The Invariant Problem for Binary String Structures and the Parallel Complexity Theory of Queries

Size: px
Start display at page:

Download "The Invariant Problem for Binary String Structures and the Parallel Complexity Theory of Queries"

Transcription

1 The Invariant Problem for Binary String Structures and the Parallel Complexity Theory of Queries Steven Lindell Haverford College Haverford, PA Introduction A fundamental problem in finite model theory: The logical complexity of determining if two structures are isomorphic, and of computing canonical invariants for structures. Provide query-theoretic formulations of these problems a. Are two structures isomorphic? b. Finding an invariant for each isomorphism type. Study these problems on binary string structures. 2 1

2 The Isomorphism Problem Let K be a class of finite structures in the common language of predicate symbols L ={R 1,... R k }. The isomorphism problem for K is the Boolean query ISO K on pairs of structures from K with a common domain such that for all A, R 1,... R k and A, R 1 ',... R k ' in K: A, R 1,... R k, R 1 ',...R k ' ISO K A, R 1,... R k A,R 1 ',... R k ' 3 Graph Isomorphism A single binary (edge) relation, L ={E}. V, E, E' ISO V, E V,E' 4 2

3 Binary String Isomorphism Definition: A binary string structure is a tuple A,<, U where A is a finite set totally ordered by <, and U is a unary relation on A (which represents the location of ones in a binary string) A = a 1 < a 2 < a 3 < a 4 (black dots indicate true values of U). A,<, U,<',U' ISO A,<, U A,<',U' 5 The Isomorphism Query for Binary Strings is not First-Order Theorem: The isomorphism problem for binary strings, as defined above, is not first-order definable. Proof: a 2 k +1 b 2 k +1 a 2 k +1 a 2 k middle b 2 k b 2 k -1 a 1 b 1 A B A and B are k-fraisséequivalent. 6 3

4 The Importance of Arithmetic Allow our binary string structures to include the logical equivalent of random-access addressing. Add arithmetic relations: addition (+), multiplication ( ), and binary exponentiation (2^) on the domain {0,1,..., n-1} ordered by < (all operations are modulo n). Equivalent expressive power can be achieved with just a total linear ordering, <, and a single binary predicate, bit(i, j) satisfying bit(i, j) the jth digit of the binary expansion of i is 1 (idiv2^j)mod2=1 7 Binary String Isomorphism Revisited Definition: A binary string structure is a tuple A,<, bit, U where A is a finite set, < is a total order, bit gives the binary expansion of any element with respect to < as explained above, and U is an arbitrary unary relation (representing the location of ones in a binary string). A, <, bit, U, <', bit', U' ISO A, <, bit, U A, <', bit', U' A,<, U A,<',U' This ISO is first-order definable! 8 4

5 First-Order Axiomatizability of Bit Fact: The binary string structures are first-order definable. Proof: To say that < is a strict total linear order is easy: (x < x) (x y) [(x < y) (y<x)] [(x < y) (y<z)] (x<z) The axioms for bit are not much harder: bit(0, x) x +1=y X+1=Y where X ={z bit(x, z)}, 1= {0}, Y = {z bit(y, z)}. 9 Graph Invariants There is not a single graph invariant. Rather, a binary query INV is said to solve the invariant problem for graphs if when given an arbitrarily ordered graph G = V,<, E, INV G satisfies V, E V,INV G and for all total orderings <' of V V,<, INV V,<, E V,<',INV V,<',E In other words, the graph V,<, INV is an ordered copy of the unordered graph V, E. Also, INV satisfies the further property of isomorphism invariance simultaneously for both of its relations E and <. As a result, V,<, INV V,<, E is always isomorphic to V, E (ignoring <) and independent of <. 10 5

6 Canonical Representations Note that the invariant problem is at least as hard to compute as the isomorphism problem since two structures are isomorphic if and only if their invariants for arbitrary orderings are identical. I.e. V, E₁ V, E₂ V,<₁, INV V,<₁, E₁ V,<₂, INV V,<₂, E₂ for any <₁, <₂ For definiteness, we shall specify a particular canonical representation. Namely, we will define the binary query invariant of a graph is to be the smallest binary relation that solves the invariant problem. 11 Graph Comparison A Boolean query which totally orders isomorphism classes of graphs of a given size with respect to canonical representatives: V, E, E' COM canon( V, E ) < canon( V, E' ) On isomorphism classes: ISO is to equality (=) as COM is to less than (<). Proposition: COM is polynomial-time equivalent to INV. Proof: V, E, E' COM INV V,<, E < INV V,<, E'. Use binary search. 12 6

