Memory Corruption: Why Protection is Hard. Mathias Payer, Purdue University

Size: px
Start display at page:

Download "Memory Corruption: Why Protection is Hard. Mathias Payer, Purdue University"

Transcription

1 Memory Corruption: Why Protection is Hard Mathias Payer, Purdue University 1

2 Software is unsafe and insecure Low-level languages (C/C++) trade type safety and memory safety for performance Programmer responsible for all checks Large set of legacy and new applications written in C / C++ prone to memory bugs Too many bugs to find and fix manually Protect integrity through safe runtime system 2

3 3

4 Memory (un-)safety: invalid deref. Dangling pointer: (temporal) free(foo); *foo = 23; Out-of-bounds pointer: (spatial) char foo[40]; foo[42] = 23; Violation iff: pointer is read, written, or freed 4

5 Type Confusion vtable*? class B { Bptr b int b; }; c? class D: B { int c; vtable* virtual void d() {} B b }; c B *Bptr = new B; D *Dptr = static_cast<d*>b; Dptr->c = 0x43; // Type confusion! Dptr->d(); // Type confusion! Dptr D 5

6 Deployed Defenses 6

7 Status of deployed defenses Data Execution Prevention (DEP) Memory Address Space Layout Randomization (ASLR) Stack canaries Safe exception handlers 0x400 0x4?? RWX R-X text 0x800 0x8?? RWX RWdata 0xfff 0xf?? RWX RWstack 7

8 Control-Flow Hijack Attack 8

9 Control-flow hijack attack ' Attacker modifies code pointer Information leak: target address Memory safety violation: write Control-flow leaves valid graph Reuse existing code Inject/modify code 9

10 Control-Flow Hijack Attack int vuln(int usr, int usr2){ void *(func_ptr)(); 1 int *q = buf + usr; func_ptr = &foo; 2 *q = usr2; 3 (*func_ptr)(); } Memory 1 q buf func_ptr 2 gadget code

11 Attack scenario: code reuse Find addresses of gadgets Force memory corruption to set up attack Leverage gadgets for code-reuse attack (Fall back to code injection) Code Heap Stack 11

12 Attack: buffer overflow to ROP void vuln(char *u1) { // assert(strlen(u1) < MAX) char tmp[max]; strcpy(tmp, u1); } vuln(&exploit); Memory safety Violation Integrity *C Randomization &C Flow Integrity *&C tmp[max] don't care saved don't base care pointer points return to address &system() ebp 1stafter argument: system*u1 call 1st argument next stacktoframe system() Attack Control-flow hijack

13 Model for memory attacks Memory safety Integrity Randomization Flow Integrity Bad things Memory corruption C *C &C D *D &D *&C *&D Code Control-flow Data-only corruption hijack

14 Control-Flow Integrity 14

15 Control-Flow Integrity (CFI) CHECK(fn); (*fn)(x); CHECK_RET(); Attacker return 7may corrupt memory, code ptrs. verified when used 15

16 Three directions for CFI Goal: minimize target sets, increase precision 16

17 Source-based CFI Kernel protection crucial for system integrity Enforce strict pointer propagation rules Function pointers can only be assigned Data pointers to function pointers are forbidden Enforce types to protect C++ virtual calls * Fine-Grained Control-Flow Integrity for Kernel Software. Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. In EuroS&P'16 * VTrust: Regaining Trust on Your Virtual Calls. Chao Zhang, Scott A. Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer, and Dawn Song. In NDSS'16 17

18 Lockdown*: enforce CFI for binaries Fine-grained CFI relies on source code Coarse-grained CFI is imprecise Goal: enforce fine-grained CFI for binaries Support legacy, binary code and modularity (libraries) Leverage precise, dynamic analysis Enforce stack integrity through shadow stack Low performance overhead * Fine-Grained Control-Flow Integrity through Binary Hardening Mathias Payer, Antonio Barresi, and Thomas R. Gross. In DIMVA'15 18

19 Dynamic CFI analysis Leverage program's modularity through loader /bin/<exec> /lib/libc.so.6 /lib/lib* exported exported exported imported puts scanf funca.text call puts lea fptr, %eax call *%eax imported _dl* puts scanf mprotect.text funca funcb imported ifunc*.text puts: mprotect: funca: funcb: symbol table of ELF DSO allowed Control Flow transfer.text section of DSO illegal Control Flow transfer 19

20 Dynamic CFI analysis Leverage program's modularity through loader /bin/<exec> /lib/libc.so.6 /lib/lib* exported exported exported Modularity increases precision. No source needed. Leverage context of transfers. imported puts scanf funca.text call puts lea fptr, %eax call *%eax imported _dl* puts scanf mprotect.text funca funcb imported ifunc*.text puts: mprotect: funca: funcb: symbol table of ELF DSO allowed Control Flow transfer.text section of DSO illegal Control Flow transfer 20

