C-Style Strings. CS2253 Owen Kaser, UNBSJ

Size: px
Start display at page:

Download "C-Style Strings. CS2253 Owen Kaser, UNBSJ"

Transcription

1 C-Style Strings CS2253 Owen Kaser, UNBSJ

2 Strings In C and some other low-level languages, strings are just consecutive memory locations that contain characters. A special null character (ASCII code 0) terminates the string. Common string-processing library routines are good source of assembly-language examples.

3 Making a Constant String (Review) Use DCB and don't forget the null character terminator mystring dcb hello,0

4 A String Local Variable Suppose you know you need a string local variable. If you know the maximum length you could possibly need (say 50 characters), proceed as follows... mysubroutine STMFD SP!, {some regs, LR} SUB SP, SP, #52 ;maintain SP alignment MOV R0, #0 ; null character STRB R0, [SP] ; terminate string (show picture) use space from SP to SP+51 for your string.. ADD SP, SP, #52 ; pop off space used by string LDMFD SP!, {some regs, PC}

5 Stack Smashing Q: What if someone is allowed to put a 56-byte string into your 52 byte area? A: You affect the things in the memory addresses above your string. The last thing pushed by the STMFD was the return address. So you have a wrong return address. A cracker can write some nasty machine code program as the 56-byte string and arrange for you to return to her program. Moral: String locals need to be very carefully checked to see that they are not too long. Some modern CPUs will mark the stack region of memory as nonexecutable to help. You can still be forced to return to an arbitrary location in the existing program, may be good enough for cracker.

6 Returning a String Suppose your subroutine is supposed to return a string. You can just return the memory address of somewhere in memory that holds the characters of your string. (In C terminology, you return a pointer to your characters.) But that somewhere needs to be safe - not subject to arbitrary destruction. Any stack location below the top of the stack is not safe.

7 Bad Scenario main subroutine calls foo foo has a local string variable, v, that it puts some lovely string into. foo returns the address of v to main main turns around and calls bar bar returns. main tries to use the lovely string. Unhappiness results.

8 Bad Scenario, picture 1

9 Bad Scenario, picture 2 Because the string address sent by 'foo' to main was in the danger zone, 'bar' trashed it. Not bar's fault. Solution: Never return the address of a local variable.

10 Non-Reentrant Solution If a subroutine S needs to return a string (whose maximum length is known), then it can put the string in a buffer memory location set aside just for S. And it can return the address of S to its caller. S's buffer is safe enough...except from itself. This approach means S won't be reentrant S cannot be recursive. And callers to S should copy out the answer, in case anyone they invoke also calls S.

11 Example S_buffer DCB 0 SPACE 31 ; total length 32 S STMFD SP!,{...,LR} put some string into S_buffer... LDR R0, =S_buffer ; return value in R0 LDMFD, SP!,{...,PC} ;return to caller

12 Length of a String (in R0) strlen mov R1, #0 ; length counter loop ldrb R2, [R0],#1 ; get current character cmp R2,#0 addne R1,R1,#1 bne loop mov R1, R0 ; return value in R0 mov PC,LR ; return Since this is a leaf method, we didn't need STM and LDM

13 Reverse (buffer version, untested) rev_buffer SPACE 32 reverse mov R1,R0 ;R1 is caller save stmfd SP!, {R1,LR} bl strlen ;length in R0 mov R1,#0 ldr R2,=rev_buffer strb R1, [R2,R0,LSL #0] ; mark end sub R0, R0, #1 ldr R1, [SP,#4] ; recover start of input loop ldrb R3, [R1],#1 ;the copying loop cmp R3,#0 beq done strb R3, [R2, R0, LSL #0] sub R0, R0, #1 b loop done ldmfd SP!, {R1, LR} ldr R0, =rev_buffer ;return value mov PC, LR

14 Or, Use a Stack Can push a bunch of characters to stack from input. (And count them). Pop them off, one at a time, and append to buffer Then return address of buffer.

15 Alternative Approach We can make the caller responsible for finding space for us to store the returned string. The address of the space for the returned string (probably in the caller's activation record) is passed as a parameter. This is a little better than the buffer approach.