7 A First-Order Solution to the Invariant Problem for Binary Strings Definition: The invariant query for the class of binary string structures in the language {<, bit, U} is the unary query INV on structures of the form A = A,<, bit, U,<',bit' defined as satisfying: A,<, bit, U A,<',bit', INV A Theorem: The query INV for binary string structures is a firstorder definable query. Proof: Idea is to find a first-order formula which witnesses the order-preserving isomorphism, h, between A,< and A,<'. From h we could then define: INV(x') ( x)(h(x)= x') U(x). 13 Binary Encodings of Finite Structures To discuss connections with complexity theory, it will be necessary to encode finite structures as real binary strings so that we can consider machine computations of queries. Example: G = c Encoding: a < (G)=

8 Sequential Complexity Classes Definition: A set of binary languages C is a sequential complexity class if L C {w f(w) L} C for all logarithmic-space computable functions f:{0,1}* {0,1}*. Examples: L = SPACE(logn) P = TIME(n O(1) ) 15 Parallel Complexity Classes Definition: A set of binary languages C is a parallel complexity class if L C {w f(w) L} C for all constant-time computable functions f:{0,1}* {0,1}*. Examples: CP = TIME(O(1)) LP = TIME(O(logn)) 16 8

9 Computational Complexity of Queries Definition: Let q be a query of arity l for the predicate symbols R 1,..., R k, let C be a complexity class, and let (A, c 1,..., c l ) denote the expansion of the structure A = A, R 1,..., R k by the constants c 1,..., c l. Then q is said to be computable in the complexity class C if L q = {a < (A, c 1,..., c l ) where < orders A, and A q(c 1,..., c l )} C. Let Q(C) = {q L q C} denote the set of queries which are C-computable. 17 Correspondence Results Letting IND(<) denote the queries syntactically expressible in an inductive fixed-point logic on ordered structures, it has been established [Immerman, Vardi] that: Q(P) = IND(<) In a similar fashion, letting DTC(<) denote the queries syntactically expressible in a deterministic transitive closure logic on ordered structures yields [Immerman]: Q(L) = DTC(<). Immermanhas very good surveys of these and many other correspondence results. 18 9

10 Constant-Time Computability The constant-time computable queries, Q(CP), are particularly interesting because of their close connection with first-order logic. Let FO(<, bit) denote the set of first-order expressible queries on finite structures that include the < and bit predicates (internally). The following result is due to Immerman: Theorem : Q(CP) = FO(<, bit) Indicates that parallel computation plays an important role in the computational complexity of queries expressed by logical formulas 19 Complexity Theory There is a tight relationship between the stratification of sequential complexity classes and their correspondingly induced query classes [Chandra& Harel]: C₁ C₂ Q(C₁) Q(C₂) Theorem: The invariant problem for binary strings with bit is first-order solvable. This allows us to extend the result: Corollary: Let C₁ and C₂ be parallel complexity classes. Then C₁ C₂ Q(C₁) Q(C₂) 20 10

11 Acknowledgments Sheila Greibach Yiannis Moschovakis Ashok Chandra Neil Immerman David Barrington Sam Buss 21 11

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems DATABASE THEORY Lecture 11: Introduction to Datalog Markus Krötzsch Knowledge-Based Systems TU Dresden, 12th June 2018 Announcement All lectures and the exercise on 19 June 2018 will be in room APB 1004

More information

Safe Stratified Datalog With Integer Order Does not Have Syntax

Safe Stratified Datalog With Integer Order Does not Have Syntax Safe Stratified Datalog With Integer Order Does not Have Syntax Alexei P. Stolboushkin Department of Mathematics UCLA Los Angeles, CA 90024-1555 aps@math.ucla.edu Michael A. Taitslin Department of Computer

More information

A Retrospective on Datalog 1.0

A Retrospective on Datalog 1.0 A Retrospective on Datalog 1.0 Phokion G. Kolaitis UC Santa Cruz and IBM Research - Almaden Datalog 2.0 Vienna, September 2012 2 / 79 A Brief History of Datalog In the beginning of time, there was E.F.

