Exercise: OpenMP Programming

Size: px
Start display at page:

Download "Exercise: OpenMP Programming"

Transcription

1 Exercise: OpenMP Programming Multicore programming with OpenMP A. Marongiu - amarongiu@iis.ee.ethz.ch D. Palossi dpalossi@iis.ee.ethz.ch ETH zürich

2 Odroid Board Board Specs Exynos5 Octa Cortex -A15 1.4Ghz quad core and Cortex -A7 quad core CPUs PowerVR SGX544MP3 GPU (OpenGL ES 2.0, OpenGL ES 1.1 and OpenCL 1.1 EP) 2Gbyte LPDDR3 RAM PoP USB 3.0 Host x 1, USB 3.0 OTG x 1, USB 2.0 Host x 4 HDMI 1.4a output Type-D connector emmc 4.5 Flash Storage 2

3 Login, compile and run Login to Odroid board: ssh X stud_usr@<board-ip> Exercise files are already on the board under*: /home/stud_usr/asocd16/src Compile and run with make clean all run Take a look at test.c. Different exercises are #ifdef-ed To compile and execute the desired exercise: make clean all run e MYOPTS="-DEX1 DEX2 " * if you need a fresh copy is available at: /home/soc_master/3_openmp/asocd16.zip 3

4 Ex 1 Parallelism creation: Hello World! #pragma omp parallel num_threads (?) printf "Hello world, I m thread??" Use parallel directive to create multiple threads Each thread executes the code enclosed within the scope of the directive Use runtime library functions to determine thread ID All SPMD parallelization is based on this approach 4

5 ETH zürich Ex 2 Loop partitioning: Static scheduling T0 0 T1 4 T2 8 T3 12 #pragma omp parallel for \ num_threads (NTHREADS) schedule (static) for (uint i=0; i<niters; i++) work (W); } /* (implicit) SYNCH POINT */ With schedule(static) M iterations are statically assigned to each thread, where M = NITERS / NTHREADS Small overhead: loop indexes are computed according to thread ID Optimal scheduling if workload is balanced 5

6 Ex 2 Loop partitioning: Static scheduling Exercise 2a #pragma omp parallel for \ num_threads (NTHREADS) schedule (static) for (uint i=0; i<niters; i++) work (W); } /* (implicit) SYNCH POINT */ Use the following parameters: NITERS = 1024 NTHREADS = 1,2,4,8,16} W = Collect execution time in excel sheet for the various configurations Comment on the results 6

7 ETH zürich Ex 2 Loop partitioning: Dynamic scheduling T0 T1 T2 T3 #pragma omp parallel for num_threads (NTHREADS) schedule (dynamic, M) for (uint i=0; i<niters; i++) work (W); Iterations are dynamically assigned to threads in groups of M = NITERS/NTHREADS Same parallelization of schedule(static) Coarse granularity Overhead only at beginning and end of loop OVERHEAD OVERHEAD \ \ } /* (implicit) SYNCH POINT */ CHUNK CHUNK 7

8 ETH zürich Ex 2 Loop partitioning: Dynamic scheduling T0 T1 T2 T OVERHEAD #pragma omp parallel for num_threads (NTHREADS) schedule (dynamic, M) \ \ for (uint i=0; i<niters; i++) work (W); } /* (implicit) SYNCH POINT */ Iterations are dynamically assigned to threads one iteration per chunk Finest granularity Overhead at every iteration CHUNK CHUNK (size (size == 11 iter) iter) 8

9 Ex 2 Loop partitioning: Dynamic scheduling Exercise 2b #pragma omp parallel for \ num_threads (NTHREADS) \ schedule (dynamic, M) for (uint i=0; i<niters; i++) work (W); } /* (implicit) SYNCH POINT */ Use the following parameters: NITERS = 1024 NTHREADS = 1,2,4,8,16} M = NITERS/NTHREADS, 1} W = Add execution time for the various configurations to the excel sheet Comment on the results 9

10 Ex 2 Loop partitioning: Dynamic scheduling Exercise 2c #pragma omp parallel for \ num_threads (NTHREADS) \ schedule (dynamic, M) for (uint i=0; i<niters; i++) work (W); } /* (implicit) SYNCH POINT */ Use the following parameters: NITERS = NTHREADS = 1,2,4,8,16} M = NITERS/NTHREADS, 1} W = 10 Draw the same plot as exercise 2a, 2b What happens for smaller workload and higher iteration count? 10

11 ETH zürich Ex 3 Unbalanced Loop Partitioning T0 T1 T SYNCH POINT T3 #pragma omp parallel for \ num_threads (NTHREADS) \ schedule (dynamic, NITERS/NTHREADS) 12 for (uint i=0; i<niters; i++) work((i>>2) * W); } /* (implicit) SYNCH POINT */ Iterations have different duration Using coarse-grained chunks (NITERS/NTHREADS) creates unbalanced work among the threads Due to the barrier at the end of parallel region, all threads have to wait for the slowest one 11