16 Reverse (param 2 has address) reverse mov R2,R0 ;R2 is caller save stmfd SP!, {R2,LR} bl strlen ;length in R0 mov R2,#0 ldr R1,=rev_buffer strb R2, [R1,R0,LSL #0] ; mark end sub R0, R0, #1 ldr R2, [SP,#4] ; recover start of input loop ldrsb R3, [R2],#1 ;the copying loop beq done strb R3, [R1, R0, LSL #0] sub R0, R0, #1 b loop done ldmfd SP!, {R2, PC} ; no return value

17 Making It Robust When the address of an output buffer is passed in, you should usually pass along another parameter to indicate how long the buffer is. And the string routine should be coded to avoid overflowing the buffer. Without the how long parameter, the string routine would have no way of knowing when overflow might occur. Early design of the C string library didn't really seem to appreciate this enough. Later additions did, but by then, programmers had developed sloppy habits.

Programming the ARM. Computer Design 2002, Lecture 4. Robert Mullins

Programming the ARM. Computer Design 2002, Lecture 4. Robert Mullins Programming the ARM Computer Design 2002, Lecture 4 Robert Mullins 2 Quick Recap The Control Flow Model Ordered list of instructions, fetch/execute, PC Instruction Set Architectures Types of internal storage

More information

Support for high-level languages

Support for high-level languages Outline: Support for high-level languages memory organization ARM data types conditional statements & loop structures the ARM Procedure Call Standard hands-on: writing & debugging C programs 2005 PEVE

More information

Systems Architecture The Stack and Subroutines

Systems Architecture The Stack and Subroutines Systems Architecture The Stack and Subroutines The Stack p. 1/9 The Subroutine Allow re-use of code Write (and debug) code once, use it many times A subroutine is called Subroutine will return on completion

More information

ARM Assembly Language. Programming

ARM Assembly Language. Programming Outline: ARM Assembly Language the ARM instruction set writing simple programs examples Programming hands-on: writing simple ARM assembly programs 2005 PEVE IT Unit ARM System Design ARM assembly language

More information

Assemblers and Linkers. CS 2253 Owen Kaser, UNBSJ

Assemblers and Linkers. CS 2253 Owen Kaser, UNBSJ Assemblers and Linkers CS 2253 Owen Kaser, UNBSJ Contents Review of assembler tasks A look at linker tasks Assembler implementation The location counter and symbol table Two-pass assembler Macros and conditional

More information

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory

Today s Menu. >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Today s Menu Methods >Use the Internal Register(s) >Use the Program Memory Space >Use the Stack >Use global memory Look into my See examples on web-site: ParamPassing*asm and see Methods in Software and

More information

ECE 471 Embedded Systems Lecture 5

ECE 471 Embedded Systems Lecture 5 ECE 471 Embedded Systems Lecture 5 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 17 September 2013 HW#1 is due Thursday Announcements For next class, at least skim book Chapter

More information

ARM Instruction Set Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

ARM Instruction Set Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University ARM Instruction Set Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Condition Field (1) Most ARM instructions can be conditionally

More information

ARM Assembler Workbook. CS160 Computer Organization Version 1.1 October 27 th, 2002 Revised Fall 2005

ARM Assembler Workbook. CS160 Computer Organization Version 1.1 October 27 th, 2002 Revised Fall 2005 ARM Assembler Workbook CS160 Computer Organization Version 1.1 October 27 th, 2002 Revised Fall 2005 ARM University Program Version 1.0 January 14th, 1997 Introduction Aim This workbook provides the student

More information

NET3001. Advanced Assembly

NET3001. Advanced Assembly NET3001 Advanced Assembly Arrays and Indexing supposed we have an array of 16 bytes at 0x0800.0100 write a program that determines if the array contains the byte '0x12' set r0=1 if the byte is found plan:

More information

Overview COMP Microprocessors and Embedded Systems. Lectures 18 : Pointers & Arrays in C/ Assembly

Overview COMP Microprocessors and Embedded Systems. Lectures 18 : Pointers & Arrays in C/ Assembly COMP 3221 Microprocessors and Embedded Systems Lectures 18 : Pointers & Arrays in C/ Assembly http://www.cse.unsw.edu.au/~cs3221 Overview Arrays, Pointers, Functions in C Example Pointers, Arithmetic,

More information

ARM Assembly Programming

ARM Assembly Programming Introduction ARM Assembly Programming The ARM processor is very easy to program at the assembly level. (It is a RISC) We will learn ARM assembly programming at the user level and run it on a GBA emulator.