21 Necessity of shadow stack* Defenses without stack integrity are broken Loop through two calls to the same function Choose any caller as return location Shadow stack enforces stack integrity Attacker restricted to arbitrary targets on the stack Each target can only be called once, in sequence * Control-Flow Bending: On the Effectiveness of Control-Flow Integrity. Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. In Usenix SEC'15 21

22 printf()-oriented programming* Translate program to format string Memory reads: %s Memory writes: %n Conditional: %.*d Program counter becomes format string counter Loops? Overwrite the format specific counter Turing-complete domain-specific language * Direct fame to Nicholas Carlini, blame to me 22

23 Ever heard of brainfuck*? > == dataptr++ %1$65535d%1$.*1$d%2$hn < == dataptr-- %1$.*1$d %2$hn + == *dataptr++ %3$.*3$d %4$hhn - == *datapr-- %3$255d%3$.*3$d%4$hhn. == putchar(*dataptr) %3$.*3$d%5$hn, == getchar(dataptr) %13$.*13$d%4$hn [ == if (*dataptr == 0) goto ']' %1$.*1$d%10$.*10$d%2$hn ] == if (*dataptr!= 0) goto '[' %1$.*1$d%10$.*10$d%2$hn * 23

24 Exploitable program void loop() { char* last = output; int* rpc = &progn[pc]; while (*rpc!= 0) { // fetch -- decode next instruction sprintf(buf, "%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%1$.*1$d%2$hn", *rpc, (short*)(&real_syms)); // execute -- execute instruction sprintf(buf, *real_syms, ((long long int)array)&0xffff, &array, // 1, 2 *array, array, output, // 3, 4, 5 ((long long int)output)&0xffff, &output, // 6, 7 &cond, &bf_cgoto_fmt3[0], // 8, 9 rpc[1], &rpc, 0, *input, // 10, 11, 12, 13 ((long long int)input)&0xffff, &input // 14, 15 ); // retire -- update PC sprintf(buf, " %.*d%hn", (int)(((long long int)rpc)&0xffff), 0, (short*)&rpc); // for debug: do we need to print? if (output!= last) { putchar(output[-1]); last = output; } } } 24

25 Presenting: printbf* Turing complete interpreter Relies on format strings Allows you to execute stuff * Direct fame to Nicholas Carlini, blame to me 25

26 Purdue's Capture the Flag (CTF) team Compete in international hacking competitions Gain practical security experience Competitive, fun, challenging tasks Open, inclusive environment Founded 2014, ~15 active, ~100 interested 3rd US academic team, top 50 overall 26

27 Conclusion 27

28 Conclusion ROP/JOP is key to modern exploits Leak addresses, connect gadgets, inject code Control-flow hijack protection Shadow stack, precise CFI, and locality High precision is key for effectiveness Low overhead, open-source Future work Protect context of control-flow Protect data and data-flow, not just control 28

29 Thank you! Questions? Mathias Payer, Purdue University 29

Memory corruption: Why we can t have nice things. Mathias Payer

Memory corruption: Why we can t have nice things. Mathias Payer Memory corruption: Why we can t have nice things Mathias Payer (@gannimo) http://hexhive.github.io Software is unsafe and insecure Low-level languages (C/C++) trade type safety and memory safety for performance

More information

SoK: Eternal War in Memory Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song In: Oakland 14

SoK: Eternal War in Memory Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song In: Oakland 14 SoK: Eternal War in Memory Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song In: Oakland 14 Presenter: Mathias Payer, EPFL http://hexhive.github.io 1 Memory attacks: an ongoing war Vulnerability classes

More information

Control-Flow Hijacking: Are We Making Progress? Mathias Payer, Purdue University

Control-Flow Hijacking: Are We Making Progress? Mathias Payer, Purdue University Control-Flow Hijacking: Are We Making Progress? Mathias Payer, Purdue University http://hexhive.github.io 1 Bugs are everywhere? https://en.wikipedia.org/wiki/pwn2own 2 Trends in Memory Errors* * Victor

More information

in memory: an evolution of attacks Mathias Payer Purdue University

in memory: an evolution of attacks Mathias Payer Purdue University in memory: an evolution of attacks Mathias Payer Purdue University Images (c) MGM, WarGames, 1983 Memory attacks: an ongoing war Vulnerability classes according to CVE Memory

More information

On Compilers, Memory Errors and Control-Flow Integrity

On Compilers, Memory Errors and Control-Flow Integrity On Compilers, Memory Errors and Control-Flow Integrity Advanced Compiler Design SS 2015 Antonio Hüseyin Barresi Zürich, 27.5.2015 CVE-2012-0158 is a buffer overflow Vulnerability in the ListView / TreeView

