Failure-atomic Synchronization-free Regions

Size: px
Start display at page:

Download "Failure-atomic Synchronization-free Regions"

Transcription

1 Failure-atomic Synchronization-free Regions Vaibhav Gogte, Stephan Diestelhorst $, William Wang $, Satish Narayanasamy, Peter M. Chen, Thomas F. Wenisch NVMW 2018, San Diego, CA 03/13/2018 $

2 Promise of persistent memory (PM) Performance Density Non-volatility Byte-addressable, load-store interface to storage 2

3 Persistent memory system Core- 1 Core- 2 Core- 3 Core- 4 L1 $ L1 $ L1 $ L1 $ LLC Recovery DRAM Persistent Memory (PM) Recovery can inspect the data-structures in PM to restore system to a consistent state

4 Memory persistency models Provide guarantees required for recoverable software Academia [Condit 09][Pelley 14][Joshi 15][Kolli 17] Industry [Intel 14][ARM 16] Express primitives to define state of the program after failure Govern ordering constraints on persists to PM Ensure failure atomicity for a group of persists 4

5 Semantics for failure-atomicity Assures that either all or none of the updates visible post failure Guaranteed by hardware, library or language implementations Design space for semantics Individual persists [Intel 14][ARM 16][Joshi 15] Outermost critical sections [Chakrabarti 14][Boehm 16] Transactions [Coburn 11][Volos 11] Do not provide clean failure semantics Have high performance overhead Do not compose well with general sync. primitives Existing mechanisms suffer a trade-off between programmability and performance 5

6 Contributions Failure-atomic Synchronization-free Regions (SFR) Extend clean semantics to post-failure recovery Employ existing synchronization primitives in C++ Propose failure-atomicity as a part of language implementation Build compiler pass that emits logging code for persistent accesses Propose two designs: Coupled-SFR and Decoupled-SFR Achieve 65% better performance over state-of-the-art tech. 6

7 Outline Design space for granularities of failure-atomicity Our proposal: Failure-atomic SFRs Coupled-SFR design Decoupled-SFR design Evaluation 7

8 Language-level persistency models [Chakrabarti 14][Kolli 17] Enables writing portable, recoverable software Extend language memory-model with persistency semantics Persistency model guarantees: Ordering: How can programmers order persists? Failure-atomicity: Which group of stores persist atomically? 8

9 Persist ordering Thread 1 Thread 2 Core- 1 L1.acq(); L1.rel(); A = 100; sw L1.acq(); L1.rel(); B = 200; Core- 2 L1 $ L1 $ LLC b St A < hb St B St A < p St B PM a Ascribe persist ordering using synchronization primitives in language 9

10 Why failure-atomicity? Task: Fill node and add to linked list, safely In-memory data Fence fillnewnode() updatetailptr() 10

11 Why failure-atomicity? Task: Fill node and add to linked list, safely In-memory data Atomic updatetailptr() fillnewnode() Failure-atomicity à Persistent memory programming easier 11

12 Granularity of failure-atomicity - I L1.lock(); x -= 100; y += 100; L2.lock(); a -= 100; b += 100; L2.unlock(); L1.unlock(); Individual persists [Condit 09][Pelley 14][Joshi 16][Kolli 17] Mechanisms ensure atomicity of individual persists Non-sequentially consistent state visible to recovery à Need additional custom logging 12

13 Granularity of failure-atomicity - II L1.lock(); x -= 100; y += 100; L2.lock(); a -= 100; b += 100; L2.unlock(); L1.unlock(); Outer critical sections [Chakrabarti 14][Boehm 16] Guarantees recovery to observe SC state à Easier to build recovery code Require complex dependency tracking between critical sections à > 2x performance cost 13

14 Our proposal: Failure-atomic SFRs Synchronization free regions (SFR) Thread regions delimited by synchronization operations or system calls Persistent state atomically moves from one sync. operation to the next l1.acq(); x -= 100; y += 100; l2.acq(); a -= 100; b += 100; l2.rel(); l1.rel(); SFR1 SFR2 14

15 Failure-atomicity of SFRs Persist SFRs in sequentially consistent order Extends clean SC semantics to post-failure recovery Allow hardware/compiler optimizations within SFR Persist ordering Synchronizing acquire and release ops in C++ Failure-atomicity Undo-logging for SFRs Two logging designs à Coupled-SFR and Decoupled-SFR 15

16 Undo-logging for SFRs createundolog (L) L1.acq(); SFR1 x = 100; L1.rel(); mutatedata (M) persistdata (P) Failureatomic SFR1 commitlog (C) Need to ensure the ordering of steps in undo-logging for SFRs to be failure-atomic 16

17 Design 1: Coupled-SFR Thread 1 Thread 2 Thread 1 Thread 2 L1.acq(); SFR1 x = 100; L1.rel(); sw L1.acq(); SFR2 x = 200; L1.rel(); SFR1 L1 M1 P1 ACQ2 L2 M2 SFR2 + Persistent state lags execution by at most one SFR à Simpler implementation, latest state at failure C1 P2 - Need to flush updates at the end of each SFR à High performance cost REL1 C2 17