12 ETH zürich Ex 3 Unbalanced Loop Partitioning T0 T1 T T SPEEDUP #pragma omp parallel for num_threads (NTHREADS) schedule (dynamic, 1) \ \ for (uint i=0; i<niters; i++) work((i>>2) * W); } /* (implicit) SYNCH POINT */ Iterations have different duration Using fine-grained chunks (the finest is 1) creates balanced work among the threads The overhead for dynamic scheduling is amortized by the effect of work-balancing on the overall loop duration 12

13 Ex 3 Unbalanced Loop Partitioning Exercise 3a, 3b #pragma omp parallel for \ num_threads (NTHREADS) \ schedule (dynamic, M) for (uint i=0; i<niters; i++) /* BALANCED LOOP CODE */ } /* (implicit) SYNCH POINT */ Use the following parameters: NITERS = 128 NTHREADS = 4 M = 32, 16, 8, 4, 1} W = Create a new excel sheet plotting results (execution time) for static and dynamic schedules (with chunk size M) Comment on results 13

14 Ex 4 Chunking Overhead Study the impact of chunk size for varying sizes of the workload W Use the following parameters: NITERS = 1024*256 NTHREADS = 4 M = 32, 16, 8, 4, 1} W = 1, 10, 100, 1000} Create a new excel sheet plotting results (execution time) for static and dynamic schedules (with chunk size M) Comment on results HINT: Plot NORMALIZED execution time to the fastest scheduling option for a given value of W 14

15 Ex 5 Task parallelism with sections void sections() work( ); printf("%hu: Done with first elaboration!\n, ); work( ); printf("%hu: Done with second elaboration!\n, ); work( ); printf("%hu: Done with third elaboration!\n", ); work( ); printf("%hu: Done with fourth elaboration!\n", ); } a) Distribute workload among 4 threads using SPMD parallelization I. Get thread id II. Use if/else or switch/case to differentiate workload b) Implement the same workload partitioning with sections directive 15

16 Ex 6 Task parallelism with task void tasks() unsigned int i; } for(i=0; i<4; i++) work((i+1)* ); printf("%hu: Done with elaboration\n", ); } a) Distribute workload among 4 threads using task directive a) Same program as before b) But we had to manually unroll the loop to use sections Compare performance and ease of coding with sections 16

17 Ex 6 Task parallelism with task void tasks() unsigned int i; } Modify the EX6 exercise code as indicated on this slide for(i=0; i<1024; i++) work(( ); printf("%hu: Done with elaboration\n", ); } b) Parallelize the loop with task directive Use single directive to force a single processor to create tasks c) Parallelize the loop with single directive Use nowait clause to allow for parallel execution Compare performance and ease of coding of the two solutions 17

18 Projects: come to the software side If you are interested in course/semester/master project focused on OpenMP development for: Many-cores embedded devices Parallel-Ultra-Low-Power architectures High-Performance parallel machines Do not hesitate to contact us 18

MULTICORE PROGRAMMING WITH OPENMP

MULTICORE PROGRAMMING WITH OPENMP MULTICORE PROGRAMMING WITH OPENMP Dott. Alessandro Capotondi alessandro.capotondi@unibo.it Outline and Goals Understand OpenMP directives usage Manage data parallelism and load balancing using OpenMP Understand

More information

OpenMP dynamic loops. Paolo Burgio.

OpenMP dynamic loops. Paolo Burgio. OpenMP dynamic loops Paolo Burgio paolo.burgio@unimore.it Outline Expressing parallelism Understanding parallel threads Memory Data management Data clauses Synchronization Barriers, locks, critical sections

More information

OpenMP. Dr. William McDoniel and Prof. Paolo Bientinesi WS17/18. HPAC, RWTH Aachen

OpenMP. Dr. William McDoniel and Prof. Paolo Bientinesi WS17/18. HPAC, RWTH Aachen OpenMP Dr. William McDoniel and Prof. Paolo Bientinesi HPAC, RWTH Aachen mcdoniel@aices.rwth-aachen.de WS17/18 Loop construct - Clauses #pragma omp for [clause [, clause]...] The following clauses apply:

More information

OpenMP loops. Paolo Burgio.

OpenMP loops. Paolo Burgio. OpenMP loops Paolo Burgio paolo.burgio@unimore.it Outline Expressing parallelism Understanding parallel threads Memory Data management Data clauses Synchronization Barriers, locks, critical sections Work

More information

ECE 574 Cluster Computing Lecture 10

ECE 574 Cluster Computing Lecture 10 ECE 574 Cluster Computing Lecture 10 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 October 2015 Announcements Homework #4 will be posted eventually 1 HW#4 Notes How granular

More information

Lecture 4: OpenMP Open Multi-Processing

Lecture 4: OpenMP Open Multi-Processing CS 4230: Parallel Programming Lecture 4: OpenMP Open Multi-Processing January 23, 2017 01/23/2017 CS4230 1 Outline OpenMP another approach for thread parallel programming Fork-Join execution model OpenMP