More information

String Oriented Programming Exploring Format String Attacks. Mathias Payer

String Oriented Programming Exploring Format String Attacks. Mathias Payer String Oriented Programming Exploring Format String Attacks Mathias Payer Motivation Additional protection mechanisms prevent many existing attack vectors Format string exploits are often overlooked Drawback:

More information

SoK: Eternal War in Memory

SoK: Eternal War in Memory SoK: Eternal War in Memory László Szekeres, Mathias Payer, Tao Wei, Dawn Song Presenter: Wajih 11/7/2017 Some slides are taken from original S&P presentation 1 What is SoK paper? Systematization of Knowledge

More information

Software Security II: Memory Errors - Attacks & Defenses

Software Security II: Memory Errors - Attacks & Defenses 1 Software Security II: Memory Errors - Attacks & Defenses Chengyu Song Slides modified from Dawn Song 2 Administrivia Lab1 Writeup 3 Buffer overflow Out-of-bound memory writes (mostly sequential) Allow

More information

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Return-oriented Programming Professor Trent Jaeger 1 1 Anatomy of Control-Flow Exploits Two steps in control-flow exploitation First -- attacker

More information

Advanced Systems Security: Control-Flow Integrity

Advanced Systems Security: Control-Flow Integrity Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:

More information

CS-527 Software Security

CS-527 Software Security CS-527 Software Security Memory Safety Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Kyriakos Ispoglou https://nebelwelt.net/teaching/17-527-softsec/ Spring 2017 Eternal

More information

CS527 Software Security

CS527 Software Security Software Bugs Purdue University, Spring 2018 From Software Bugs to Attack Primitives Attack primitives are exploit building blocks Software bugs map to attack primitives, i.e., enable computation A chain

More information

secubt Hacking the Hackers with User Space Virtualization

secubt Hacking the Hackers with User Space Virtualization secubt Hacking the Hackers with User Space Virtualization Mathias Payer Mathias Payer: secubt User Space Virtualization 1 Motivation Virtualizing and encapsulating running programs

More information

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Program Vulnerabilities Professor Trent Jaeger 1 Programming Why do we write programs? Function What functions do we enable via our programs?

More information

Control-Flow Bending: On the Effectiveness of Control-Flow Integrity

Control-Flow Bending: On the Effectiveness of Control-Flow Integrity Control-Flow Bending: On the Effectiveness of Control-Flow Integrity Nicolas Carlini UC Berkeley Antonio Barresi ETH Zurich Thomas R. Gross ETH Zurich Mathias Payer Purdue University David Wagner UC Berkeley

More information

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Program Vulnerabilities Professor Trent Jaeger 1 Programming Why do we write programs? Function What functions do we enable via our programs?

More information

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Return-oriented Programming. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Return-oriented Programming Professor Trent Jaeger 1 Anatomy of Control-Flow Exploits 2 Anatomy of Control-Flow Exploits Two steps in control-flow

More information

Inject malicious code Call any library functions Modify the original code

Inject malicious code Call any library functions Modify the original code Inject malicious code Call any library functions Modify the original code 2 Sadeghi, Davi TU Darmstadt 2012 Secure, Trusted, and Trustworthy Computing Chapter 6: Runtime Attacks 2 3 Sadeghi, Davi TU Darmstadt

More information

CFIXX: Object Type Integrity. Nathan Burow, Derrick McKee, Scott A. Carr, Mathias Payer

CFIXX: Object Type Integrity. Nathan Burow, Derrick McKee, Scott A. Carr, Mathias Payer CFIXX: Object Type Integrity Nathan Burow, Derrick McKee, Scott A. Carr, Mathias Payer Control-Flow Hijacking Attacks C / C++ are ubiquitous and insecure Browsers: Chrome, Firefox, Internet Explorer Servers:

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2017 CS 161 Computer Security Discussion 2 Question 1 Software Vulnerabilities (15 min) For the following code, assume an attacker can control the value of basket passed into eval basket.

More information

Lecture 08 Control-flow Hijacking Defenses

Lecture 08 Control-flow Hijacking Defenses Lecture 08 Control-flow Hijacking Defenses Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Slides adapted from Miller, Bailey, and Brumley Control Flow Hijack: Always control + computation

More information

I Control Your Code Attack Vectors through the Eyes of Software-based Fault Isolation. Mathias Payer

I Control Your Code Attack Vectors through the Eyes of Software-based Fault Isolation. Mathias Payer I Control Your Code Attack Vectors through the Eyes of Software-based Fault Isolation Mathias Payer Motivation Current exploits are powerful because Applications run on coarse-grained

More information

Runtime Defenses against Memory Corruption

Runtime Defenses against Memory Corruption CS 380S Runtime Defenses against Memory Corruption Vitaly Shmatikov slide 1 Reading Assignment Cowan et al. Buffer overflows: Attacks and defenses for the vulnerability of the decade (DISCEX 2000). Avijit,

More information

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS)