More information

Posets, graphs and algebras: a case study for the fine-grained complexity of CSP s

Posets, graphs and algebras: a case study for the fine-grained complexity of CSP s Posets, graphs and algebras: a case study for the fine-grained complexity of CSP s Part 1: Preliminaries on Complexity and CSP s Benoit Larose 1 2 1 Department of Mathematics and Statistics Concordia University,

More information

Efficiently Reasoning about Programs

Efficiently Reasoning about Programs Efficiently Reasoning about Programs Neil Immerman College of Computer and Information Sciences University of Massachusetts, Amherst Amherst, MA, USA people.cs.umass.edu/ immerman co-r.e. complete Halt

More information

Logic and Databases. Phokion G. Kolaitis. UC Santa Cruz & IBM Research - Almaden

Logic and Databases. Phokion G. Kolaitis. UC Santa Cruz & IBM Research - Almaden Logic and Databases Phokion G. Kolaitis UC Santa Cruz & IBM Research - Almaden 1 Logic and Databases are inextricably intertwined. C.J. Date -- 2007 2 Logic and Databases Extensive interaction between

More information

Schema Mappings and Data Exchange

Schema Mappings and Data Exchange Schema Mappings and Data Exchange Lecture #2 EASSLC 2012 Southwest University August 2012 1 The Relational Data Model (E.F. Codd 1970) The Relational Data Model uses the mathematical concept of a relation

More information

Relational Database: The Relational Data Model; Operations on Database Relations

Relational Database: The Relational Data Model; Operations on Database Relations Relational Database: The Relational Data Model; Operations on Database Relations Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Overview

More information

We ve studied the main models and concepts of the theory of computation:

We ve studied the main models and concepts of the theory of computation: CMPSCI 601: Summary & Conclusions Lecture 27 We ve studied the main models and concepts of the theory of computation: Computability: what can be computed in principle Logic: how can we express our requirements

More information

1 Introduction... 1 1.1 A Database Example... 1 1.2 An Example from Complexity Theory...................... 4 1.3 An Example from Formal Language Theory................. 6 1.4 An Overview of the Book.................................

More information

Finite model theory studies the expressive power of logical languages over collections of finite structures. Over the past few decades, deep

Finite model theory studies the expressive power of logical languages over collections of finite structures. Over the past few decades, deep Finite model theory studies the expressive power of logical languages over collections of finite structures. Over the past few decades, deep connections have emerged between finite model theory and various

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) Lesson 15 Inference in FOL - I 6.2.8 Resolution We have introduced the inference rule Modus Ponens. Now we introduce another inference rule

More information

class. Moreover, so far, the problem of evaluating a Boolean formula [6] and the problem of multiplying permutations on ve points [3] (and some of the

class. Moreover, so far, the problem of evaluating a Boolean formula [6] and the problem of multiplying permutations on ve points [3] (and some of the A Note on the Hardness of Tree Isomorphism Birgit Jenner Tubingen and Ulm Pierre McKenzie Montreal and Tubingen December 5, 1997 Jacobo Toran Ulm Abstract In this note we prove that the tree isomorphism

More information

Logic and Computation

Logic and Computation Logic and Computation From Conceptualization to Formalization Here's what we do when we build a formal model (or do a computation): 0. Identify a collection of objects/events in the real world. This is

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

MATHEMATICAL STRUCTURES FOR COMPUTER SCIENCE

MATHEMATICAL STRUCTURES FOR COMPUTER SCIENCE MATHEMATICAL STRUCTURES FOR COMPUTER SCIENCE A Modern Approach to Discrete Mathematics SIXTH EDITION Judith L. Gersting University of Hawaii at Hilo W. H. Freeman and Company New York Preface Note to the

More information

P = NP; P NP. Intuition of the reduction idea:

P = NP; P NP. Intuition of the reduction idea: 1 Polynomial Time Reducibility The question of whether P = NP is one of the greatest unsolved problems in the theoretical computer science. Two possibilities of relationship between P and N P P = NP; P

More information

Towards a Logical Reconstruction of Relational Database Theory

Towards a Logical Reconstruction of Relational Database Theory Towards a Logical Reconstruction of Relational Database Theory On Conceptual Modelling, Lecture Notes in Computer Science. 1984 Raymond Reiter Summary by C. Rey November 27, 2008-1 / 63 Foreword DB: 2