More information

ECE 498 Linux Assembly Language Lecture 5

ECE 498 Linux Assembly Language Lecture 5 ECE 498 Linux Assembly Language Lecture 5 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 29 November 2012 Clarifications from Lecture 4 What is the Q saturate status bit? Some

More information

Black Box Debugging of Embedded Systems

Black Box Debugging of Embedded Systems Black Box Debugging of Embedded Systems Introduction: Alexandru Ariciu Background in hacking Worked as a hacker for my whole life Worked in corporate security before (Pentester) Currently an ICS Penetration

More information

ARM Assembly Programming II

ARM Assembly Programming II ARM Assembly Programming II Computer Organization and Assembly Languages Yung-Yu Chuang 2007/11/26 with slides by Peng-Sheng Chen GNU compiler and binutils HAM uses GNU compiler and binutils gcc: GNU C

More information

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function Module 8: Atmega32 Stack & Subroutine Stack Pointer Subroutine Call function Stack Stack o Stack is a section of RAM used by the CPU to store information temporarily (i.e. data or address). o The CPU needs

More information

Interrupt-Driven Input/Output

Interrupt-Driven Input/Output Interrupt-Driven Input/Output Textbook: Chapter 11 (Interrupts) ARM Cortex-M4 User Guide (Interrupts, exceptions, NVIC) Sections 2.1.4, 2.3 Exceptions and interrupts Section 4.2 Nested Vectored Interrupt

More information

Lab5 2-Nov-18, due 16-Nov-18 (2 weeks duration) Lab6 16-Nov-19, due 30-Nov-18 (2 weeks duration)

Lab5 2-Nov-18, due 16-Nov-18 (2 weeks duration) Lab6 16-Nov-19, due 30-Nov-18 (2 weeks duration) CS1021 AFTER READING WEEK Mid-Semester Test NOW Thurs 8th Nov @ 9am in Goldsmith Hall (ALL students to attend at 9am) Final 2 Labs Lab5 2-Nov-18, due 16-Nov-18 (2 weeks duration) Lab6 16-Nov-19, due 30-Nov-18

More information

ECE251: Tuesday September 18

ECE251: Tuesday September 18 ECE251: Tuesday September 18 Subroutine Parameter Passing (Important) Allocating Memory in Subroutines (Important) Recursive Subroutines (Good to know) Debugging Hints Programming Hints Preview of I/O

More information

Stack Frames. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 15

Stack Frames. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 15 Stack Frames Geoffrey Brown Bryce Himebaugh Indiana University September 2, 2016 Geoffrey Brown, Bryce Himebaugh 2015 September 2, 2016 1 / 15 Outline Preserving Registers Saving and Restoring Registers

More information

Exam 1. Date: February 23, 2016

Exam 1. Date: February 23, 2016 Exam 1 Date: February 23, 2016 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this exam:

More information

ARM Assembly Programming

ARM Assembly Programming ARM Assembly Programming Computer Organization and Assembly Languages g Yung-Yu Chuang 2007/12/1 with slides by Peng-Sheng Chen GNU compiler and binutils HAM uses GNU compiler and binutils gcc: GNU C compiler

More information

Part 7. Stacks. Stack. Stack. Examples of Stacks. Stack Operation: Push. Piles of Data. The Stack

Part 7. Stacks. Stack. Stack. Examples of Stacks. Stack Operation: Push. Piles of Data. The Stack Part 7 Stacks The Stack Piles of Data Stack Stack A stack is an abstract data structure that stores objects Based on the concept of a stack of items like a stack of dishes Data can only be added to or

More information

Assembly Language. CS2253 Owen Kaser, UNBSJ

Assembly Language. CS2253 Owen Kaser, UNBSJ Assembly Language CS2253 Owen Kaser, UNBSJ Assembly Language Some insane machine-code programming Assembly language as an alternative Assembler directives Mnemonics for instructions Machine-Code Programming

More information

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan ARM Programmers Model Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan chanhl@maili.cgu.edu.twcgu Current program status register (CPSR) Prog Model 2 Data processing

More information

ARM Assembly Programming

ARM Assembly Programming ARM Assembly Programming Computer Organization and Assembly Languages g Yung-Yu Chuang with slides by Peng-Sheng Chen GNU compiler and binutils HAM uses GNU compiler and binutils gcc: GNU C compiler as:

More information

ARM PROGRAMMING. When use assembly

ARM PROGRAMMING. When use assembly ARM PROGRAMMING Bùi Quốc Bảo When use assembly Functions that cannot be implemented in C, such as special register accesses and exclusive accesses Timing-critical routines Tight memory requirements, causing

More information

Systems Architecture The ARM Processor

Systems Architecture The ARM Processor Systems Architecture The ARM Processor The ARM Processor p. 1/14 The ARM Processor ARM: Advanced RISC Machine First developed in 1983 by Acorn Computers ARM Ltd was formed in 1988 to continue development