18 Design 2: Decoupled-SFR Coupled-SFR has simple design, but lower perf. Persists and log commits on critical execution path L Key idea: Decouple persistent state from program exec. Persist updates and commit logs in background Create undo logs in order Roll back updates in reverse order of creation on failure 18

19 Decoupled-SFR in action Thread 1 Thread 2 Thread 1 Thread 2 L1.acq(); SFR1 x = 100; L1.rel(); sw L1.acq(); SFR2 x = 200; L1.rel(); SFR1 L1 M1 REL1 ACQ2 L2 M2 Create logs in order during execution SFR2 Need to commit logs in order à record order in which logs are created P1 C1 P2 C2 Flush and commit in background 19

20 Log ordering in Decoupled-SFR Init X = 0 Thread 1 Thread 2 X = 100; L1.rel(); sw L1.acq(); X = 200; Thread 1 Header Store X X = 0 Rel L1 Seq = 0 Thread 2 Header Acq L1 Seq = 1 Store X X = 100 Sequence Table L1 0 à 1 Sequence numbers in logs record inter-thread order of log creation Background threads commit logs using recorded sequence no. 20

21 Evaluation setup Designed our logging approaches in LLVM v3.6.0 Instruments stores and sync. ops. to emit undo logs Creates log space for managing per-thread undo-logs Launches background threads to flush/commit logs in Decoupled-SFR Workloads: write-intensive micro-benchmarks 12 threads, 10M operations Performed experiments on Intel E v3 2GHz, 12 physical cores, 2-way hyper-threading 21

22 Better Normalized exec. time Performance evaluation Atlas Coupled-SFR Decoupled-SFR No-persistency [Chakrabarti 14] 65% CQ SPS PC RB-tree TATP LL TPCC Mean Decoupled-SFR performs 65% better than state-of-the-art ATLAS design 22

23 Better Normalized exec. time Performance evaluation Atlas Coupled-SFR Decoupled-SFR No-persistency [Chakrabarti 14] CQ SPS PC RB-tree TATP LL TPCC Mean Coupled-SFR performs better that Decoupled-SFR when fewer stores/sfr 23

24 Conclusion Failure-atomic synchronization-free regions Persistent state moves from one sync. operation to the next Coupled-SFR design Easy to reason about PM state after failure; high performance cost Decoupled-SFR design Persistent state lags execution; performs 65% better than ATLAS More details in our full paper on Persistency for Synchronization-free Regions appearing in PLDI 18 24

25 Thank you! Questions? 25

Statement of Research Interests

Statement of Research Interests Statement of Research Interests Aasheesh Kolli - akolli@umich.edu I am a computer systems researcher with particular interests in multi-core systems and memory systems. My past research primarily investigates

More information

Accessing NVM Locally and over RDMA Challenges and Opportunities

Accessing NVM Locally and over RDMA Challenges and Opportunities Accessing NVM Locally and over RDMA Challenges and Opportunities Wendy Elsasser Megan Grodowitz William Wang MSST - May 2018 Emerging NVM A wide variety of technologies with varied characteristics Address

More information

New Programming Abstractions for Concurrency in GCC 4.7. Torvald Riegel Red Hat 12/04/05

New Programming Abstractions for Concurrency in GCC 4.7. Torvald Riegel Red Hat 12/04/05 New Programming Abstractions for Concurrency in GCC 4.7 Red Hat 12/04/05 1 Concurrency and atomicity C++11 atomic types Transactional Memory Provide atomicity for concurrent accesses by different threads

More information

Empirical Study of Redo and Undo Logging in Persistent Memory

Empirical Study of Redo and Undo Logging in Persistent Memory Empirical Study of Redo and Undo Logging in Persistent Memory Hu Wan, Youyou Lu, Yuanchao Xu, and Jiwu Shu College of Information Engineering, Capital Normal University, Beijing, China Department of Computer

More information

Loose-Ordering Consistency for Persistent Memory

Loose-Ordering Consistency for Persistent Memory Loose-Ordering Consistency for Persistent Memory Youyou Lu 1, Jiwu Shu 1, Long Sun 1, Onur Mutlu 2 1 Tsinghua University 2 Carnegie Mellon University Summary Problem: Strict write ordering required for

More information

SoftWrAP: A Lightweight Framework for Transactional Support of Storage Class Memory

SoftWrAP: A Lightweight Framework for Transactional Support of Storage Class Memory SoftWrAP: A Lightweight Framework for Transactional Support of Storage Class Memory Ellis Giles Rice University Houston, Texas erg@rice.edu Kshitij Doshi Intel Corp. Portland, OR kshitij.a.doshi@intel.com