More information

DISCRETE MATHEMATICS

DISCRETE MATHEMATICS DISCRETE MATHEMATICS WITH APPLICATIONS THIRD EDITION SUSANNA S. EPP DePaul University THOIVISON * BROOKS/COLE Australia Canada Mexico Singapore Spain United Kingdom United States CONTENTS Chapter 1 The

More information

DSAS Laboratory no 4. Laboratory 4. Logic forms

DSAS Laboratory no 4. Laboratory 4. Logic forms Laboratory 4 Logic forms 4.1 Laboratory work goals Going from Boolean functions to Boolean forms. Logic forms equivalence. Boolean forms simplification. Shannon s theorems. Representation in NAND and NOR

More information

The Inverse of a Schema Mapping

The Inverse of a Schema Mapping The Inverse of a Schema Mapping Jorge Pérez Department of Computer Science, Universidad de Chile Blanco Encalada 2120, Santiago, Chile jperez@dcc.uchile.cl Abstract The inversion of schema mappings has

More information

Monadic Datalog Containment on Trees

Monadic Datalog Containment on Trees Monadic Datalog Containment on Trees André Frochaux 1, Martin Grohe 2, and Nicole Schweikardt 1 1 Goethe-Universität Frankfurt am Main, {afrochaux,schweika}@informatik.uni-frankfurt.de 2 RWTH Aachen University,

More information

Graph algorithms based on infinite automata: logical descriptions and usable constructions

Graph algorithms based on infinite automata: logical descriptions and usable constructions Graph algorithms based on infinite automata: logical descriptions and usable constructions Bruno Courcelle (joint work with Irène Durand) Bordeaux-1 University, LaBRI (CNRS laboratory) 1 Overview Algorithmic

More information

An Evolution of Mathematical Tools

An Evolution of Mathematical Tools An Evolution of Mathematical Tools From Conceptualization to Formalization Here's what we do when we build a formal model (or do a computation): 0. Identify a collection of objects/events in the real world.

More information

Coalgebraic Semantics in Logic Programming

Coalgebraic Semantics in Logic Programming Coalgebraic Semantics in Logic Programming Katya Komendantskaya School of Computing, University of Dundee, UK CSL 11, 13 September 2011 Katya (Dundee) Coalgebraic Semantics in Logic Programming TYPES 11

More information

Introduction to Finite Model Theory. Jan Van den Bussche Universiteit Hasselt

Introduction to Finite Model Theory. Jan Van den Bussche Universiteit Hasselt Introduction to Finite Model Theory Jan Van den Bussche Universiteit Hasselt 1 Books Finite Model Theory by Ebbinghaus & Flum 1999 Finite Model Theory and Its Applications by Grädel et al. 2007 Elements

More information

Lecture 6: Arithmetic and Threshold Circuits

Lecture 6: Arithmetic and Threshold Circuits IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 6: Arithmetic and Threshold Circuits David Mix Barrington and Alexis Maciel July

More information

Reductions and Satisfiability

Reductions and Satisfiability Reductions and Satisfiability 1 Polynomial-Time Reductions reformulating problems reformulating a problem in polynomial time independent set and vertex cover reducing vertex cover to set cover 2 The Satisfiability

More information

The Relational Model

The Relational Model The Relational Model David Toman School of Computer Science University of Waterloo Introduction to Databases CS348 David Toman (University of Waterloo) The Relational Model 1 / 28 The Relational Model

More information

Automata Theory for Reasoning about Actions

Automata Theory for Reasoning about Actions Automata Theory for Reasoning about Actions Eugenia Ternovskaia Department of Computer Science, University of Toronto Toronto, ON, Canada, M5S 3G4 eugenia@cs.toronto.edu Abstract In this paper, we show

More information

Alloy: A Lightweight Object Modelling Notation

Alloy: A Lightweight Object Modelling Notation Alloy: A Lightweight Object Modelling Notation Daniel Jackson, ACM Transactions on Software Engineering, 2002 Presented By: Steven Stewart, 2012-January-23 1 Alloy: 2002 to present Software is built on