Beyond Stack Smashing: Recent Advances in Exploiting. Jonathan Pincus(MSR) and Brandon Baker (MS) Beyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns Jonathan Pincus(MSR) and Brandon Baker (MS) Buffer Overflows and How they Occur Buffer is a contiguous segment of memory of a fixed

More information

CMPSC 497 Execution Integrity

CMPSC 497 Execution Integrity Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA CMPSC 497 Execution Integrity

More information

Software Security: Buffer Overflow Defenses

Software Security: Buffer Overflow Defenses CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Defenses Fall 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin,

More information

Cling: A Memory Allocator to Mitigate Dangling Pointers. Periklis Akritidis

Cling: A Memory Allocator to Mitigate Dangling Pointers. Periklis Akritidis Cling: A Memory Allocator to Mitigate Dangling Pointers Periklis Akritidis --2010 Use-after-free Vulnerabilities Accessing Memory Through Dangling Pointers Techniques : Heap Spraying, Feng Shui Manual

More information

This time. Defenses and other memory safety vulnerabilities. Everything you ve always wanted to know about gdb but were too afraid to ask

This time. Defenses and other memory safety vulnerabilities. Everything you ve always wanted to know about gdb but were too afraid to ask This time We will continue Buffer overflows By looking at Overflow Defenses and other memory safety vulnerabilities Everything you ve always wanted to know about gdb but were too afraid to ask Overflow

More information

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Program Vulnerabilities. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Program Vulnerabilities Professor Trent Jaeger 1 1 Programming Why do we write programs? Function What functions do we enable via our programs?

More information

CS 161 Computer Security

CS 161 Computer Security Paxson Spring 2011 CS 161 Computer Security Discussion 1 January 26, 2011 Question 1 Buffer Overflow Mitigations Buffer overflow mitigations generally fall into two categories: (i) eliminating the cause

More information

Lecture 10 Code Reuse

Lecture 10 Code Reuse Lecture 10 Code Reuse Computer and Network Security 4th of December 2017 Computer Science and Engineering Department CSE Dep, ACS, UPB Lecture 10, Code Reuse 1/23 Defense Mechanisms static & dynamic analysis

More information

Intro to x86 Binaries. From ASM to exploit

Intro to x86 Binaries. From ASM to exploit Intro to x86 Binaries From ASM to exploit Intro to x86 Binaries I lied lets do a quick ctf team thing Organization Ideas? Do we need to a real structure right now? Mailing list is OTW How do we get more

More information

An Evil Copy: How the Loader Betrays You

An Evil Copy: How the Loader Betrays You An Evil Copy: How the Loader Betrays You Xinyang Ge 1,3, Mathias Payer 2 and Trent Jaeger 3 Microsoft Research 1 Purdue University 2 Penn State University 3 Page 1 Problem: A Motivating Example // main.c

More information

Software Security: Buffer Overflow Attacks (continued)

Software Security: Buffer Overflow Attacks (continued) CSE 484 / CSE M 584: Computer Security and Privacy Software Security: Buffer Overflow Attacks (continued) Spring 2015 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann,

More information

Buffer overflow prevention, and other attacks

Buffer overflow prevention, and other attacks Buffer prevention, and other attacks Comp Sci 3600 Security Outline 1 2 Two approaches to buffer defense Aim to harden programs to resist attacks in new programs Run time Aim to detect and abort attacks

More information

Walls, Gates, and Guards

Walls, Gates, and Guards Walls, Gates, and Guards Thomas Gross ETH Zurich Joint work with A. Barresi (xorlab) and M. Payer (Purdue) In case you want to leave Safe languages, and verifica

More information

CSE 509: Computer Security

CSE 509: Computer Security CSE 509: Computer Security Date: 2.16.2009 BUFFER OVERFLOWS: input data Server running a daemon Attacker Code The attacker sends data to the daemon process running at the server side and could thus trigger

More information

Software Vulnerabilities August 31, 2011 / CS261 Computer Security

Software Vulnerabilities August 31, 2011 / CS261 Computer Security Software Vulnerabilities August 31, 2011 / CS261 Computer Security Software Vulnerabilities...1 Review paper discussion...2 Trampolining...2 Heap smashing...2 malloc/free...2 Double freeing...4 Defenses...5

More information

CS161 Midterm 1 Review

CS161 Midterm 1 Review CS161 Midterm 1 Review Midterm 1: March 4, 18:3020:00 Same room as lecture Security Analysis and Threat Model Basic security properties CIA Threat model A. We want perfect security B. Security is about

More information

Remix: On-demand Live Randomization

Remix: On-demand Live Randomization Remix: On-demand Live Randomization Yue Chen, Zhi Wang, David Whalley, Long Lu* Florida State University, Stony Brook University* Background Buffer Overflow -> Code Injection Attack Background Buffer Overflow