More information

Defining a High-Level Programming Model for Emerging NVRAM Technologies

Defining a High-Level Programming Model for Emerging NVRAM Technologies Defining a High-Level Programming Model for Emerging NVRAM Technologies Thomas Shull, Jian Huang, Josep Torrellas University of Illinois at Urbana-Champaign September 13, 2018 Shull et al. Defining a High-Level

More information

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory JOY ARULRAJ JUSTIN LEVANDOSKI UMAR FAROOQ MINHAS PER-AKE LARSON Microsoft Research NON-VOLATILE MEMORY [NVM] PERFORMANCE DRAM VOLATILE

More information

NVthreads: Practical Persistence for Multi-threaded Applications

NVthreads: Practical Persistence for Multi-threaded Applications NVthreads: Practical Persistence for Multi-threaded Applications Terry Hsu*, Purdue University Helge Brügner*, TU München Indrajit Roy*, Google Inc. Kimberly Keeton, Hewlett Packard Labs Patrick Eugster,

More information

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons)

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) ) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) Transactions - Definition A transaction is a sequence of data operations with the following properties: * A Atomic All

More information

Non-Volatile Memory Through Customized Key-Value Stores

Non-Volatile Memory Through Customized Key-Value Stores Non-Volatile Memory Through Customized Key-Value Stores Leonardo Mármol 1 Jorge Guerra 2 Marcos K. Aguilera 2 1 Florida International University 2 VMware L. Mármol, J. Guerra, M. K. Aguilera (FIU and VMware)

More information

Efficient Persist Barriers for Multicores

Efficient Persist Barriers for Multicores fficient Persist Barriers for Multicores Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, Stratis Viglas Summary fficient persist barrier Used to implement persistency models Persistency = when stores become

More information

Linearizability of Persistent Memory Objects

Linearizability of Persistent Memory Objects Linearizability of Persistent Memory Objects Michael L. Scott Joint work with Joseph Izraelevitz & Hammurabi Mendes www.cs.rochester.edu/research/synchronization/ Compiler-Driven Performance Workshop,

More information

3. Memory Persistency Goals. 2. Background

3. Memory Persistency Goals. 2. Background Memory Persistency Steven Pelley Peter M. Chen Thomas F. Wenisch University of Michigan {spelley,pmchen,twenisch}@umich.edu Abstract Emerging nonvolatile memory technologies (NVRAM) promise the performance

More information

New Programming Abstractions for Concurrency. Torvald Riegel Red Hat 12/04/05

New Programming Abstractions for Concurrency. Torvald Riegel Red Hat 12/04/05 New Programming Abstractions for Concurrency Red Hat 12/04/05 1 Concurrency and atomicity C++11 atomic types Transactional Memory Provide atomicity for concurrent accesses by different threads Both based

More information

Agenda. Designing Transactional Memory Systems. Why not obstruction-free? Why lock-based?

Agenda. Designing Transactional Memory Systems. Why not obstruction-free? Why lock-based? Agenda Designing Transactional Memory Systems Part III: Lock-based STMs Pascal Felber University of Neuchatel Pascal.Felber@unine.ch Part I: Introduction Part II: Obstruction-free STMs Part III: Lock-based

More information

WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems

WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems Se Kwon Lee K. Hyun Lim 1, Hyunsub Song, Beomseok Nam, Sam H. Noh UNIST 1 Hongik University Persistent Memory (PM) Persistent memory

More information

An Analysis of Persistent Memory Use with WHISPER

An Analysis of Persistent Memory Use with WHISPER An Analysis of Persistent Memory Use with WHISPER Sanketh Nalli, Swapnil Haria, Michael M. Swift, Mark D. Hill, Haris Volos*, Kimberly Keeton* University of Wisconsin- Madison & *Hewlett- Packard Labs

More information

Hardware Support for NVM Programming

Hardware Support for NVM Programming Hardware Support for NVM Programming 1 Outline Ordering Transactions Write endurance 2 Volatile Memory Ordering Write-back caching Improves performance Reorders writes to DRAM STORE A STORE B CPU CPU B

More information

An Analysis of Persistent Memory Use with WHISPER

An Analysis of Persistent Memory Use with WHISPER An Analysis of Persistent Memory Use with WHISPER Sanketh Nalli, Swapnil Haria, Michael M. Swift, Mark D. Hill, Haris Volos*, Kimberly Keeton* University of Wisconsin- Madison & *Hewlett- Packard Labs

More information

Relaxed Memory Consistency

Relaxed Memory Consistency Relaxed Memory Consistency Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Mnemosyne Lightweight Persistent Memory

Mnemosyne Lightweight Persistent Memory Mnemosyne Lightweight Persistent Memory Haris Volos Andres Jaan Tack, Michael M. Swift University of Wisconsin Madison Executive Summary Storage-Class Memory (SCM) enables memory-like storage Persistent

More information

JANUARY 20, 2016, SAN JOSE, CA. Microsoft. Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases

JANUARY 20, 2016, SAN JOSE, CA. Microsoft. Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases JANUARY 20, 2016, SAN JOSE, CA PRESENTATION Cristian TITLE Diaconu GOES HERE Microsoft Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases What this talk is about Trying to answer

More information

The C/C++ Memory Model: Overview and Formalization

The C/C++ Memory Model: Overview and Formalization The C/C++ Memory Model: Overview and Formalization Mark Batty Jasmin Blanchette Scott Owens Susmit Sarkar Peter Sewell Tjark Weber Verification of Concurrent C Programs C11 / C++11 In 2011, new versions

More information

Deukyeon Hwang UNIST. Wook-Hee Kim UNIST. Beomseok Nam UNIST. Hanyang Univ.

