: ! How are locks implemented? Maria Hybinette, UGA Chapter 6: Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics! Why is synchronization needed?! Synchronization Language/Definitions:» What are race

More information

CSci 4061 Introduction to Operating Systems. (Thread-Basics)

CSci 4061 Introduction to Operating Systems. (Thread-Basics) CSci 4061 Introduction to Operating Systems (Thread-Basics) Threads Abstraction: for an executing instruction stream Threads exist within a process and share its resources (i.e. memory) But, thread has

More information

EPL372 Lab Exercise 2: Threads and pthreads. Εργαστήριο 2. Πέτρος Παναγή

EPL372 Lab Exercise 2: Threads and pthreads. Εργαστήριο 2. Πέτρος Παναγή EPL372 Lab Exercise 2: Threads and pthreads Εργαστήριο 2 Πέτρος Παναγή 1 Threads Vs Processes 2 Process A process is created by the operating system, and requires a fair amount of "overhead". Processes

More information

CS4411 Intro. to Operating Systems Exam 1 Fall points 9 pages

CS4411 Intro. to Operating Systems Exam 1 Fall points 9 pages CS4411 Intro. to Operating Systems Exam 1 Fall 2009 1 CS4411 Intro. to Operating Systems Exam 1 Fall 2009 150 points 9 pages Name: Most of the following questions only require very short answers. Usually

More information

CSE 333 SECTION 3. POSIX I/O Functions

CSE 333 SECTION 3. POSIX I/O Functions CSE 333 SECTION 3 POSIX I/O Functions Administrivia Questions (?) HW1 Due Tonight Exercise 7 due Monday (out later today) POSIX Portable Operating System Interface Family of standards specified by the

More information

High Performance Computing Course Notes Shared Memory Parallel Programming

High Performance Computing Course Notes Shared Memory Parallel Programming High Performance Computing Course Notes 2009-2010 2010 Shared Memory Parallel Programming Techniques Multiprocessing User space multithreading Operating system-supported (or kernel) multithreading Distributed

More information

Midterm Exam Solutions and Grading Guidelines March 3, 1999 CS162 Operating Systems

Midterm Exam Solutions and Grading Guidelines March 3, 1999 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 1999 Anthony D. Joseph Midterm Exam Solutions and Grading Guidelines March 3, 1999 CS162 Operating Systems

More information

High Performance Computing Lecture 1. Matthew Jacob Indian Institute of Science

High Performance Computing Lecture 1. Matthew Jacob Indian Institute of Science High Performance Computing Lecture 1 Matthew Jacob Indian Institute of Science Agenda 1. Program execution: Compilation, Object files, Function call and return, Address space, Data & its representation

More information

Deadlock and Monitors. CS439: Principles of Computer Systems February 7, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems February 7, 2018 Deadlock and Monitors CS439: Principles of Computer Systems February 7, 2018 Last Time Terminology Safety and liveness Atomic Instructions, Synchronization, Mutual Exclusion, Critical Sections Synchronization

More information

Precept 2: Non-preemptive Scheduler. COS 318: Fall 2018

Precept 2: Non-preemptive Scheduler. COS 318: Fall 2018 Precept 2: Non-preemptive Scheduler COS 318: Fall 2018 Project 2 Schedule Precept: Monday 10/01, 7:30pm (You are here) Design Review: Monday 10/08, 3-7pm Due: Sunday 10/14, 11:55pm Project 2 Overview Goal:

More information

Lecture 4: Memory Management & The Programming Interface

Lecture 4: Memory Management & The Programming Interface CS 422/522 Design & Implementation of Operating Systems Lecture 4: Memory Management & The Programming Interface Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken

More information

Threads and Synchronization. Kevin Webb Swarthmore College February 15, 2018

Threads and Synchronization. Kevin Webb Swarthmore College February 15, 2018 Threads and Synchronization Kevin Webb Swarthmore College February 15, 2018 Today s Goals Extend processes to allow for multiple execution contexts (threads) Benefits and challenges of concurrency Race

More information

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples:

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples: 1 Programming in C Pointer Variable A variable that stores a memory address Allows C programs to simulate call-by-reference Allows a programmer to create and manipulate dynamic data structures Must be

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 13 Robert Grimm, New York University 1 Review Last week Exceptions 2 Outline Concurrency Discussion of Final Sources for today s lecture: PLP, 12

More information

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization?