More information

Chapter 15. ARM Architecture, Programming and Development Tools

Chapter 15. ARM Architecture, Programming and Development Tools Chapter 15 ARM Architecture, Programming and Development Tools Lesson 4 ARM CPU 32 bit ARM Instruction set 2 Basic Programming Features- ARM code size small than other RISCs 32-bit un-segmented memory

More information

Advanced Assembly, Branching, and Monitor Utilities

Advanced Assembly, Branching, and Monitor Utilities 2 Advanced Assembly, Branching, and Monitor Utilities 2.1 Objectives: There are several different ways for an instruction to form effective addresses to acquire data, called addressing modes. One of these

More information

ARM Assembly Language

ARM Assembly Language ARM Assembly Language Introduction to ARM Basic Instruction Set Microprocessors and Microcontrollers Course Isfahan University of Technology, Dec. 2010 1 Main References The ARM Architecture Presentation

More information

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines M J Brockway February 13, 2016 The Cortex-M4 Stack SP The subroutine stack is full, descending It grows downwards from higher

More information

EE319K Fall 2013 Exam 1B Modified Page 1. Exam 1. Date: October 3, 2013

EE319K Fall 2013 Exam 1B Modified Page 1. Exam 1. Date: October 3, 2013 EE319K Fall 2013 Exam 1B Modified Page 1 Exam 1 Date: October 3, 2013 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will

More information

CprE 288 Introduction to Embedded Systems Course Review for Exam 3. Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems Course Review for Exam 3. Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems Course Review for Exam 3 Instructors: Dr. Phillip Jones 1 Announcements Exam 3: See course website for day/time. Exam 3 location: Our regular classroom Allowed

More information

CSE /003, Fall 2014, Homework 4 Due October 7, 2014 in Class (at 2:00pm for 002, 3:30pm for 003)

CSE /003, Fall 2014, Homework 4 Due October 7, 2014 in Class (at 2:00pm for 002, 3:30pm for 003) CSE2312-002/003, Fall 2014, Homework 4 Due October 7, 2014 in Class (at 2:00pm for 002, 3:30pm for 003) The following problems are from Chapter 2 of the ARM Edition of the Patterson and Hennessy textbook

More information

ECE 471 Embedded Systems Lecture 12

ECE 471 Embedded Systems Lecture 12 ECE 471 Embedded Systems Lecture 12 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 25 September 2017 HW#4 was posted. Announcements 1 Homework 3 Be sure to put your name in the

More information

Exam 1. Date: Oct 4, 2018

Exam 1. Date: Oct 4, 2018 Exam 1 Date: Oct 4, 2018 UT EID: Professor: Valvano Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat

More information

Computer Architecture and System Software Lecture 06: Assembly Language Programming

Computer Architecture and System Software Lecture 06: Assembly Language Programming Computer Architecture and System Software Lecture 06: Assembly Language Programming Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Assignment 3 due thursday Midterm

More information

(2) Part a) Registers (e.g., R0, R1, themselves). other Registers do not exists at any address in the memory map

(2) Part a) Registers (e.g., R0, R1, themselves). other Registers do not exists at any address in the memory map (14) Question 1. For each of the following components, decide where to place it within the memory map of the microcontroller. Multiple choice select: RAM, ROM, or other. Select other if the component is

More information

The ARM Cortex-M0 Processor Architecture Part-2

The ARM Cortex-M0 Processor Architecture Part-2 The ARM Cortex-M0 Processor Architecture Part-2 1 Module Syllabus ARM Cortex-M0 Processor Instruction Set ARM and Thumb Instruction Set Cortex-M0 Instruction Set Data Accessing Instructions Arithmetic

More information

Processor Status Register(PSR)

Processor Status Register(PSR) ARM Registers Register internal CPU hardware device that stores binary data; can be accessed much more rapidly than a location in RAM ARM has 13 general-purpose registers R0-R12 1 Stack Pointer (SP) R13

More information

VE7104/INTRODUCTION TO EMBEDDED CONTROLLERS UNIT III ARM BASED MICROCONTROLLERS

VE7104/INTRODUCTION TO EMBEDDED CONTROLLERS UNIT III ARM BASED MICROCONTROLLERS VE7104/INTRODUCTION TO EMBEDDED CONTROLLERS UNIT III ARM BASED MICROCONTROLLERS Introduction to 32 bit Processors, ARM Architecture, ARM cortex M3, 32 bit ARM Instruction set, Thumb Instruction set, Exception