Deukyeon Hwang UNIST. Wook-Hee Kim UNIST. Beomseok Nam UNIST. Hanyang Univ. Deukyeon Hwang UNIST Wook-Hee Kim UNIST Youjip Won Hanyang Univ. Beomseok Nam UNIST Fast but Asymmetric Access Latency Non-Volatility Byte-Addressability Large Capacity CPU Caches (Volatile) Persistent

More information

Instant Recovery for Main-Memory Databases

Instant Recovery for Main-Memory Databases Instant Recovery for Main-Memory Databases Ismail Oukid*, Wolfgang Lehner*, Thomas Kissinger*, Peter Bumbulis, and Thomas Willhalm + *TU Dresden SAP SE + Intel GmbH CIDR 2015, Asilomar, California, USA,

More information

C++ Memory Model Tutorial

C++ Memory Model Tutorial C++ Memory Model Tutorial Wenzhu Man C++ Memory Model Tutorial 1 / 16 Outline 1 Motivation 2 Memory Ordering for Atomic Operations The synchronizes-with and happens-before relationship (not from lecture

More information

Foundations of the C++ Concurrency Memory Model

Foundations of the C++ Concurrency Memory Model Foundations of the C++ Concurrency Memory Model John Mellor-Crummey and Karthik Murthy Department of Computer Science Rice University johnmc@rice.edu COMP 522 27 September 2016 Before C++ Memory Model

More information

The Bulk Multicore Architecture for Programmability

The Bulk Multicore Architecture for Programmability The Bulk Multicore Architecture for Programmability Department of Computer Science University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu Acknowledgments Key contributors: Luis Ceze Calin

More information

Using Memory-Style Storage to Support Fault Tolerance in Data Centers

Using Memory-Style Storage to Support Fault Tolerance in Data Centers Using Memory-Style Storage to Support Fault Tolerance in Data Centers Xiao Liu Qing Yi Jishen Zhao University of California at Santa Cruz, University of Colorado Colorado Springs {xiszishu,jishen.zhao}@ucsc.edu,

More information

Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise)

Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise) Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise) Application vs. Pure Workloads Benchmarks that reproduce application workloads Assist in

More information

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons)

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) ) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) Goal A Distributed Transaction We want a transaction that involves multiple nodes Review of transactions and their properties

More information

No compromises: distributed transactions with consistency, availability, and performance

No compromises: distributed transactions with consistency, availability, and performance No compromises: distributed transactions with consistency, availability, and performance Aleksandar Dragojevi c, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh Badam,

More information

RECOVERY CHAPTER 21,23 (6/E) CHAPTER 17,19 (5/E)

RECOVERY CHAPTER 21,23 (6/E) CHAPTER 17,19 (5/E) RECOVERY CHAPTER 21,23 (6/E) CHAPTER 17,19 (5/E) 2 LECTURE OUTLINE Failures Recoverable schedules Transaction logs Recovery procedure 3 PURPOSE OF DATABASE RECOVERY To bring the database into the most

More information

Linearizability of Persistent Memory Objects

Linearizability of Persistent Memory Objects Linearizability of Persistent Memory Objects Michael L. Scott Joint work with Joseph Izraelevitz & Hammurabi Mendes www.cs.rochester.edu/research/synchronization/ Workshop on the Theory of Transactional

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6302- DATABASE MANAGEMENT SYSTEMS Anna University 2 & 16 Mark Questions & Answers Year / Semester: II / III

More information

Architectural Support for Atomic Durability in Non-Volatile Memory

Architectural Support for Atomic Durability in Non-Volatile Memory Architectural Support for Atomic Durability in Non-Volatile Memory Arpit Joshi, Vijay Nagarajan, Stratis Viglas, Marcelo Cintra NVMW 2018 Summary Non-Volatile Memory (NVM) - on the memory bus enables in-memory

More information

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons)

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) ) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) Goal A Distributed Transaction We want a transaction that involves multiple nodes Review of transactions and their properties

More information

System Software for Persistent Memory

System Software for Persistent Memory System Software for Persistent Memory Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran and Jeff Jackson 72131715 Neo Kim phoenixise@gmail.com Contents

More information

AC: COMPOSABLE ASYNCHRONOUS IO FOR NATIVE LANGUAGES. Tim Harris, Martín Abadi, Rebecca Isaacs & Ross McIlroy