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization? Chapter 6: Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics Why is synchronization needed? Synchronization Language/Definitions:» What are race conditions?»

More information

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019 CS 31: Introduction to Computer Systems 22-23: Threads & Synchronization April 16-18, 2019 Making Programs Run Faster We all like how fast computers are In the old days (1980 s - 2005): Algorithm too slow?

More information

Vector and Free Store (Pointers and Memory Allocation)

Vector and Free Store (Pointers and Memory Allocation) DM560 Introduction to Programming in C++ Vector and Free Store (Pointers and Memory Allocation) Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides

More information

Final Exam. 11 May 2018, 120 minutes, 26 questions, 100 points

Final Exam. 11 May 2018, 120 minutes, 26 questions, 100 points Name: CS520 Final Exam 11 May 2018, 120 minutes, 26 questions, 100 points The exam is closed book and notes. Please keep all electronic devices turned off and out of reach. Note that a question may require

More information

Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology Faculty of Electrical Engineering, Mathematics, and Computer Science Delft University of Technology exam Embedded Software TI2726-B January 28, 2019 13.30-15.00 This exam (6 pages) consists of 60 True/False

More information

Operating Systems. Sina Meraji U of T

Operating Systems. Sina Meraji U of T Operating Systems Sina Meraji U of T 1 Announcement Check discussion board for announcements A1 is posted 2 Recap: Process Creation: Unix In Unix, processes are created using fork() int fork() fork() Creates

More information

CS510 Operating System Foundations. Jonathan Walpole

CS510 Operating System Foundations. Jonathan Walpole CS510 Operating System Foundations Jonathan Walpole Threads & Concurrency 2 Why Use Threads? Utilize multiple CPU s concurrently Low cost communication via shared memory Overlap computation and blocking

More information

CS 5460/6460 Operating Systems

CS 5460/6460 Operating Systems CS 5460/6460 Operating Systems Fall 2009 Instructor: Matthew Flatt Lecturer: Kevin Tew TAs: Bigyan Mukherjee, Amrish Kapoor 1 Join the Mailing List! Reminders Make sure you can log into the CADE machines

More information

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful?

!! How is a thread different from a process? !! Why are threads useful? !! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads!! How is a thread different from a process?!! Why are threads useful?!! How can OSIX threads be useful?!! What are user-level and kernel-level

More information

CS516 Programming Languages and Compilers II

CS516 Programming Languages and Compilers II CS516 Programming Languages and Compilers II Zheng Zhang Spring 2015 Mar 12 Parallelism and Shared Memory Hierarchy I Rutgers University Review: Classical Three-pass Compiler Front End IR Middle End IR

More information

Declaration Syntax. Declarations. Declarators. Declaration Specifiers. Declaration Examples. Declaration Examples. Declarators include:

Declaration Syntax. Declarations. Declarators. Declaration Specifiers. Declaration Examples. Declaration Examples. Declarators include: Declarations Based on slides from K. N. King Declaration Syntax General form of a declaration: declaration-specifiers declarators ; Declaration specifiers describe the properties of the variables or functions

More information

Last class: Today: Thread Background. Thread Systems

Last class: Today: Thread Background. Thread Systems 1 Last class: Thread Background Today: Thread Systems 2 Threading Systems 3 What kind of problems would you solve with threads? Imagine you are building a web server You could allocate a pool of threads,

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 7

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2017 Lecture 7 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2017 Lecture 7 LAST TIME Dynamic memory allocation and the heap: A run-time facility that satisfies multiple needs: Programs can use widely varying, possibly

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (3 rd Week) (Advanced) Operating Systems 3. Process Description and Control 3. Outline What Is a Process? Process

More information

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 6 Concurrency: Deadlock and Starvation Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Deadlock

More information

CSE 153 Design of Operating Systems Fall 18

CSE 153 Design of Operating Systems Fall 18 CSE 153 Design of Operating Systems Fall 18 Lecture 2: OS model and Architectural Support Last time/today l Historic evolution of Operating Systems (and computing!) l Today: We start our journey in exploring

More information

Operating System Structure

Operating System Structure Operating System Structure CSCI 4061 Introduction to Operating Systems Applications Instructor: Abhishek Chandra Operating System Hardware 2 Questions Operating System Structure How does the OS manage

More information

Process Synchronization and Communication

Process Synchronization and Communication Process Synchronization and Communication How to we protect a critical section without disabling interrupts? CSE 466 Fall 2000 - Introduction - 1 Process Synchronization critical section need a HW interlock

More information

Programming with Shared Memory. Nguyễn Quang Hùng

Programming with Shared Memory. Nguyễn Quang Hùng Programming with Shared Memory Nguyễn Quang Hùng Outline Introduction Shared memory multiprocessors Constructs for specifying parallelism Creating concurrent processes Threads Sharing data Creating shared

More information

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful?