More information

Buffer overflow background

Buffer overflow background and heap buffer background Comp Sci 3600 Security Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Outline and heap buffer Heap 1 and heap 2 3 buffer 4 5 Heap Address Space and heap buffer

More information

Changelog. Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part

Changelog. Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part 1 Changelog 1 Corrections made in this version not in first posting: 1 April 2017: slide 13: a few more %c s would be needed to skip format string part OVER questions? 2 last time 3 memory management problems

More information

Defeating Code Reuse Attacks with Minimal Tagged Architecture. Samuel Fingeret. B.S., Massachusetts Institute of Technology (2014)

Defeating Code Reuse Attacks with Minimal Tagged Architecture. Samuel Fingeret. B.S., Massachusetts Institute of Technology (2014) Defeating Code Reuse Attacks with Minimal Tagged Architecture by Samuel Fingeret B.S., Massachusetts Institute of Technology (2014) Submitted to the Department of Electrical Engineering and Computer Science

More information

Advanced Systems Security: Program Diversity

Advanced Systems Security: Program Diversity Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:

More information

CMPSC 497 Other Memory Vulnerabilities

CMPSC 497 Other Memory Vulnerabilities Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA CMPSC 497 Other Memory

More information

HDFI: Hardware-Assisted Data-flow Isolation

HDFI: Hardware-Assisted Data-flow Isolation HDFI: Hardware-Assisted Data-flow Isolation Presented by Ben Schreiber Chengyu Song 1, Hyungon Moon 2, Monjur Alam 1, Insu Yun 1, Byoungyoung Lee 1, Taesoo Kim 1, Wenke Lee 1, Yunheung Paek 2 1 Georgia

More information

This exam contains 7 pages (including this cover page) and 4 questions. Once we tell you to start, please check that no pages are missing.

This exam contains 7 pages (including this cover page) and 4 questions. Once we tell you to start, please check that no pages are missing. Computer Science 5271 Fall 2015 Midterm exam October 19th, 2015 Time Limit: 75 minutes, 4:00pm-5:15pm This exam contains 7 pages (including this cover page) and 4 questions. Once we tell you to start,

More information

Preventing Use-after-free with Dangling Pointers Nullification

Preventing Use-after-free with Dangling Pointers Nullification Preventing Use-after-free with Dangling Pointers Nullification Byoungyoung Lee, Chengyu Song, Yeongjin Jang Tielei Wang, Taesoo Kim, Long Lu, Wenke Lee Georgia Institute of Technology Stony Brook University

More information

CSE 127 Computer Security

CSE 127 Computer Security CSE 127 Computer Security Alex Gantman, Spring 2018, Lecture 4 Low Level Software Security II: Format Strings, Shellcode, & Stack Protection Review Function arguments and local variables are stored on

More information

Lecture 09 Code reuse attacks. Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017

Lecture 09 Code reuse attacks. Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Lecture 09 Code reuse attacks Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Last time No good reason for stack/heap/static data to be executable No good reason for code to be writable

More information

Robust Shell Code Return Oriented Programming and HeapSpray. Zhiqiang Lin

Robust Shell Code Return Oriented Programming and HeapSpray. Zhiqiang Lin CS 6V81-05: System Security and Malicious Code Analysis Robust Shell Code Return Oriented Programming and HeapSpray Zhiqiang Lin Department of Computer Science University of Texas at Dallas April 16 th,

More information

A program execution is memory safe so long as memory access errors never occur:

A program execution is memory safe so long as memory access errors never occur: A program execution is memory safe so long as memory access errors never occur: Buffer overflows, null pointer dereference, use after free, use of uninitialized memory, illegal free Memory safety categories

More information

Subversive-C: Abusing and Protecting Dynamic Message Dispatch

Subversive-C: Abusing and Protecting Dynamic Message Dispatch Subversive-C: Abusing and Protecting Dynamic Message Dispatch Julian Lettner, Benjamin Kollenda, Andrei Homescu, Per Larsen, Felix Schuster, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Michael Franz

More information

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows)

Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) Secure Programming Lecture 3: Memory Corruption I (Stack Overflows) David Aspinall, Informatics @ Edinburgh 24th January 2017 Outline Roadmap Memory corruption vulnerabilities Instant Languages and Runtimes

More information

Enforcing Unique Code Target Property for Control-Flow Integrity

Enforcing Unique Code Target Property for Control-Flow Integrity Enforcing Unique Code Target Property for Control-Flow Integrity Hong Hu, Chenxiong Qian, Carter Yagmann, Simon Pak Ho Chung, William R. Harris, Taesoo Kim, Wenke Lee * 1 Control-flow attack Control-flow:

More information

Memory Safety (cont d) Software Security

Memory Safety (cont d) Software Security Memory Safety (cont d) Software Security CS 161: Computer Security Prof. Raluca Ada Popa January 17, 2016 Some slides credit to David Wagner and Nick Weaver Announcements Discussion sections and office