AC: COMPOSABLE ASYNCHRONOUS IO FOR NATIVE LANGUAGES. Tim Harris, Martín Abadi, Rebecca Isaacs & Ross McIlroy AC: COMPOSABLE ASYNCHRONOUS IO FOR NATIVE LANGUAGES Tim Harris, Martín Abadi, Rebecca Isaacs & Ross McIlroy Synchronous IO in the Windows API Read the contents of h, and compute a result BOOL ProcessFile(HANDLE

More information

Hybrid Static-Dynamic Analysis for Statically Bounded Region Serializability

Hybrid Static-Dynamic Analysis for Statically Bounded Region Serializability Hybrid Static-Dynamic Analysis for Statically Bounded Region Serializability Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond and Milind Kulkarni ASPLOS 2015, ISTANBUL, TURKEY Programming

More information

Yuxi Chen, Shu Wang, Shan Lu, and Karthikeyan Sankaralingam *

Yuxi Chen, Shu Wang, Shan Lu, and Karthikeyan Sankaralingam * Yuxi Chen, Shu Wang, Shan Lu, and Karthikeyan Sankaralingam * * 2 q Synchronization mistakes in multithreaded programs Thread 1 Thread 2 If(ptr){ tmp = *ptr; ptr = NULL; } Segfault q Common q Hard to diagnose

More information

EE382 Processor Design. Processor Issues for MP

EE382 Processor Design. Processor Issues for MP EE382 Processor Design Winter 1998 Chapter 8 Lectures Multiprocessors, Part I EE 382 Processor Design Winter 98/99 Michael Flynn 1 Processor Issues for MP Initialization Interrupts Virtual Memory TLB Coherency

More information

ReVive: Cost-Effective Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors

ReVive: Cost-Effective Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors ReVive: Cost-Effective Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors Milos Prvulovic, Zheng Zhang*, Josep Torrellas University of Illinois at Urbana-Champaign *Hewlett-Packard

More information

Improving the Practicality of Transactional Memory

Improving the Practicality of Transactional Memory Improving the Practicality of Transactional Memory Woongki Baek Electrical Engineering Stanford University Programming Multiprocessors Multiprocessor systems are now everywhere From embedded to datacenter

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 9: Implementing Synchronization (Chapter 6) Multiprocessor Memory Models Uniprocessor memory is simple Every load from a location retrieves the last value stored to that

More information

Speculative Synchronization: Applying Thread Level Speculation to Parallel Applications. University of Illinois

Speculative Synchronization: Applying Thread Level Speculation to Parallel Applications. University of Illinois Speculative Synchronization: Applying Thread Level Speculation to Parallel Applications José éf. Martínez * and Josep Torrellas University of Illinois ASPLOS 2002 * Now at Cornell University Overview Allow

More information

Recoverability. Kathleen Durant PhD CS3200

Recoverability. Kathleen Durant PhD CS3200 Recoverability Kathleen Durant PhD CS3200 1 Recovery Manager Recovery manager ensures the ACID principles of atomicity and durability Atomicity: either all actions in a transaction are done or none are

More information

Kernel Level Speculative DSM

Kernel Level Speculative DSM Motivation Main interest is performance, fault-tolerance, and correctness of distributed systems Present our ideas in the context of a DSM system We are developing tools that Improve performance Address

More information

The Google File System (GFS)

The Google File System (GFS) 1 The Google File System (GFS) CS60002: Distributed Systems Antonio Bruto da Costa Ph.D. Student, Formal Methods Lab, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Design constraints

More information

Program logics for relaxed consistency

Program logics for relaxed consistency Program logics for relaxed consistency UPMARC Summer School 2014 Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS) 1st Lecture, 28 July 2014 Outline Part I. Weak memory models 1. Intro

More information

Fall 2012 Parallel Computer Architecture Lecture 16: Speculation II. Prof. Onur Mutlu Carnegie Mellon University 10/12/2012

Fall 2012 Parallel Computer Architecture Lecture 16: Speculation II. Prof. Onur Mutlu Carnegie Mellon University 10/12/2012 18-742 Fall 2012 Parallel Computer Architecture Lecture 16: Speculation II Prof. Onur Mutlu Carnegie Mellon University 10/12/2012 Past Due: Review Assignments Was Due: Tuesday, October 9, 11:59pm. Sohi

More information

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction

MultiJav: A Distributed Shared Memory System Based on Multiple Java Virtual Machines. MultiJav: Introduction : A Distributed Shared Memory System Based on Multiple Java Virtual Machines X. Chen and V.H. Allan Computer Science Department, Utah State University 1998 : Introduction Built on concurrency supported

More information

Hardware Undo+Redo Logging. Matheus Ogleari Ethan Miller Jishen Zhao CRSS Retreat 2018 May 16, 2018

Hardware Undo+Redo Logging. Matheus Ogleari Ethan Miller Jishen Zhao   CRSS Retreat 2018 May 16, 2018 Hardware Undo+Redo Logging Matheus Ogleari Ethan Miller Jishen Zhao https://users.soe.ucsc.edu/~mogleari/ CRSS Retreat 2018 May 16, 2018 Typical Memory and Storage Hierarchy: Memory Fast access to working