More information

CS691/SC791: Parallel & Distributed Computing

CS691/SC791: Parallel & Distributed Computing CS691/SC791: Parallel & Distributed Computing Introduction to OpenMP Part 2 1 OPENMP: SORTING 1 Bubble Sort Serial Odd-Even Transposition Sort 2 Serial Odd-Even Transposition Sort First OpenMP Odd-Even

More information

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program

Module 10: Open Multi-Processing Lecture 19: What is Parallelization? The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program The Lecture Contains: What is Parallelization? Perfectly Load-Balanced Program Amdahl's Law About Data What is Data Race? Overview to OpenMP Components of OpenMP OpenMP Programming Model OpenMP Directives

More information

Parallel Programming with OpenMP. CS240A, T. Yang, 2013 Modified from Demmel/Yelick s and Mary Hall s Slides

Parallel Programming with OpenMP. CS240A, T. Yang, 2013 Modified from Demmel/Yelick s and Mary Hall s Slides Parallel Programming with OpenMP CS240A, T. Yang, 203 Modified from Demmel/Yelick s and Mary Hall s Slides Introduction to OpenMP What is OpenMP? Open specification for Multi-Processing Standard API for

More information

OpenMP Introduction. CS 590: High Performance Computing. OpenMP. A standard for shared-memory parallel programming. MP = multiprocessing

OpenMP Introduction. CS 590: High Performance Computing. OpenMP. A standard for shared-memory parallel programming. MP = multiprocessing CS 590: High Performance Computing OpenMP Introduction Fengguang Song Department of Computer Science IUPUI OpenMP A standard for shared-memory parallel programming. MP = multiprocessing Designed for systems

More information

OpenMP. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen

OpenMP. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen OpenMP Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS16/17 Worksharing constructs To date: #pragma omp parallel created a team of threads We distributed

More information

OpenMP Algoritmi e Calcolo Parallelo. Daniele Loiacono

OpenMP Algoritmi e Calcolo Parallelo. Daniele Loiacono OpenMP Algoritmi e Calcolo Parallelo References Useful references Using OpenMP: Portable Shared Memory Parallel Programming, Barbara Chapman, Gabriele Jost and Ruud van der Pas OpenMP.org http://openmp.org/

More information

Lecture 14. Performance Programming with OpenMP

Lecture 14. Performance Programming with OpenMP Lecture 14 Performance Programming with OpenMP Sluggish front end nodes? Advice from NCSA Announcements Login nodes are honest[1-4].ncsa.uiuc.edu Login to specific node to target one that's not overloaded

More information

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008

Parallel Computing Using OpenMP/MPI. Presented by - Jyotsna 29/01/2008 Parallel Computing Using OpenMP/MPI Presented by - Jyotsna 29/01/2008 Serial Computing Serially solving a problem Parallel Computing Parallelly solving a problem Parallel Computer Memory Architecture Shared

More information

Parallel Programming with OpenMP. CS240A, T. Yang

Parallel Programming with OpenMP. CS240A, T. Yang Parallel Programming with OpenMP CS240A, T. Yang 1 A Programmer s View of OpenMP What is OpenMP? Open specification for Multi-Processing Standard API for defining multi-threaded shared-memory programs

More information

[Potentially] Your first parallel application

[Potentially] Your first parallel application [Potentially] Your first parallel application Compute the smallest element in an array as fast as possible small = array[0]; for( i = 0; i < N; i++) if( array[i] < small ) ) small = array[i] 64-bit Intel

More information

Chap. 6 Part 3. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1

Chap. 6 Part 3. CIS*3090 Fall Fall 2016 CIS*3090 Parallel Programming 1 Chap. 6 Part 3 CIS*3090 Fall 2016 Fall 2016 CIS*3090 Parallel Programming 1 OpenMP popular for decade Compiler-based technique Start with plain old C, C++, or Fortran Insert #pragmas into source file You

More information

Masterpraktikum - High Performance Computing

Masterpraktikum - High Performance Computing Masterpraktikum - High Performance Computing OpenMP Michael Bader Alexander Heinecke Alexander Breuer Technische Universität München, Germany 2 #include ... #pragma omp parallel for for(i = 0; i

More information

OpenMP Programming. Prof. Thomas Sterling. High Performance Computing: Concepts, Methods & Means

OpenMP Programming. Prof. Thomas Sterling. High Performance Computing: Concepts, Methods & Means High Performance Computing: Concepts, Methods & Means OpenMP Programming Prof. Thomas Sterling Department of Computer Science Louisiana State University February 8 th, 2007 Topics Introduction Overview

More information

INTRODUCTION TO OPENMP (PART II)

INTRODUCTION TO OPENMP (PART II) INTRODUCTION TO OPENMP (PART II) Hossein Pourreza hossein.pourreza@umanitoba.ca March 9, 2016 Acknowledgement: Some of examples used in this presentation are courtesy of SciNet. 2 Logistics of this webinar

More information

Shared Memory Programming Paradigm!