More information

EE319K Spring 2015 Exam 1 Page 1. Exam 1. Date: Feb 26, 2015

EE319K Spring 2015 Exam 1 Page 1. Exam 1. Date: Feb 26, 2015 EE319K Spring 2015 Exam 1 Page 1 Exam 1 Date: Feb 26, 2015 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help

More information

Developing StrongARM/Linux shellcode

Developing StrongARM/Linux shellcode Into my ARMs Developing StrongARM/Linux shellcode by funkysh 16.12.2001 ----{ Introduction This paper covers informations needed to write StrongARM Linux shellcode. All examples presented

More information

ECE 471 Embedded Systems Lecture 8

ECE 471 Embedded Systems Lecture 8 ECE 471 Embedded Systems Lecture 8 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 21 September 2018 Announcements HW#2 was due HW#3 will be posted today. Work in groups? Note

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 3

ECE 571 Advanced Microprocessor-Based Design Lecture 3 ECE 571 Advanced Microprocessor-Based Design Lecture 3 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 22 January 2013 The ARM Architecture 1 Brief ARM History ACORN Wanted a chip

More information

CMPSCI 201 Fall 2004 Midterm #2 Answers

CMPSCI 201 Fall 2004 Midterm #2 Answers CMPSCI 201 Fall 2004 Midterm #2 Answers Professor William T. Verts 15 Points You should be quite familiar by now with the single-precision floating point numeric format (one 32-bit word containing

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Procedure calls and register saving conventions 1 Example Convert to assembly: while (save[i] == k) i += 1; i and k are in $s3 and $s5 and base of array save[]

More information

EE319K Exam 1 Summer 2014 Page 1. Exam 1. Date: July 9, Printed Name:

EE319K Exam 1 Summer 2014 Page 1. Exam 1. Date: July 9, Printed Name: EE319K Exam 1 Summer 2014 Page 1 Exam 1 Date: July 9, 2014 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help

More information

ARM Instruction Set. Computer Organization and Assembly Languages Yung-Yu Chuang. with slides by Peng-Sheng Chen

ARM Instruction Set. Computer Organization and Assembly Languages Yung-Yu Chuang. with slides by Peng-Sheng Chen ARM Instruction Set Computer Organization and Assembly Languages g Yung-Yu Chuang with slides by Peng-Sheng Chen Introduction The ARM processor is easy to program at the assembly level. (It is a RISC)

More information

ARM Memory Addressing and Function Calls

ARM Memory Addressing and Function Calls ARM Memory Addressing and Function Calls Tom Kelliher, CS 220 1 Administrivia Today s Objectives 1. Use indirect addressing to move data between registers and memory. 2. Manipulate numeric and character

More information

EEM870 Embedded System and Experiment Lecture 4: ARM Instruction Sets

EEM870 Embedded System and Experiment Lecture 4: ARM Instruction Sets EEM870 Embedded System and Experiment Lecture 4 ARM Instruction Sets Wen-Yen Lin, Ph.D. Department of Electrical Engineering Chang Gung University Email wylin@mail.cgu.edu.tw March 2014 Introduction Embedded

More information

Multiple data transfer instructions

Multiple data transfer instructions Multiple data transfer instructions ARM also supports multiple loads and stores: When the data to be copied to the stack is known to be a multiple of 4 bytes, copying is faster using load multiple and

More information

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri CS356: Discussion #6 Assembly Procedures and Arrays Marco Paolieri (paolieri@usc.edu) Procedures Functions are a key abstraction in software They break down a problem into subproblems. Reusable functionality:

More information

EE319K Spring 2016 Exam 1 Solution Page 1. Exam 1. Date: Feb 25, UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi

EE319K Spring 2016 Exam 1 Solution Page 1. Exam 1. Date: Feb 25, UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi EE319K Spring 2016 Exam 1 Solution Page 1 Exam 1 Date: Feb 25, 2016 UT EID: Solution Professor (circle): Janapa Reddi, Tiwari, Valvano, Yerraballi Printed Name: Last, First Your signature is your promise

More information

ARM-7 ADDRESSING MODES INSTRUCTION SET

ARM-7 ADDRESSING MODES INSTRUCTION SET ARM-7 ADDRESSING MODES INSTRUCTION SET Dr. P. H. Zope 1 Assistant Professor SSBT s COET Bambhori Jalgaon North Maharashtra University Jalgaon India phzope@gmail.com 9860631040 Addressing modes When accessing

More information

ARM Instruction Set. Introduction. Memory system. ARM programmer model. The ARM processor is easy to program at the

ARM Instruction Set. Introduction. Memory system. ARM programmer model. The ARM processor is easy to program at the Introduction ARM Instruction Set The ARM processor is easy to program at the assembly level. (It is a RISC) We will learn ARM assembly programming at the user level l and run it on a GBA emulator. Computer

More information

The Stack. Lecture 15: The Stack. The Stack. Adding Elements. What is it? What is it used for?