More information

Database Technology. Topic 11: Database Recovery

Database Technology. Topic 11: Database Recovery Topic 11: Database Recovery Olaf Hartig olaf.hartig@liu.se Types of Failures Database may become unavailable for use due to: Transaction failures e.g., incorrect input, deadlock, incorrect synchronization

More information

Enabling Persistent Memory Use in Java. Steve Dohrmann Sr. Staff Software Engineer, Intel

Enabling Persistent Memory Use in Java. Steve Dohrmann Sr. Staff Software Engineer, Intel Enabling Persistent Memory Use in Java Steve Dohrmann Sr. Staff Software Engineer, Intel Motivation Java is a very popular language on servers, especially for databases, data grids, etc., e.g. Apache projects:

More information

C11 Compiler Mappings: Exploration, Verification, and Counterexamples

C11 Compiler Mappings: Exploration, Verification, and Counterexamples C11 Compiler Mappings: Exploration, Verification, and Counterexamples Yatin Manerkar Princeton University manerkar@princeton.edu http://check.cs.princeton.edu November 22 nd, 2016 1 Compilers Must Uphold

More information

Atomicity via Source-to-Source Translation

Atomicity via Source-to-Source Translation Atomicity via Source-to-Source Translation Benjamin Hindman Dan Grossman University of Washington 22 October 2006 Atomic An easier-to-use and harder-to-implement primitive void deposit(int x){ synchronized(this){

More information

Multicore Programming: C++0x

Multicore Programming: C++0x p. 1 Multicore Programming: C++0x Mark Batty University of Cambridge in collaboration with Scott Owens, Susmit Sarkar, Peter Sewell, Tjark Weber November, 2010 p. 2 C++0x: the next C++ Specified by the

More information

Transaction Memory for Existing Programs Michael M. Swift Haris Volos, Andres Tack, Shan Lu, Adam Welc * University of Wisconsin-Madison, *Intel

Transaction Memory for Existing Programs Michael M. Swift Haris Volos, Andres Tack, Shan Lu, Adam Welc * University of Wisconsin-Madison, *Intel Transaction Memory for Existing Programs Michael M. Swift Haris Volos, Andres Tack, Shan Lu, Adam Welc * University of Wisconsin-Madison, *Intel Where do TM programs ome from?! Parallel benchmarks replacing

More information

The SNIA NVM Programming Model. #OFADevWorkshop

The SNIA NVM Programming Model. #OFADevWorkshop The SNIA NVM Programming Model #OFADevWorkshop Opportunities with Next Generation NVM NVMe & STA SNIA 2 NVM Express/SCSI Express: Optimized storage interconnect & driver SNIA NVM Programming TWG: Optimized

More information

Using Software Transactional Memory In Interrupt-Driven Systems

Using Software Transactional Memory In Interrupt-Driven Systems Using Software Transactional Memory In Interrupt-Driven Systems Department of Mathematics, Statistics, and Computer Science Marquette University Thesis Defense Introduction Thesis Statement Software transactional

More information

SG5: Transactional Memory (TM) Meeting Minutes 2017/10/ /1/29

SG5: Transactional Memory (TM) Meeting Minutes 2017/10/ /1/29 Document Number: P0937R0 Date: 2018-02-12 Authors: Michael Wong Project: Programming Language C++, SG5 Transactional Memory Reply to: Michael Wong SG5: Transactional Memory (TM)

More information

Speculative Synchronization

Speculative Synchronization Speculative Synchronization José F. Martínez Department of Computer Science University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu/martinez Problem 1: Conservative Parallelization No parallelization

More information

Taming release-acquire consistency

Taming release-acquire consistency Taming release-acquire consistency Ori Lahav Nick Giannarakis Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS) POPL 2016 Weak memory models Weak memory models provide formal sound semantics

More information

Memory Consistency Models: Convergence At Last!

Memory Consistency Models: Convergence At Last! Memory Consistency Models: Convergence At Last! Sarita Adve Department of Computer Science University of Illinois at Urbana-Champaign sadve@cs.uiuc.edu Acks: Co-authors: Mark Hill, Kourosh Gharachorloo,

More information

Overview: Memory Consistency

Overview: Memory Consistency Overview: Memory Consistency the ordering of memory operations basic definitions; sequential consistency comparison with cache coherency relaxing memory consistency write buffers the total store ordering

More information

Memory Ordering Mechanisms for ARM? Tao C. Lee, Marc-Alexandre Boéchat CS, EPFL

Memory Ordering Mechanisms for ARM? Tao C. Lee, Marc-Alexandre Boéchat CS, EPFL Memory Ordering Mechanisms for ARM? Tao C. Lee, Marc-Alexandre Boéchat CS, EPFL Forecast This research studies the performance of memory ordering mechanisms on Chip Multi- Processors (CMPs) for modern

More information

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons)