Shared Memory Programming Paradigm! Shared Memory Programming Paradigm! Ivan Girotto igirotto@ictp.it Information & Communication Technology Section (ICTS) International Centre for Theoretical Physics (ICTP) 1 Multi-CPUs & Multi-cores NUMA

More information

Programming Shared-memory Platforms with OpenMP. Xu Liu

Programming Shared-memory Platforms with OpenMP. Xu Liu Programming Shared-memory Platforms with OpenMP Xu Liu Introduction to OpenMP OpenMP directives concurrency directives parallel regions loops, sections, tasks Topics for Today synchronization directives

More information

High Performance Computing: Tools and Applications

High Performance Computing: Tools and Applications High Performance Computing: Tools and Applications Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Lecture 2 OpenMP Shared address space programming High-level

More information

Multithreading in C with OpenMP

Multithreading in C with OpenMP Multithreading in C with OpenMP ICS432 - Spring 2017 Concurrent and High-Performance Programming Henri Casanova (henric@hawaii.edu) Pthreads are good and bad! Multi-threaded programming in C with Pthreads

More information

Performance Tuning and OpenMP

Performance Tuning and OpenMP Performance Tuning and OpenMP mueller@hlrs.de University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Outline Motivation Performance Basics General Performance Issues and

More information

15-418, Spring 2008 OpenMP: A Short Introduction

15-418, Spring 2008 OpenMP: A Short Introduction 15-418, Spring 2008 OpenMP: A Short Introduction This is a short introduction to OpenMP, an API (Application Program Interface) that supports multithreaded, shared address space (aka shared memory) parallelism.

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #7 2/5/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Outline From last class

More information

Parallel Programming

Parallel Programming Parallel Programming OpenMP Nils Moschüring PhD Student (LMU) Nils Moschüring PhD Student (LMU), OpenMP 1 1 Overview What is parallel software development Why do we need parallel computation? Problems

More information

Task-based Execution of Nested OpenMP Loops

Task-based Execution of Nested OpenMP Loops Task-based Execution of Nested OpenMP Loops Spiros N. Agathos Panagiotis E. Hadjidoukas Vassilios V. Dimakopoulos Department of Computer Science UNIVERSITY OF IOANNINA Ioannina, Greece Presentation Layout

More information

Shared Memory Parallelism using OpenMP

Shared Memory Parallelism using OpenMP Indian Institute of Science Bangalore, India भ रत य व ज ञ न स स थ न ब गल र, भ रत SE 292: High Performance Computing [3:0][Aug:2014] Shared Memory Parallelism using OpenMP Yogesh Simmhan Adapted from: o

More information

Shared Memory Programming Model

Shared Memory Programming Model Shared Memory Programming Model Ahmed El-Mahdy and Waleed Lotfy What is a shared memory system? Activity! Consider the board as a shared memory Consider a sheet of paper in front of you as a local cache

More information

HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP)

HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP) HPC Practical Course Part 3.1 Open Multi-Processing (OpenMP) V. Akishina, I. Kisel, G. Kozlov, I. Kulakov, M. Pugach, M. Zyzak Goethe University of Frankfurt am Main 2015 Task Parallelism Parallelization

More information

2

2 1 2 3 4 5 Code transformation Every time the compiler finds a #pragma omp parallel directive creates a new function in which the code belonging to the scope of the pragma itself is moved The directive

More information

Shared Memory Parallelism - OpenMP

Shared Memory Parallelism - OpenMP Shared Memory Parallelism - OpenMP Sathish Vadhiyar Credits/Sources: OpenMP C/C++ standard (openmp.org) OpenMP tutorial (http://www.llnl.gov/computing/tutorials/openmp/#introduction) OpenMP sc99 tutorial

More information

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines

Introduction to OpenMP. OpenMP basics OpenMP directives, clauses, and library routines Introduction to OpenMP Introduction OpenMP basics OpenMP directives, clauses, and library routines What is OpenMP? What does OpenMP stands for? What does OpenMP stands for? Open specifications for Multi

More information

Introduction to OpenMP

Introduction to OpenMP Christian Terboven, Dirk Schmidl IT Center, RWTH Aachen University Member of the HPC Group terboven,schmidl@itc.rwth-aachen.de IT Center der RWTH Aachen University History De-facto standard for Shared-Memory

More information

Performance Issues in Parallelization. Saman Amarasinghe Fall 2010

Performance Issues in Parallelization. Saman Amarasinghe Fall 2010 Performance Issues in Parallelization Saman Amarasinghe Fall 2010 Today s Lecture Performance Issues of Parallelism Cilk provides a robust environment for parallelization It hides many issues and tries

More information

Multi-core Architecture and Programming

Multi-core Architecture and Programming Multi-core Architecture and Programming Yang Quansheng( 杨全胜 ) http://www.njyangqs.com School of Computer Science & Engineering 1 http://www.njyangqs.com Programming with OpenMP Content What is PpenMP Parallel

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Ricardo Fonseca https://sites.google.com/view/rafonseca2017/ Outline Shared Memory Programming OpenMP Fork-Join Model Compiler Directives / Run time library routines Compiling and

More information

Introduction to OpenMP.