More information

Security Workshop HTS. LSE Team. February 3rd, 2016 EPITA / 40

Security Workshop HTS. LSE Team. February 3rd, 2016 EPITA / 40 Security Workshop HTS LSE Team EPITA 2018 February 3rd, 2016 1 / 40 Introduction What is this talk about? Presentation of some basic memory corruption bugs Presentation of some simple protections Writing

More information

Outline. Memory Exploit

Outline. Memory Exploit Outline CS 6V81-05: System Security and Malicious Code Analysis Robust Shell Code Return Oriented Programming and HeapSpray Zhiqiang Lin Department of Computer Science University of Texas at Dallas April

More information

Q: Exploit Hardening Made Easy

Q: Exploit Hardening Made Easy Q: Exploit Hardening Made Easy E.J. Schwartz, T. Avgerinos, and D. Brumley. In Proc. USENIX Security Symposium, 2011. CS 6301-002: Language-based Security Dr. Kevin Hamlen Attacker s Dilemma Problem Scenario

More information

Module: Advanced Program Vulnerabilities and Defenses. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security

Module: Advanced Program Vulnerabilities and Defenses. Professor Trent Jaeger. CSE543 - Introduction to Computer and Network Security CSE543 - Introduction to Computer and Network Security Module: Advanced Program Vulnerabilities and Defenses Professor Trent Jaeger 29 Anatomy of Control-Flow Exploits Two steps in control-flow exploitation

More information

18-600: Recitation #4 Exploits

18-600: Recitation #4 Exploits 18-600: Recitation #4 Exploits 20th September 2016 Agenda More x86-64 assembly Buffer Overflow Attack Return Oriented Programming Attack 3 Recap: x86-64: Register Conventions Arguments passed in registers:

More information

The first Secure Programming Laboratory will be today! 3pm-6pm in Forrest Hill labs 1.B31, 1.B32.

The first Secure Programming Laboratory will be today! 3pm-6pm in Forrest Hill labs 1.B31, 1.B32. Lab session this afternoon Memory corruption attacks Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 2nd February 2016 The first Secure Programming

More information

Play with FILE Structure Yet Another Binary Exploitation Technique. Abstract

Play with FILE Structure Yet Another Binary Exploitation Technique. Abstract Play with FILE Structure Yet Another Binary Exploitation Technique An-Jie Yang (Angelboy) angelboy@chroot.org Abstract To fight against prevalent cyber threat, more mechanisms to protect operating systems

More information

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta

Stack Vulnerabilities. CS4379/5375 System Security Assurance Dr. Jaime C. Acosta 1 Stack Vulnerabilities CS4379/5375 System Security Assurance Dr. Jaime C. Acosta Part 1 2 3 An Old, yet Still Valid Vulnerability Buffer/Stack Overflow ESP Unknown Data (unused) Unknown Data (unused)

More information

CS527 Software Security

CS527 Software Security Security Policies Purdue University, Spring 2018 Security Policies A policy is a deliberate system of principles to guide decisions and achieve rational outcomes. A policy is a statement of intent, and

More information

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures)

Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 2nd February 2016 Outline Announcement Recap Containment and curtailment Tamper detection Memory

More information

Playing God With Format String Attacks. Bsides Jax 2016 Travis Phillips 10/22/2016

Playing God With Format String Attacks. Bsides Jax 2016 Travis Phillips 10/22/2016 Playing God With Format String Attacks Bsides Jax 2016 Travis Phillips 10/22/2016 So Why This Talk? Been experimenting with them over the last year Found them simple in theory; difficult in practice. Found

More information

CSE Computer Security

CSE Computer Security CSE 543 - Computer Security Lecture 17 - Language-based security October 25, 2007 URL: http://www.cse.psu.edu/~tjaeger/cse543-f07/ 1 Engineering Disaster? Millions of Bots Compromised applications Programming

More information

Honours/Master/PhD Thesis Projects Supervised by Dr. Yulei Sui

Honours/Master/PhD Thesis Projects Supervised by Dr. Yulei Sui Honours/Master/PhD Thesis Projects Supervised by Dr. Yulei Sui Projects 1 Information flow analysis for mobile applications 2 2 Machine-learning-guide typestate analysis for UAF vulnerabilities 3 3 Preventing

More information

Identifying and Analyzing Pointer Misuses for Sophisticated Memory-corruption Exploit Diagnosis

Identifying and Analyzing Pointer Misuses for Sophisticated Memory-corruption Exploit Diagnosis Identifying and Analyzing Pointer Misuses for Sophisticated Memory-corruption Exploit Diagnosis Mingwei Zhang ( ) Aravind Prakash ( ) Xiaolei Li ( ) Zhenkai Liang ( ) Heng Yin ( ) ( ) School of Computing,

More information

Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI)

Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI) Sandboxing Untrusted Code: Software-Based Fault Isolation (SFI) Brad Karp UCL Computer Science CS GZ03 / M030 9 th December 2011 Motivation: Vulnerabilities in C Seen dangers of vulnerabilities: injection

More information

A survey of Hardware-based Control Flow Integrity (CFI)

A survey of Hardware-based Control Flow Integrity (CFI) A survey of Hardware-based Control Flow Integrity (CFI) RUAN DE CLERCQ and INGRID VERBAUWHEDE, KU Leuven Control Flow Integrity (CFI) is a computer security technique that detects runtime attacks by monitoring

More information

Memory corruption countermeasures

Memory corruption countermeasures Secure Programming Lecture 6: Memory Corruption IV (Countermeasures) David Aspinall, Informatics @ Edinburgh 30th January 2014 Outline Announcement Recap Containment and curtailment Stack tamper detection

More information

Return-orientated Programming

Return-orientated Programming Return-orientated Programming or The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86) Hovav Shacham, CCS '07 Return-Oriented oriented Programming programming

More information

0x1A Great Papers in Computer Security

0x1A Great Papers in Computer Security CS 380S 0x1A Great Papers in Computer Security Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs380s/ slide 1 Reference Monitor Observes execution of the program/process At what level? Possibilities:

More information

Lecture 4 September Required reading materials for this class

Lecture 4 September Required reading materials for this class EECS 261: Computer Security Fall 2007 Lecture 4 September 6 Lecturer: David Wagner Scribe: DK Moon 4.1 Required reading materials for this class Beyond Stack Smashing: Recent Advances in Exploiting Buffer

More information

HideM: Protecting the Contents of Userspace Memory in the Face of Disclosure Vulnerabilities

HideM: Protecting the Contents of Userspace Memory in the Face of Disclosure Vulnerabilities HideM: Protecting the Contents of Userspace Memory in the Face of Disclosure Vulnerabilities Jason Gionta, William Enck, Peng Ning 1 JIT-ROP 2 Two Attack Categories Injection Attacks Code Integrity Data

More information

Lockdown: Dynamic Control-Flow Integrity

Lockdown: Dynamic Control-Flow Integrity Lockdown: Dynamic Control-Flow Integrity Mathias Payer Purdue University, USA Antonio Barresi ETH Zurich, Switzerland Thomas R. Gross ETH Zurich, Switzerland ABSTRACT Applications written in low-level

More information

CMPSC 497 Buffer Overflow Vulnerabilities

CMPSC 497 Buffer Overflow Vulnerabilities Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA CMPSC 497 Buffer Overflow

More information

Architecture-level Security Vulnerabilities

Architecture-level Security Vulnerabilities Architecture-level Security Vulnerabilities Björn Döbel Outline How stacks work Smashing the stack for fun and profit Preventing stack smashing attacks Circumventing stack smashing prevention The Battlefield:

More information

Advanced Security for Systems Engineering VO 05: Advanced Attacks on Applications 2

Advanced Security for Systems Engineering VO 05: Advanced Attacks on Applications 2 Advanced Security for Systems Engineering VO 05: Advanced Attacks on Applications 2 Clemens Hlauschek, Christian Schanes INSO Industrial Software Institute of Information Systems Engineering Faculty of

More information

How to Impress Girls with Browser Memory Protection Bypasses

How to Impress Girls with Browser Memory Protection Bypasses How to Impress Girls with Browser Memory Protection Bypasses Mark Dowd & Alexander Sotirov markdowd@au1.ibm.com alex@sotirov.net Setting back browser security by 10 years Part I: Introduction Introduction

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

Roadmap: Security in the software lifecycle. Memory corruption vulnerabilities

Roadmap: Security in the software lifecycle. Memory corruption vulnerabilities Secure Programming Lecture 3: Memory Corruption I (introduction) David Aspinall, Informatics @ Edinburgh 24th January 2019 Roadmap: Security in the software lifecycle Security is considered at different

More information

Buffer Overflows Defending against arbitrary code insertion and execution

Buffer Overflows Defending against arbitrary code insertion and execution www.harmonysecurity.com info@harmonysecurity.com Buffer Overflows Defending against arbitrary code insertion and execution By Stephen Fewer Contents 1 Introduction 2 1.1 Where does the problem lie? 2 1.1.1

More information

Type Confusion: Discovery, Abuse, Protection. Mathias

Type Confusion: Discovery, Abuse, Protection. Mathias Type Confusion: Discovery, Abuse, Protection Mathias Payer, @gannimo http://hexhive.github.io Type confusion leads to RCE Attack surface is huge Google Chrome: 76 MLoC Gnome: 9 MLoC Xorg: glibc: Linux