The Stack. Lecture 15: The Stack. The Stack. Adding Elements. What is it? What is it used for? Lecture 15: The Stack The Stack What is it? What is it used for? A special memory buffer (outside the CPU) used as a temporary holding area for addresses and data The stack is in the stack segment. The

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 4

ECE 571 Advanced Microprocessor-Based Design Lecture 4 ECE 571 Advanced Microprocessor-Based Design Lecture 4 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 24 January 2013 Low-Level ARM Linux Assembly 1 System call number in r7 Arguments

More information

ECE 471 Embedded Systems Lecture 12

ECE 471 Embedded Systems Lecture 12 ECE 471 Embedded Systems Lecture 12 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 October 2018 HW#4 was posted. Announcements Permissions! Unless your user is configured to

More information

ECE251: Intro to Microprocessors Name: Solutions Mid Term Exam October 4, 2018

ECE251: Intro to Microprocessors Name: Solutions Mid Term Exam October 4, 2018 ECE251: Intro to Microprocessors Name: Solutions Mid Term Exam October 4, 2018 (PRINT) Instructions: No calculators, books, or cell phones; do not communicate with any other student. One side of a single

More information

ARM Architecture and Instruction Set

ARM Architecture and Instruction Set AM Architecture and Instruction Set Ingo Sander ingo@imit.kth.se AM Microprocessor Core AM is a family of ISC architectures, which share the same design principles and a common instruction set AM does

More information

Computer Organization & Assembly Language Programming (CSE 2312)

Computer Organization & Assembly Language Programming (CSE 2312) Computer Organization & Assembly Language Programming (CSE 2312) Lecture 16: Processor Pipeline Introduction and Debugging with GDB Taylor Johnson Announcements and Outline Homework 5 due today Know how

More information

ARM Instruction Set 1

ARM Instruction Set 1 ARM Instruction Set 1 What is an embedded system? Components: Processor(s) Co-processors (graphics, security) Memory (disk drives, DRAM, SRAM, CD/DVD) input (mouse, keyboard, mic) output (display, printer)

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Prabal Dutta University of Michigan Lecture 2: Architecture, Assembly, and ABI January 13, 2015 Slides developed in part by Mark Brehob 1 Announcements Website

More information

Chapter 2. Instructions: Language of the Computer

Chapter 2. Instructions: Language of the Computer Chapter 2 Instructions: Language g of the Computer Stored Program Computers The BIG Picture Instructions represented in binary, just like data Instructions and data stored in memory Programs can operate

More information

Exam 1. Date: February 23, 2018

Exam 1. Date: February 23, 2018 Exam 1 Date: February 23, 2018 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this exam:

More information

Architecture. Digital Computer Design

Architecture. Digital Computer Design Architecture Digital Computer Design Architecture The architecture is the programmer s view of a computer. It is defined by the instruction set (language) and operand locations (registers and memory).

More information

CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls

CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls Instructors: Dr. Phillip Jones 1 Announcements Final Projects Projects: Mandatory

More information

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part 2

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part 2 ARM Cortex-A9 ARM v7-a A programmer s perspective Part 2 ARM Instructions General Format Inst Rd, Rn, Rm, Rs Inst Rd, Rn, #0ximm 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

More information

Assembly Language Programming

Assembly Language Programming Assembly Language Programming ECE 362 https://engineering.purdue.edu/ee362/ Rick Reading and writing arrays Consider this C code again: int array1[100]; int array2[100]; for(n=0; n

More information

STEVEN R. BAGLEY ARM: PROCESSING DATA

STEVEN R. BAGLEY ARM: PROCESSING DATA STEVEN R. BAGLEY ARM: PROCESSING DATA INTRODUCTION CPU gets instructions from the computer s memory Each instruction is encoded as a binary pattern (an opcode) Assembly language developed as a human readable

More information

Exam 1. Date: March 1, 2019

Exam 1. Date: March 1, 2019 Exam 1 Date: March 1, 2019 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this exam: Signature:

More information

EE319K (Gerstlauer), Spring 2013, Midterm 1 1. Midterm 1. Date: February 21, 2013

EE319K (Gerstlauer), Spring 2013, Midterm 1 1. Midterm 1. Date: February 21, 2013 EE319K (Gerstlauer), Spring 2013, Midterm 1 1 Midterm 1 Date: February 21, 2013 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam,

More information

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr.