Introduction to OpenMP. Introduction to OpenMP www.openmp.org Motivation Parallelize the following code using threads: for (i=0; i

More information

Performance Issues in Parallelization Saman Amarasinghe Fall 2009

Performance Issues in Parallelization Saman Amarasinghe Fall 2009 Performance Issues in Parallelization Saman Amarasinghe Fall 2009 Today s Lecture Performance Issues of Parallelism Cilk provides a robust environment for parallelization It hides many issues and tries

More information

Lecture 14: Mixed MPI-OpenMP programming. Lecture 14: Mixed MPI-OpenMP programming p. 1

Lecture 14: Mixed MPI-OpenMP programming. Lecture 14: Mixed MPI-OpenMP programming p. 1 Lecture 14: Mixed MPI-OpenMP programming Lecture 14: Mixed MPI-OpenMP programming p. 1 Overview Motivations for mixed MPI-OpenMP programming Advantages and disadvantages The example of the Jacobi method

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 17 Shared-memory Programming 1 Outline n OpenMP n Shared-memory model n Parallel for loops n Declaring private variables n Critical

More information

Barbara Chapman, Gabriele Jost, Ruud van der Pas

Barbara Chapman, Gabriele Jost, Ruud van der Pas Using OpenMP Portable Shared Memory Parallel Programming Barbara Chapman, Gabriele Jost, Ruud van der Pas The MIT Press Cambridge, Massachusetts London, England c 2008 Massachusetts Institute of Technology

More information

Topics. Introduction. Shared Memory Parallelization. Example. Lecture 11. OpenMP Execution Model Fork-Join model 5/15/2012. Introduction OpenMP

Topics. Introduction. Shared Memory Parallelization. Example. Lecture 11. OpenMP Execution Model Fork-Join model 5/15/2012. Introduction OpenMP Topics Lecture 11 Introduction OpenMP Some Examples Library functions Environment variables 1 2 Introduction Shared Memory Parallelization OpenMP is: a standard for parallel programming in C, C++, and

More information

DPHPC: Introduction to OpenMP Recitation session

DPHPC: Introduction to OpenMP Recitation session SALVATORE DI GIROLAMO DPHPC: Introduction to OpenMP Recitation session Based on http://openmp.org/mp-documents/intro_to_openmp_mattson.pdf OpenMP An Introduction What is it? A set of compiler directives

More information

OpenMP Overview. in 30 Minutes. Christian Terboven / Aachen, Germany Stand: Version 2.

OpenMP Overview. in 30 Minutes. Christian Terboven / Aachen, Germany Stand: Version 2. OpenMP Overview in 30 Minutes Christian Terboven 06.12.2010 / Aachen, Germany Stand: 03.12.2010 Version 2.3 Rechen- und Kommunikationszentrum (RZ) Agenda OpenMP: Parallel Regions,

More information

OpenMP. Application Program Interface. CINECA, 14 May 2012 OpenMP Marco Comparato

OpenMP. Application Program Interface. CINECA, 14 May 2012 OpenMP Marco Comparato OpenMP Application Program Interface Introduction Shared-memory parallelism in C, C++ and Fortran compiler directives library routines environment variables Directives single program multiple data (SPMD)

More information

Concurrent Programming with OpenMP

Concurrent Programming with OpenMP Concurrent Programming with OpenMP Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 11, 2012 CPD (DEI / IST) Parallel and Distributed

More information

Overview: The OpenMP Programming Model

Overview: The OpenMP Programming Model Overview: The OpenMP Programming Model motivation and overview the parallel directive: clauses, equivalent pthread code, examples the for directive and scheduling of loop iterations Pi example in OpenMP

More information

OpenMP I. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen

OpenMP I. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS16/17. HPAC, RWTH Aachen OpenMP I Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS16/17 OpenMP References Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press,

More information

Lab: Scientific Computing Tsunami-Simulation

Lab: Scientific Computing Tsunami-Simulation Lab: Scientific Computing Tsunami-Simulation Session 4: Optimization and OMP Sebastian Rettenberger, Michael Bader 23.11.15 Session 4: Optimization and OMP, 23.11.15 1 Department of Informatics V Linux-Cluster

More information

Computational Mathematics

Computational Mathematics Computational Mathematics Hamid Sarbazi-Azad Department of Computer Engineering Sharif University of Technology e-mail: azad@sharif.edu OpenMP Work-sharing Instructor PanteA Zardoshti Department of Computer

More information

CS4961 Parallel Programming. Lecture 5: More OpenMP, Introduction to Data Parallel Algorithms 9/5/12. Administrative. Mary Hall September 4, 2012