More information

Black Hat Webcast Series. C/C++ AppSec in 2014

Black Hat Webcast Series. C/C++ AppSec in 2014 Black Hat Webcast Series C/C++ AppSec in 2014 Who Am I Chris Rohlf Leaf SR (Security Research) - Founder / Consultant BlackHat Speaker { 2009, 2011, 2012 } BlackHat Review Board Member http://leafsr.com

More information

Guarding Vulnerable Code: Module 1: Sanitization. Mathias Payer, Purdue University

Guarding Vulnerable Code: Module 1: Sanitization. Mathias Payer, Purdue University Guarding Vulnerable Code: Module 1: Sanitization Mathias Payer, Purdue University http://hexhive.github.io 1 Vulnerabilities everywhere? 2 Common Languages: TIOBE 18 Jul 2018 Jul 2017 Change Language 1

More information

Security and Exploit Mitigation. CMSC Spring 2016 Lawrence Sebald

Security and Exploit Mitigation. CMSC Spring 2016 Lawrence Sebald Security and Exploit Mitigation CMSC 421 - Spring 2016 Lawrence Sebald Security is of Supreme Importance in Systems As we have seen in the past two classes, even with sophisticated security systems, small

More information

Lec06: DEP and ASLR. Taesoo Kim

Lec06: DEP and ASLR. Taesoo Kim 1 Lec06: DEP and ASLR Taesoo Kim Scoreboard 2 NSA Codebreaker Challenges 3 4 Administrivia Congrats!! We've completed the half of labs! Due: Lab06 is out and its due on Oct 5 at midnight NSA Codebreaker

More information

CSE Computer Security (Fall 2006)

CSE Computer Security (Fall 2006) CSE 543 - Computer Security (Fall 2006) Lecture 22 - Language-based security November 16, 2006 URL: http://www.cse.psu.edu/~tjaeger/cse543-f06/ 1 The Morris Worm Robert Morris, a 23 doctoral student from

More information

Back To The Epilogue

Back To The Epilogue Back To The Epilogue How to Evade Windows' Control Flow Guard with Less than 16 Bytes Andrea Biondo * Prof. Mauro Conti Daniele Lain * SPRITZ Group University of Padua, IT GOALS - Return to function epilogue

More information

Selected background on ARM registers, stack layout, and calling convention

Selected background on ARM registers, stack layout, and calling convention Selected background on ARM registers, stack layout, and calling convention ARM Overview ARM stands for Advanced RISC Machine Main application area: Mobile phones, smartphones (Apple iphone, Google Android),

More information

Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables

Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables Prac%cal Control Flow Integrity & Randomiza%on for Binary Executables Chao Zhang Tao Wei Zhaofeng Chen Lei Duan Peking University Peking University UC Berkeley Peking University Peking University László

More information

INFLUENTIAL OPERATING SYSTEM RESEARCH: SECURITY MECHANISMS AND HOW TO USE THEM CARSTEN WEINHOLD

INFLUENTIAL OPERATING SYSTEM RESEARCH: SECURITY MECHANISMS AND HOW TO USE THEM CARSTEN WEINHOLD Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group INFLUENTIAL OPERATING SYSTEM RESEARCH: SECURITY MECHANISMS AND HOW TO USE THEM CARSTEN WEINHOLD OVERVIEW Fundamental

More information

"Secure" Coding Practices Nicholas Weaver

Secure Coding Practices Nicholas Weaver "Secure" Coding Practices based on David Wagner s slides from Sp 2016 1 Administrivia Computer Science 161 Fall 2016 2 3 This is a Remarkably Typical C Problem Computer Science 161 Fall 2016 if ((options

More information

Defeat Exploit Mitigation Heap Attacks. compass-security.com 1

Defeat Exploit Mitigation Heap Attacks. compass-security.com 1 Defeat Exploit Mitigation Heap Attacks compass-security.com 1 ASCII Armor Arbitrary Write Overflow Local Vars Exploit Mitigations Stack Canary ASLR PIE Heap Overflows Brute Force Partial RIP Overwrite

More information

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated

CNIT 127: Exploit Development. Ch 1: Before you begin. Updated CNIT 127: Exploit Development Ch 1: Before you begin Updated 1-14-16 Basic Concepts Vulnerability A flaw in a system that allows an attacker to do something the designer did not intend, such as Denial

More information

Basic Buffer Overflows

Basic Buffer Overflows Operating Systems Security Basic Buffer Overflows (Stack Smashing) Computer Security & OS lab. Cho, Seong-je ( 조성제 ) Fall, 2018 sjcho at dankook.ac.kr Chapter 10 Buffer Overflow 2 Contents Virtual Memory

More information

Jonathan Afek, 1/8/07, BlackHat USA

Jonathan Afek, 1/8/07, BlackHat USA Dangling Pointer Jonathan Afek, 1/8/07, BlackHat USA 1 Table of Contents What is a Dangling Pointer? Code Injection Object Overwriting Demonstration Remediation Summary Q&A 2 What is a Dangling Pointer?

More information