! How is a thread different from a process? ! Why are threads useful? ! How can POSIX threads be useful? Chapter 2: Threads: Questions CSCI [4 6]730 Operating Systems Threads! How is a thread different from a process?! Why are threads useful?! How can OSIX threads be useful?! What are user-level and kernel-level

More information

pthread Tutorial August 23, Creating and Destroying Threads Creating Threads Returning Results from Threads...

pthread Tutorial August 23, Creating and Destroying Threads Creating Threads Returning Results from Threads... pthread Tutorial c Copyright 2005 by Peter C. Chapin August 23, 2005 Contents 1 Introduction 2 2 Creating and Destroying Threads 3 2.1 Creating Threads........................... 3 2.2 Returning Results

More information

Intro to POSIX Threads with FLTK

Intro to POSIX Threads with FLTK Intro to POSIX Threads with FLTK 25 Mar 2009 CMPT166 Dr. Sean Ho Trinity Western University See: FlChat/ example code Threads and parallelism Threads are lightweight processes Threads allow concurrency

More information

CSE 374 Programming Concepts & Tools

CSE 374 Programming Concepts & Tools CSE 374 Programming Concepts & Tools Hal Perkins Fall 2017 Lecture 22 Shared-Memory Concurrency 1 Administrivia HW7 due Thursday night, 11 pm (+ late days if you still have any & want to use them) Course

More information

Programming in Parallel COMP755

Programming in Parallel COMP755 Programming in Parallel COMP755 All games have morals; and the game of Snakes and Ladders captures, as no other activity can hope to do, the eternal truth that for every ladder you hope to climb, a snake

More information

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100 ECE 2035(A) Programming for Hardware/Software Systems Fall 2013 Exam Three November 20 th 2013 Name: Q1: /8 Q2: /30 Q3: /30 Q4: /32 Total: /100 1/10 For functional call related questions, let s assume

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 Parallel Programming using OpenMP Mike Bailey mjb@cs.oregonstate.edu openmp.pptx OpenMP Multithreaded Programming 2 OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard

More information

Experience with Processes and Monitors in Mesa. Arvind Krishnamurthy

Experience with Processes and Monitors in Mesa. Arvind Krishnamurthy Experience with Processes and Monitors in Mesa Arvind Krishnamurthy Background Focus of this paper: light-weight processes (threads) and how they synchronize with each other History: Second system; followed

More information

Parallel Programming using OpenMP

Parallel Programming using OpenMP 1 OpenMP Multithreaded Programming 2 Parallel Programming using OpenMP OpenMP stands for Open Multi-Processing OpenMP is a multi-vendor (see next page) standard to perform shared-memory multithreading

More information

Concurrent Programming Lecture 10

Concurrent Programming Lecture 10 Concurrent Programming Lecture 10 25th September 2003 Monitors & P/V Notion of a process being not runnable : implicit in much of what we have said about P/V and monitors is the notion that a process may

More information

Lecture 8: September 30

Lecture 8: September 30 CMPSCI 377 Operating Systems Fall 2013 Lecture 8: September 30 Lecturer: Prashant Shenoy Scribe: Armand Halbert 8.1 Semaphores A semaphore is a more generalized form of a lock that can be used to regulate

More information

CMPS 111 Spring 2013 Prof. Scott A. Brandt Midterm Examination May 6, Name: ID:

CMPS 111 Spring 2013 Prof. Scott A. Brandt Midterm Examination May 6, Name: ID: CMPS 111 Spring 2013 Prof. Scott A. Brandt Midterm Examination May 6, 2013 Name: ID: This is a closed note, closed book exam. There are 23 multiple choice questions, 6 short answer questions. Plan your

More information

Contents of Lecture 3

Contents of Lecture 3 Contents of Lecture 3 Repetition of matrices double a[3][4]; double* b; double** c; Terminology Linkage Types Conversions Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 1 / 33 A global matrix: double a[3][4]

More information

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 Learning from Bad Examples CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 1 Goals Demonstrate techniques to design for shared mutability Build on an example where multiple threads