CS4961 Parallel Programming. Lecture 5: More OpenMP, Introduction to Data Parallel Algorithms 9/5/12. Administrative. Mary Hall September 4, 2012 CS4961 Parallel Programming Lecture 5: More OpenMP, Introduction to Data Parallel Algorithms Administrative Mailing list set up, everyone should be on it - You should have received a test mail last night

More information

OpenMP 4. CSCI 4850/5850 High-Performance Computing Spring 2018

OpenMP 4. CSCI 4850/5850 High-Performance Computing Spring 2018 OpenMP 4 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

CS 470 Spring Mike Lam, Professor. Advanced OpenMP

CS 470 Spring Mike Lam, Professor. Advanced OpenMP CS 470 Spring 2018 Mike Lam, Professor Advanced OpenMP Atomics OpenMP provides access to highly-efficient hardware synchronization mechanisms Use the atomic pragma to annotate a single statement Statement

More information

CMSC 714 Lecture 4 OpenMP and UPC. Chau-Wen Tseng (from A. Sussman)

CMSC 714 Lecture 4 OpenMP and UPC. Chau-Wen Tseng (from A. Sussman) CMSC 714 Lecture 4 OpenMP and UPC Chau-Wen Tseng (from A. Sussman) Programming Model Overview Message passing (MPI, PVM) Separate address spaces Explicit messages to access shared data Send / receive (MPI

More information

EPL372 Lab Exercise 5: Introduction to OpenMP

EPL372 Lab Exercise 5: Introduction to OpenMP EPL372 Lab Exercise 5: Introduction to OpenMP References: https://computing.llnl.gov/tutorials/openmp/ http://openmp.org/wp/openmp-specifications/ http://openmp.org/mp-documents/openmp-4.0-c.pdf http://openmp.org/mp-documents/openmp4.0.0.examples.pdf

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

EE/CSCI 451 Introduction to Parallel and Distributed Computation. Discussion #4 2/3/2017 University of Southern California

EE/CSCI 451 Introduction to Parallel and Distributed Computation. Discussion #4 2/3/2017 University of Southern California EE/CSCI 451 Introduction to Parallel and Distributed Computation Discussion #4 2/3/2017 University of Southern California 1 USC HPCC Access Compile Submit job OpenMP Today s topic What is OpenMP OpenMP

More information

Parallel Programming with OpenMP

Parallel Programming with OpenMP Advanced Practical Programming for Scientists Parallel Programming with OpenMP Robert Gottwald, Thorsten Koch Zuse Institute Berlin June 9 th, 2017 Sequential program From programmers perspective: Statements

More information

OPENMP OPEN MULTI-PROCESSING

OPENMP OPEN MULTI-PROCESSING OPENMP OPEN MULTI-PROCESSING OpenMP OpenMP is a portable directive-based API that can be used with FORTRAN, C, and C++ for programming shared address space machines. OpenMP provides the programmer with

More information

UPDATES. 1. Threads.v. hyperthreading

UPDATES. 1. Threads.v. hyperthreading UPDATES 1. Threads.v. hyperthreading Hyperthreadingis physical: set by BIOS, whether the operating sees 2 (not 1) logical cores for each physical core. Threads: lightweight processes running. Typically

More information

Parallel programming using OpenMP

Parallel programming using OpenMP Parallel programming using OpenMP Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department

More information

SWARM Tutorial. Chen Chen 4/12/2012

SWARM Tutorial. Chen Chen 4/12/2012 SWARM Tutorial Chen Chen 4/12/2012 1 Outline Introduction to SWARM Programming in SWARM Atomic Operations in SWARM Parallel For Loop in SWARM 2 Outline Introduction to SWARM Programming in SWARM Atomic

More information

Standard promoted by main manufacturers Fortran. Structure: Directives, clauses and run time calls

Standard promoted by main manufacturers   Fortran. Structure: Directives, clauses and run time calls OpenMP Introducción Directivas Regiones paralelas Worksharing sincronizaciones Visibilidad datos Implementación OpenMP: introduction Standard promoted by main manufacturers http://www.openmp.org, http://www.compunity.org

More information

OpenMP. Today s lecture. Scott B. Baden / CSE 160 / Wi '16

OpenMP. Today s lecture. Scott B. Baden / CSE 160 / Wi '16 Lecture 8 OpenMP Today s lecture 7 OpenMP A higher level interface for threads programming http://www.openmp.org Parallelization via source code annotations All major compilers support it, including gnu

More information

Parallel Computing on Multi-Core Systems

Parallel Computing on Multi-Core Systems Parallel Computing on Multi-Core Systems Instructor: Arash Tavakkol Department of Computer Engineering Sharif University of Technology Spring 2016 Optimization Techniques in OpenMP programs Some slides

More information

Introduc4on to OpenMP and Threaded Libraries Ivan Giro*o

Introduc4on to OpenMP and Threaded Libraries Ivan Giro*o Introduc4on to OpenMP and Threaded Libraries Ivan Giro*o igiro*o@ictp.it Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) OUTLINE Shared Memory Architectures