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr. CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing Instructors: Dr. Phillip Jones Dr. Zhao Zhang 1 Announcements Final Projects Projects: Mandatory Demos Deadweek

More information

Subroutines and the Stack

Subroutines and the Stack 3 31 Objectives: A subroutine is a reusable program module A main program can call or jump to the subroutine one or more times The stack is used in several ways when subroutines are called In this lab

More information

Computer Architecture and System Software Lecture 07: Assembly Language Programming

Computer Architecture and System Software Lecture 07: Assembly Language Programming Computer Architecture and System Software Lecture 07: Assembly Language Programming Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements New assembly examples uploaded to

More information

Stacks and Subroutines

Stacks and Subroutines Chapters 8 Stacks and Subroutines Embedded Systems with ARM Cortext-M Updated: Tuesday, March 6, 2018 Basic Idea llarge programs are hard to handle lwe can break them to smaller programs lthey are called

More information

ARM Compiler and assembly on QEMU

ARM Compiler and assembly on QEMU School of Electrical and Computer Engineering N.T.U.A. Embedded System Design Dimitrios Soudris ARM Compiler and assembly on QEMU Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

More information

Computer Systems Lecture 9

Computer Systems Lecture 9 Computer Systems Lecture 9 CPU Registers in x86 CPU status flags EFLAG: The Flag register holds the CPU status flags The status flags are separate bits in EFLAG where information on important conditions

More information

MNEMONIC OPERATION ADDRESS / OPERAND MODES FLAGS SET WITH S suffix ADC

MNEMONIC OPERATION ADDRESS / OPERAND MODES FLAGS SET WITH S suffix ADC ECE425 MNEMONIC TABLE MNEMONIC OPERATION ADDRESS / OPERAND MODES FLAGS SET WITH S suffix ADC Adds operands and Carry flag and places value in destination register ADD Adds operands and places value in

More information

The ARM Instruction Set Architecture

The ARM Instruction Set Architecture The ARM Instruction Set Architecture Mark McDermott With help from our good friends at ARM Fall 008 Main features of the ARM Instruction Set All instructions are 3 bits long. Most instructions execute

More information

Exam 1 Fun Times. EE319K Fall 2012 Exam 1A Modified Page 1. Date: October 5, Printed Name:

Exam 1 Fun Times. EE319K Fall 2012 Exam 1A Modified Page 1. Date: October 5, Printed Name: EE319K Fall 2012 Exam 1A Modified Page 1 Exam 1 Fun Times Date: October 5, 2012 Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will

More information

The ARM Instruction Set

The ARM Instruction Set The ARM Instruction Set Minsoo Ryu Department of Computer Science and Engineering Hanyang University msryu@hanyang.ac.kr Topics Covered Data Processing Instructions Branch Instructions Load-Store Instructions

More information

LDR R0,=0x L: LDREX R1, [R0] ORR R1, #4 STR R1, [R0] (5) Part a) Why does the 9S12 code not have a critical section?

LDR R0,=0x L: LDREX R1, [R0] ORR R1, #4 STR R1, [R0] (5) Part a) Why does the 9S12 code not have a critical section? EE445M/EE380L Quiz 1 Spring 2017 Solution Page 1 of 5 First Name: Last Name: March 3, 2017, 10:00 to 10:50am Open book and open notes. No calculators or any electronic devices (turn cell phones off). Please

More information

CMPSCI 201 Fall 2004 Midterm #1 Answers

CMPSCI 201 Fall 2004 Midterm #1 Answers CMPSCI 201 Fall 2004 Midterm #1 Answers 10 Points Short Essay Answer The 8088 is primarily a CISC processor design, and the ARM is primarily RISC. The 6502 is such an early design that it is difficult

More information

Assembly labs start this week. Don t forget to submit your code at the end of your lab section. Download MARS4_5.jar to your lab PC or laptop.