More information

Introduction to Homotopy Type Theory

Introduction to Homotopy Type Theory Introduction to Homotopy Type Theory Lecture notes for a course at EWSCS 2017 Thorsten Altenkirch March 5, 2017 1 What is this course about? To explain what Homotopy Type Theory is, I will first talk about

More information

SAT-CNF Is N P-complete

SAT-CNF Is N P-complete SAT-CNF Is N P-complete Rod Howell Kansas State University November 9, 2000 The purpose of this paper is to give a detailed presentation of an N P- completeness proof using the definition of N P given

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

Expressive Power and Abstraction in Essence

Expressive Power and Abstraction in Essence Expressive Power and Abstraction in Essence David G. Mitchell and Eugenia Ternovska Computational Logic Laboratory Simon Fraser University {mitchell,ter}@cs.sfu.ca Abstract Development of languages for

More information

theory. That is, given a certain logic we may study which classes of finite structures of a relational signature which are closed under isomorphisms,

theory. That is, given a certain logic we may study which classes of finite structures of a relational signature which are closed under isomorphisms, URL: http://www.elsevier.nl/locate/entcs/volume84.html 12 pages Expressibility of Higher Order Logics Lauri Hella 1 Department of Mathematics, Statistics and Philosophy University of Tampere Kanslerinrinne

More information

ACLT: Algebra, Categories, Logic in Topology - Grothendieck's generalized topological spaces (toposes)

ACLT: Algebra, Categories, Logic in Topology - Grothendieck's generalized topological spaces (toposes) ACLT: Algebra, Categories, Logic in Topology - Grothendieck's generalized topological spaces (toposes) Steve Vickers CS Theory Group Birmingham 1. Sheaves "Sheaf = continuous set-valued map" TACL Tutorial

More information

MODELS OF CUBIC THEORIES

MODELS OF CUBIC THEORIES Bulletin of the Section of Logic Volume 43:1/2 (2014), pp. 19 34 Sergey Sudoplatov MODELS OF CUBIC THEORIES Abstract Cubic structures and cubic theories are defined on a base of multidimensional cubes.

More information

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015

Lost in translation. Leonardo de Moura Microsoft Research. how easy problems become hard due to bad encodings. Vampire Workshop 2015 Lost in translation how easy problems become hard due to bad encodings Vampire Workshop 2015 Leonardo de Moura Microsoft Research I wanted to give the following talk http://leanprover.github.io/ Automated

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

The fundamental principle of identity for strings is informally given as follows.

The fundamental principle of identity for strings is informally given as follows. A4 Theories of strings 1. General Ideas About Strings and String Addition...2 2. A Mostly Formal Theory of Finite Strings...3 3. A Formal Theory of Finite Strings...4 4. Base-One Arithmetic...4 5. Other

More information

Model Checking I Binary Decision Diagrams

Model Checking I Binary Decision Diagrams /42 Model Checking I Binary Decision Diagrams Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 523 2/42 Binary Decision Diagrams Ordered binary decision diagrams

More information

The Event-B Modelling Notation

The Event-B Modelling Notation The Event-B Modelling Notation J.-R. Abrial October 2007 Version 1.5 The Event-B Modelling Notation Contents 1 Machines and Contexts 1 2 Events 2 3 Variant 3 4 Actions 3 5 Witnesses 4 6 Syntax of the Event-B

More information

Properties of binary transitive closure logics over trees. 8.1 Introduction

Properties of binary transitive closure logics over trees. 8.1 Introduction 8 Properties of binary transitive closure logics over trees STEPHAN KEPSER Abstract Binary transitive closure logic (FO for short) is the extension of first-order predicate logic by a transitive closure

More information

An Annotated Language

An Annotated Language Hoare Logic An Annotated Language State and Semantics Expressions are interpreted as functions from states to the corresponding domain of interpretation Operators have the obvious interpretation Free of

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions.