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) ) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) Transactions - Definition A transaction is a sequence of data operations with the following properties: * A Atomic All

More information

EEC 581 Computer Architecture. Lec 11 Synchronization and Memory Consistency Models (4.5 & 4.6)

EEC 581 Computer Architecture. Lec 11 Synchronization and Memory Consistency Models (4.5 & 4.6) EEC 581 Computer rchitecture Lec 11 Synchronization and Memory Consistency Models (4.5 & 4.6) Chansu Yu Electrical and Computer Engineering Cleveland State University cknowledgement Part of class notes

More information

Mohamed M. Saad & Binoy Ravindran

Mohamed M. Saad & Binoy Ravindran Mohamed M. Saad & Binoy Ravindran VT-MENA Program Electrical & Computer Engineering Department Virginia Polytechnic Institute and State University TRANSACT 11 San Jose, CA An operation (or set of operations)

More information

Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG

Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG Remote Persistent Memory SNIA Nonvolatile Memory Programming TWG Tom Talpey Microsoft 2018 Storage Developer Conference. SNIA. All Rights Reserved. 1 Outline SNIA NVMP TWG activities Remote Access for

More information

Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740

Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740 Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740 A performance study with NVDIMM-N Dell EMC Engineering September 2017 A Dell EMC document category Revisions Date

More information

Potential violations of Serializability: Example 1

Potential violations of Serializability: Example 1 CSCE 6610:Advanced Computer Architecture Review New Amdahl s law A possible idea for a term project Explore my idea about changing frequency based on serial fraction to maintain fixed energy or keep same

More information

Heterogeneous-Race-Free Memory Models

Heterogeneous-Race-Free Memory Models Heterogeneous-Race-Free Memory Models Jyh-Jing (JJ) Hwang, Yiren (Max) Lu 02/28/2017 1 Outline 1. Background 2. HRF-direct 3. HRF-indirect 4. Experiments 2 Data Race Condition op1 op2 write read 3 Sequential

More information

UNIT 9 Crash Recovery. Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8

UNIT 9 Crash Recovery. Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8 UNIT 9 Crash Recovery Based on: Text: Chapter 18 Skip: Section 18.7 and second half of 18.8 Learning Goals Describe the steal and force buffer policies and explain how they affect a transaction s properties

More information

Spectre and Meltdown. Clifford Wolf q/talk

Spectre and Meltdown. Clifford Wolf q/talk Spectre and Meltdown Clifford Wolf q/talk 2018-01-30 Spectre and Meltdown Spectre (CVE-2017-5753 and CVE-2017-5715) Is an architectural security bug that effects most modern processors with speculative

More information

Blurred Persistence in Transactional Persistent Memory

Blurred Persistence in Transactional Persistent Memory Blurred Persistence in Transactional Persistent Memory Youyou Lu, Jiwu Shu, Long Sun Tsinghua University Overview Problem: high performance overhead in ensuring storage consistency of persistent memory

More information

Lecture 21: Logging Schemes /645 Database Systems (Fall 2017) Carnegie Mellon University Prof. Andy Pavlo

Lecture 21: Logging Schemes /645 Database Systems (Fall 2017) Carnegie Mellon University Prof. Andy Pavlo Lecture 21: Logging Schemes 15-445/645 Database Systems (Fall 2017) Carnegie Mellon University Prof. Andy Pavlo Crash Recovery Recovery algorithms are techniques to ensure database consistency, transaction

More information

CSCI 402: Computer Architectures. Instructions: Language of the Computer (1) Fengguang Song Department of Computer & Information Science IUPUI

CSCI 402: Computer Architectures. Instructions: Language of the Computer (1) Fengguang Song Department of Computer & Information Science IUPUI Starting Chapter 2: CSCI 402: Computer Architectures Instructions: Language of the Computer (1) Fengguang Song Department of Computer & Information Science IUPUI Contents 2.1 and 2.3 What is instruction?

More information

EECS 570 Final Exam - SOLUTIONS Winter 2015

EECS 570 Final Exam - SOLUTIONS Winter 2015 EECS 570 Final Exam - SOLUTIONS Winter 2015 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points 1 / 21 2 / 32

More information

M4 Parallelism. Implementation of Locks Cache Coherence

M4 Parallelism. Implementation of Locks Cache Coherence M4 Parallelism Implementation of Locks Cache Coherence Outline Parallelism Flynn s classification Vector Processing Subword Parallelism Symmetric Multiprocessors, Distributed Memory Machines Shared Memory

More information

DHTM: Durable Hardware Transactional Memory

DHTM: Durable Hardware Transactional Memory DHTM: Durable Hardware Transactional Memory Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, Stratis Viglas ISCA 2018 is here!2 is here!2 Systems LLC!3 Systems - Non-volatility over the memory bus - Load/Store

More information

Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution

Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution Ravi Rajwar and Jim Goodman University of Wisconsin-Madison International Symposium on Microarchitecture, Dec. 2001 Funding