More information

MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016

MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016 MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016 Message passing vs. Shared memory Client Client Client Client send(msg) recv(msg) send(msg) recv(msg) MSG MSG MSG IPC Shared

More information

CSE 160 Lecture 8. NUMA OpenMP. Scott B. Baden

CSE 160 Lecture 8. NUMA OpenMP. Scott B. Baden CSE 160 Lecture 8 NUMA OpenMP Scott B. Baden OpenMP Today s lecture NUMA Architectures 2013 Scott B. Baden / CSE 160 / Fall 2013 2 OpenMP A higher level interface for threads programming Parallelization

More information

F28HS Hardware-Software Interface: Systems Programming

F28HS Hardware-Software Interface: Systems Programming F28HS Hardware-Software Interface: Systems Programming Hans-Wolfgang Loidl School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh Semester 2 2017/18 0 No proprietary software has

More information

Tasking in OpenMP. Paolo Burgio.

Tasking in OpenMP. Paolo Burgio. asking in OpenMP Paolo Burgio paolo.burgio@unimore.it Outline Expressing parallelism Understanding parallel threads Memory Data management Data clauses Synchronization Barriers, locks, critical sections

More information

Standard promoted by main manufacturers Fortran

Standard promoted by main manufacturers  Fortran OpenMP Introducción Directivas Regiones paralelas Worksharing sincronizaciones Visibilidad datos Implementación OpenMP: introduction Standard promoted by main manufacturers http://www.openmp.org Fortran

More information

ME759 High Performance Computing for Engineering Applications

ME759 High Performance Computing for Engineering Applications ME759 High Performance Computing for Engineering Applications Parallel Computing on Multicore CPUs October 25, 2013 Dan Negrut, 2013 ME964 UW-Madison A programming language is low level when its programs

More information

Orna Agmon Ben-Yehuda. OpenMP Usage. March 15, 2009 OpenMP Usage Slide 1

Orna Agmon Ben-Yehuda. OpenMP Usage. March 15, 2009 OpenMP Usage Slide 1 OpenMP Usage Orna Agmon Ben-Yehuda March 15, 2009 OpenMP Usage Slide 1 What is this talk about? Dilemmas I encountered when transforming legacy code using openmp Tricks I found to make my life easier The

More information

Loop Modifications to Enhance Data-Parallel Performance

Loop Modifications to Enhance Data-Parallel Performance Loop Modifications to Enhance Data-Parallel Performance Abstract In data-parallel applications, the same independent

More information

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing NTNU, IMF February 16. 2018 1 Recap: Distributed memory programming model Parallelism with MPI. An MPI execution is started

More information

Review. 35a.cpp. 36a.cpp. Lecture 13 5/29/2012. Compiler Directives. Library Functions Environment Variables

Review. 35a.cpp. 36a.cpp. Lecture 13 5/29/2012. Compiler Directives. Library Functions Environment Variables Review Lecture 3 Compiler Directives Conditional compilation Parallel construct Work-sharing constructs for, section, single Work-tasking Synchronization Library Functions Environment Variables 2 35a.cpp

More information

OpenMP Tutorial. Seung-Jai Min. School of Electrical and Computer Engineering Purdue University, West Lafayette, IN

OpenMP Tutorial. Seung-Jai Min. School of Electrical and Computer Engineering Purdue University, West Lafayette, IN OpenMP Tutorial Seung-Jai Min (smin@purdue.edu) School of Electrical and Computer Engineering Purdue University, West Lafayette, IN 1 Parallel Programming Standards Thread Libraries - Win32 API / Posix

More information

UvA-SARA High Performance Computing Course June Clemens Grelck, University of Amsterdam. Parallel Programming with Compiler Directives: OpenMP

UvA-SARA High Performance Computing Course June Clemens Grelck, University of Amsterdam. Parallel Programming with Compiler Directives: OpenMP Parallel Programming with Compiler Directives OpenMP Clemens Grelck University of Amsterdam UvA-SARA High Performance Computing Course June 2013 OpenMP at a Glance Loop Parallelization Scheduling Parallel

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 17 Shared-memory Programming 1 Outline n OpenMP n Shared-memory model n Parallel for loops n Declaring private variables n Critical

More information

Introduction to OpenMP

Introduction to OpenMP Introduction to OpenMP Ekpe Okorafor School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 A little about me! PhD Computer Engineering Texas A&M University Computer Science

More information

Parallel Programming: OpenMP

Parallel Programming: OpenMP Parallel Programming: OpenMP Xianyi Zeng xzeng@utep.edu Department of Mathematical Sciences The University of Texas at El Paso. November 10, 2016. An Overview of OpenMP OpenMP: Open Multi-Processing An

More information

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele

Advanced C Programming Winter Term 2008/09. Guest Lecture by Markus Thiele Advanced C Programming Winter Term 2008/09 Guest Lecture by Markus Thiele Lecture 14: Parallel Programming with OpenMP Motivation: Why parallelize? The free lunch is over. Herb