More information

CS-537: Midterm Exam (Spring 2001)

CS-537: Midterm Exam (Spring 2001) CS-537: Midterm Exam (Spring 2001) Please Read All Questions Carefully! There are seven (7) total numbered pages Name: 1 Grading Page Points Total Possible Part I: Short Answers (12 5) 60 Part II: Long

More information

Lecture 3: C Programm

Lecture 3: C Programm 0 3 E CS 1 Lecture 3: C Programm ing Reading Quiz Note the intimidating red border! 2 A variable is: A. an area in memory that is reserved at run time to hold a value of particular type B. an area in memory

More information

Operating Systems (1DT020 & 1TT802)

Operating Systems (1DT020 & 1TT802) Uppsala University Department of Information Technology Name: Perso. no: Operating Systems (1DT020 & 1TT802) 2009-05-27 This is a closed book exam. Calculators are not allowed. Answers should be written

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

Last 2 Classes: Introduction to Operating Systems & C++ tutorial. Today: OS and Computer Architecture

Last 2 Classes: Introduction to Operating Systems & C++ tutorial. Today: OS and Computer Architecture Last 2 Classes: Introduction to Operating Systems & C++ tutorial User apps OS Virtual machine interface hardware physical machine interface An operating system is the interface between the user and the

More information

Introduction to OS Synchronization MOS 2.3

Introduction to OS Synchronization MOS 2.3 Introduction to OS Synchronization MOS 2.3 Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Introduction to OS 1 Challenge How can we help processes synchronize with each other? E.g., how

More information

CSci 4061 Introduction to Operating Systems. (Threads-POSIX)

CSci 4061 Introduction to Operating Systems. (Threads-POSIX) CSci 4061 Introduction to Operating Systems (Threads-POSIX) How do I program them? General Thread Operations Create/Fork Allocate memory for stack, perform bookkeeping Parent thread creates child threads

More information

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2015

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2015 Q.2 a. Explain the following systems: (9) i. Batch processing systems ii. Time sharing systems iii. Real-time operating systems b. Draw the process state diagram. (3) c. What resources are used when a

More information

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections Thread Safety Today o Confinement o Threadsafe datatypes Required reading Concurrency Wrapper Collections Optional reading The material in this lecture and the next lecture is inspired by an excellent

More information

POSIX / System Programming

POSIX / System Programming POSIX / System Programming ECE 650 Methods and Tools for Software Eng. Guest lecture 2017 10 06 Carlos Moreno cmoreno@uwaterloo.ca E5-4111 2 Outline During today's lecture, we'll look at: Some of POSIX

More information

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois Condition Variables CS 241 Prof. Brighten Godfrey March 16, 2012 University of Illinois 1 Synchronization primitives Mutex locks Used for exclusive access to a shared resource (critical section) Operations:

More information

Programming Language Concepts Scoping. Janyl Jumadinova January 31, 2017

Programming Language Concepts Scoping. Janyl Jumadinova January 31, 2017 Programming Language Concepts Scoping Janyl Jumadinova January 31, 2017 Scope Rules A scope is a program section of maximal size in which no bindings change, or at least in which no re-declarations are

More information

OS Extensibility: SPIN and Exokernels. Robert Grimm New York University

OS Extensibility: SPIN and Exokernels. Robert Grimm New York University OS Extensibility: SPIN and Exokernels Robert Grimm New York University The Three Questions What is the problem? What is new or different? What are the contributions and limitations? OS Abstraction Barrier

More information

CS 3733 Operating Systems

CS 3733 Operating Systems What will be covered in MidtermI? CS 3733 Operating Systems Instructor: Dr. Tongping Liu Department Computer Science The University of Texas at San Antonio Basics of C programming language Processes, program

More information

CS533 Concepts of Operating Systems. Jonathan Walpole

CS533 Concepts of Operating Systems. Jonathan Walpole CS533 Concepts of Operating Systems Jonathan Walpole Introduction to Threads and Concurrency Why is Concurrency Important? Why study threads and concurrent programming in an OS class? What is a thread?

More information

POSIX Threads: a first step toward parallel programming. George Bosilca

POSIX Threads: a first step toward parallel programming. George Bosilca POSIX Threads: a first step toward parallel programming George Bosilca bosilca@icl.utk.edu Process vs. Thread A process is a collection of virtual memory space, code, data, and system resources. A thread

More information