Assembly labs start this week. Don t forget to submit your code at the end of your lab section. Download MARS4_5.jar to your lab PC or laptop. CSC258 Week 10 Logistics Assembly labs start this week. Don t forget to submit your code at the end of your lab section. Download MARS4_5.jar to your lab PC or laptop. Quiz review A word-addressable RAM

More information

Tutorial 1: Programming Model 1

Tutorial 1: Programming Model 1 Tutorial 1: Programming Model 1 Introduction Objectives At the end of this lab you should be able to: Use the CPU simulator to create basic CPU instructions Use the simulator to execute the basic CPU instructions

More information

CSE 220: System Fundamentals I Unit 14: MIPS Assembly: Multi-dimensional Arrays. Kevin McDonnell Stony Brook University CSE 220

CSE 220: System Fundamentals I Unit 14: MIPS Assembly: Multi-dimensional Arrays. Kevin McDonnell Stony Brook University CSE 220 CSE 220: System Fundamentals I Unit 14: MIPS Assembly: Multi-dimensional Arrays 1 Memory Alignment Perhaps at some point in your MIPS assembly programming you tried to perform a lw and received an error

More information

Who am I and what am I doing?

Who am I and what am I doing? Who am I and what am I doing? Airscanner.com Mobile Security (AV, firewall, sniffer) Dissemination of Information Reverse-engineering is a tool not a weapon Knowing your computer Don t steal pay the programmers

More information

(5) Question 2. Give the two most important factors for effective debugging. Jonathan W. Valvano

(5) Question 2. Give the two most important factors for effective debugging. Jonathan W. Valvano EE445M/EE380L Quiz 1 Spring 2013 Page 1 of 5 First Name: Last Name: March 1, 2013, 10:00 to 10:50am Quiz 1 is a closed book exam. You may have one 8.5 by 11 inch sheet of hand-written crib notes, but no

More information

Exam 1. Date: February 23, 2018

Exam 1. Date: February 23, 2018 Exam 1 Date: February 23, 2018 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this exam:

More information

EE4144: ARM Cortex-M Processor

EE4144: ARM Cortex-M Processor EE4144: ARM Cortex-M Processor EE4144 Fall 2014 EE4144 EE4144: ARM Cortex-M Processor Fall 2014 1 / 10 ARM Cortex-M 32-bit RISC processor Cortex-M4F Cortex-M3 + DSP instructions + floating point unit (FPU)

More information

ARM Assembly Exercise (1B) Young Won Lim 7/16/16

ARM Assembly Exercise (1B) Young Won Lim 7/16/16 ARM Assembly Exercise (1B) Copyright (c) 2014-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Introduction to the ARM Processor Using Intel FPGA Toolchain. 1 Introduction. For Quartus Prime 16.1

Introduction to the ARM Processor Using Intel FPGA Toolchain. 1 Introduction. For Quartus Prime 16.1 Introduction to the ARM Processor Using Intel FPGA Toolchain For Quartus Prime 16.1 1 Introduction This tutorial presents an introduction to the ARM Cortex-A9 processor, which is a processor implemented

More information

Computer Organization & Assembly Language Programming (CSE 2312)

Computer Organization & Assembly Language Programming (CSE 2312) Computer Organization & Assembly Language Programming (CSE 2312) Lecture 15: Running ARM Programs in QEMU and Debugging with gdb Taylor Johnson Announcements and Outline Homework 5 due Thursday Midterm

More information

Utilizing Tools to Effectively Code for the Architectural Features of an ARM Platform. Chris Shore Training Manager

Utilizing Tools to Effectively Code for the Architectural Features of an ARM Platform. Chris Shore Training Manager Utilizing Tools to Effectively Code for the Architectural Features of an ARM Platform Chris Shore Training Manager Have the right tools... Many tool sets are available This presentation assumes that you

More information

Chapter 10 Memory Model for Program Execution. Problem

Chapter 10 Memory Model for Program Execution. Problem Chapter 10 Memory Model for Program Execution Original slides by Chris Wilcox, Colorado State University Problem How do we allocate memory during the execution of a program written in C?! Programs need

More information

You do not need to save the values in scratch registers, but you also cannot assume they have been saved when you call another function.

You do not need to save the values in scratch registers, but you also cannot assume they have been saved when you call another function. ARMv6 Assembly Language Notes This document is a quick reference for material that we talk about in class. Integer registers There are 16 main registers, r0 r15: r0: 1st function argument, scratch, function

More information

The ARM instruction set

The ARM instruction set Outline: The ARM instruction set privileged modes and exceptions instruction set details system code example hands-on: system software - SWI handler 2005 PEVE IT Unit ARM System Design Instruction set

More information