More information

S Comparing OpenACC 2.5 and OpenMP 4.5

S Comparing OpenACC 2.5 and OpenMP 4.5 April 4-7, 2016 Silicon Valley S6410 - Comparing OpenACC 2.5 and OpenMP 4.5 James Beyer, NVIDIA Jeff Larkin, NVIDIA GTC16 April 7, 2016 History of OpenMP & OpenACC AGENDA Philosophical Differences Technical

More information

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo

Little Motivation Outline Introduction OpenMP Architecture Working with OpenMP Future of OpenMP End. OpenMP. Amasis Brauch German University in Cairo OpenMP Amasis Brauch German University in Cairo May 4, 2010 Simple Algorithm 1 void i n c r e m e n t e r ( short a r r a y ) 2 { 3 long i ; 4 5 for ( i = 0 ; i < 1000000; i ++) 6 { 7 a r r a y [ i ]++;

More information

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads...

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads... OPENMP PERFORMANCE 2 A common scenario... So I wrote my OpenMP program, and I checked it gave the right answers, so I ran some timing tests, and the speedup was, well, a bit disappointing really. Now what?.

More information

Elaborazione dati real-time su architetture embedded many-core e FPGA

Elaborazione dati real-time su architetture embedded many-core e FPGA Elaborazione dati real-time su architetture embedded many-core e FPGA DAVIDE ROSSI A L E S S A N D R O C A P O T O N D I G I U S E P P E T A G L I A V I N I A N D R E A M A R O N G I U C I R I - I C T

More information

DPHPC: Introduction to OpenMP Recitation session

DPHPC: Introduction to OpenMP Recitation session SALVATORE DI GIROLAMO DPHPC: Introduction to OpenMP Recitation session Based on http://openmp.org/mp-documents/intro_to_openmp_mattson.pdf OpenMP An Introduction What is it? A set

More information

Performance Tuning and OpenMP

Performance Tuning and OpenMP Performance Tuning and OpenMP mueller@hlrs.de University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Höchstleistungsrechenzentrum Stuttgart Outline Motivation Performance

More information

Static Data Race Detection for SPMD Programs via an Extended Polyhedral Representation

Static Data Race Detection for SPMD Programs via an Extended Polyhedral Representation via an Extended Polyhedral Representation Habanero Extreme Scale Software Research Group Department of Computer Science Rice University 6th International Workshop on Polyhedral Compilation Techniques (IMPACT

More information

Review. Lecture 12 5/22/2012. Compiler Directives. Library Functions Environment Variables. Compiler directives for construct, collapse clause

Review. Lecture 12 5/22/2012. Compiler Directives. Library Functions Environment Variables. Compiler directives for construct, collapse clause Review Lecture 12 Compiler Directives Conditional compilation Parallel construct Work-sharing constructs for, section, single Synchronization Work-tasking Library Functions Environment Variables 1 2 13b.cpp

More information

Objectives At the completion of this module you will be able to Thread serial code with basic OpenMP pragmas Use OpenMP synchronization pragmas to coordinate thread execution and memory access Based on

More information

OpenMP Examples - Tasking

OpenMP Examples - Tasking Dipartimento di Ingegneria Industriale e dell Informazione University of Pavia December 4, 2017 Outline 1 2 Assignment 2: Quicksort Assignment 3: Jacobi Outline 1 2 Assignment 2: Quicksort Assignment 3:

More information

OpenMP examples. Sergeev Efim. Singularis Lab, Ltd. Senior software engineer

OpenMP examples. Sergeev Efim. Singularis Lab, Ltd. Senior software engineer OpenMP examples Sergeev Efim Senior software engineer Singularis Lab, Ltd. OpenMP Is: An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory parallelism.

More information

Synchronization. Event Synchronization

Synchronization. Event Synchronization Synchronization Synchronization: mechanisms by which a parallel program can coordinate the execution of multiple threads Implicit synchronizations Explicit synchronizations Main use of explicit synchronization

More information

Introduction to OpenMP

Introduction to OpenMP 1 / 7 Introduction to OpenMP: Exercises and Handout Introduction to OpenMP Christian Terboven Center for Computing and Communication, RWTH Aachen University Seffenter Weg 23, 52074 Aachen, Germany Abstract

More information

Parallel Programming. Exploring local computational resources OpenMP Parallel programming for multiprocessors for loops

Parallel Programming. Exploring local computational resources OpenMP Parallel programming for multiprocessors for loops Parallel Programming Exploring local computational resources OpenMP Parallel programming for multiprocessors for loops Single computers nowadays Several CPUs (cores) 4 to 8 cores on a single chip Hyper-threading

More information

OpenMP - III. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS15/16. HPAC, RWTH Aachen

OpenMP - III. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS15/16. HPAC, RWTH Aachen OpenMP - III Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS15/16 OpenMP References Using OpenMP: Portable Shared Memory Parallel Programming. The MIT

More information