More information

RDMA Requirements for High Availability in the NVM Programming Model

RDMA Requirements for High Availability in the NVM Programming Model RDMA Requirements for High Availability in the NVM Programming Model Doug Voigt HP Agenda NVM Programming Model Motivation NVM Programming Model Overview Remote Access for High Availability RDMA Requirements

More information

15 418/618 Project Final Report Concurrent Lock free BST

15 418/618 Project Final Report Concurrent Lock free BST 15 418/618 Project Final Report Concurrent Lock free BST Names: Swapnil Pimpale, Romit Kudtarkar AndrewID: spimpale, rkudtark 1.0 SUMMARY We implemented two concurrent binary search trees (BSTs): a fine

More information

An introduction to weak memory consistency and the out-of-thin-air problem

An introduction to weak memory consistency and the out-of-thin-air problem An introduction to weak memory consistency and the out-of-thin-air problem Viktor Vafeiadis Max Planck Institute for Software Systems (MPI-SWS) CONCUR, 7 September 2017 Sequential consistency 2 Sequential

More information

Rethink the Sync 황인중, 강윤지, 곽현호. Embedded Software Lab. Embedded Software Lab.

Rethink the Sync 황인중, 강윤지, 곽현호. Embedded Software Lab. Embedded Software Lab. 1 Rethink the Sync 황인중, 강윤지, 곽현호 Authors 2 USENIX Symposium on Operating System Design and Implementation (OSDI 06) System Structure Overview 3 User Level Application Layer Kernel Level Virtual File System

More information

Cycle accurate transaction-driven simulation with multiple processor simulators

Cycle accurate transaction-driven simulation with multiple processor simulators Cycle accurate transaction-driven simulation with multiple processor simulators Dohyung Kim 1a) and Rajesh Gupta 2 1 Engineering Center, Google Korea Ltd. 737 Yeoksam-dong, Gangnam-gu, Seoul 135 984, Korea

More information

Transactional Memory

Transactional Memory Transactional Memory Architectural Support for Practical Parallel Programming The TCC Research Group Computer Systems Lab Stanford University http://tcc.stanford.edu TCC Overview - January 2007 The Era

More information

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant Big and Fast Anti-Caching in OLTP Systems Justin DeBrabant Online Transaction Processing transaction-oriented small footprint write-intensive 2 A bit of history 3 OLTP Through the Years relational model

More information

Soft Updates Made Simple and Fast on Non-volatile Memory

Soft Updates Made Simple and Fast on Non-volatile Memory Soft Updates Made Simple and Fast on Non-volatile Memory Mingkai Dong, Haibo Chen Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University @ NVMW 18 Non-volatile Memory (NVM) ü Non-volatile

More information

Module 15: "Memory Consistency Models" Lecture 34: "Sequential Consistency and Relaxed Models" Memory Consistency Models. Memory consistency

Module 15: Memory Consistency Models Lecture 34: Sequential Consistency and Relaxed Models Memory Consistency Models. Memory consistency Memory Consistency Models Memory consistency SC SC in MIPS R10000 Relaxed models Total store ordering PC and PSO TSO, PC, PSO Weak ordering (WO) [From Chapters 9 and 11 of Culler, Singh, Gupta] [Additional

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

Chimera: Hybrid Program Analysis for Determinism

Chimera: Hybrid Program Analysis for Determinism Chimera: Hybrid Program Analysis for Determinism Dongyoon Lee, Peter Chen, Jason Flinn, Satish Narayanasamy University of Michigan, Ann Arbor - 1 - * Chimera image from http://superpunch.blogspot.com/2009/02/chimera-sketch.html

More information

Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy)

Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy) 2011 NVRAMOS Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy) 2011. 4. 19 Jongmoo Choi http://embedded.dankook.ac.kr/~choijm Contents Overview Motivation Observations Proposal:

More information

Parallelism Marco Serafini

Parallelism Marco Serafini Parallelism Marco Serafini COMPSCI 590S Lecture 3 Announcements Reviews First paper posted on website Review due by this Wednesday 11 PM (hard deadline) Data Science Career Mixer (save the date!) November

More information

Transactifying Apache s Cache Module

Transactifying Apache s Cache Module H. Eran O. Lutzky Z. Guz I. Keidar Department of Electrical Engineering Technion Israel Institute of Technology SYSTOR 2009 The Israeli Experimental Systems Conference Outline 1 Why legacy applications

More information

Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures. Adam McLaughlin, Duane Merrill, Michael Garland, and David A.

Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures. Adam McLaughlin, Duane Merrill, Michael Garland, and David A. Parallel Methods for Verifying the Consistency of Weakly-Ordered Architectures Adam McLaughlin, Duane Merrill, Michael Garland, and David A. Bader Challenges of Design Verification Contemporary hardware

More information

High Performance Transactions in Deuteronomy

High Performance Transactions in Deuteronomy High Performance Transactions in Deuteronomy Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang Microsoft Research Overview Deuteronomy: componentized DB stack Separates transaction,

More information