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions. CS 787: Advanced Algorithms NP-Hardness Instructor: Dieter van Melkebeek We review the concept of polynomial-time reductions, define various classes of problems including NP-complete, and show that 3-SAT

More information

Dynamic Logic David Harel, The Weizmann Institute Dexter Kozen, Cornell University Jerzy Tiuryn, University of Warsaw The MIT Press, Cambridge, Massac

Dynamic Logic David Harel, The Weizmann Institute Dexter Kozen, Cornell University Jerzy Tiuryn, University of Warsaw The MIT Press, Cambridge, Massac Dynamic Logic David Harel, The Weizmann Institute Dexter Kozen, Cornell University Jerzy Tiuryn, University of Warsaw The MIT Press, Cambridge, Massachusetts, 2000 Among the many approaches to formal reasoning

More information

Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B

Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence

More information

Logical reconstruction of RDF and ontology languages

Logical reconstruction of RDF and ontology languages Logical reconstruction of RDF and ontology languages Jos de Bruijn 1, Enrico Franconi 2, and Sergio Tessaris 2 1 Digital Enterprise Research Institute, University of Innsbruck, Austria jos.debruijn@deri.org

More information

1.3 Primitive Recursive Predicates and Bounded Minimalization

1.3 Primitive Recursive Predicates and Bounded Minimalization 12 1 Primitive Recursive Functions 1.3 Primitive Recursive Predicates and Bounded Minimalization 1.3.1 Case discrimination function The case discrimination function D is defined by D(x, y, z) = v x 0 v

More information

Reasoning About Set Comprehensions

Reasoning About Set Comprehensions Reasoning About Set Comprehensions Edmund S L Lam 1 and Iliano Cervesato 1 Carnegie Mellon University sllam@qatarcmuedu, iliano@cmuedu Abstract Set comprehension is a mathematical notation for defining

More information

Exploiting Positive Equality in a Logic of Equality with Uninterpreted Functions

Exploiting Positive Equality in a Logic of Equality with Uninterpreted Functions Exploiting Positive Equality in a Logic of Equality with Uninterpreted Functions Randal E. Bryant, Steven German, and Miroslav N. Velev Computer Science, Carnegie Mellon University, Pittsburgh, PA Randy.Bryant@cs.cmu.edu

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

More information

Topic 1: What is HoTT and why?

Topic 1: What is HoTT and why? Topic 1: What is HoTT and why? May 5, 2014 Introduction Homotopy type theory (HoTT) is a newly emerging field of mathematics which is currently being developed as a foundation of mathematics which is in

More information

LOGIC AND DISCRETE MATHEMATICS

LOGIC AND DISCRETE MATHEMATICS LOGIC AND DISCRETE MATHEMATICS A Computer Science Perspective WINFRIED KARL GRASSMANN Department of Computer Science University of Saskatchewan JEAN-PAUL TREMBLAY Department of Computer Science University

More information

Foundations of Schema Mapping Management

Foundations of Schema Mapping Management Foundations of Schema Mapping Management Marcelo Arenas Jorge Pérez Juan Reutter Cristian Riveros PUC Chile PUC Chile University of Edinburgh Oxford University marenas@ing.puc.cl jperez@ing.puc.cl juan.reutter@ed.ac.uk

More information

A Game-Theoretic Approach to Constraint Satisfaction

A Game-Theoretic Approach to Constraint Satisfaction A Game-Theoretic Approach to Constraint Satisfaction Phokion G. Kolaitis Computer Science Department University of California, Santa Cruz Santa Cruz, CA 95064 kolaitis@cse.ucsc.edu www.cse.ucsc.edu/ kolaitis

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

6 NFA and Regular Expressions

6 NFA and Regular Expressions Formal Language and Automata Theory: CS21004 6 NFA and Regular Expressions 6.1 Nondeterministic Finite Automata A nondeterministic finite automata (NFA) is a 5-tuple where 1. is a finite set of states

More information

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path. Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

More information

Computational inductive denability

Computational inductive denability Annals of Pure and Applied Logic ( ) www.elsevier.com/locate/apal Computational inductive denability Dexter Kozen Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA Abstract It

More information

Introduction to the Analysis of Algorithms. Algorithm

Introduction to the Analysis of Algorithms. Algorithm Introduction to the Analysis of Algorithms Based on the notes from David Fernandez-Baca Bryn Mawr College CS206 Intro to Data Structures Algorithm An algorithm is a strategy (well-defined computational

More information

4&5 Binary Operations and Relations. The Integers. (part I)

4&5 Binary Operations and Relations. The Integers. (part I) c Oksana Shatalov, Spring 2016 1 4&5 Binary Operations and Relations. The Integers. (part I) 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition,

More information

PETAL GRAPHS. Vellore, INDIA

PETAL GRAPHS. Vellore, INDIA International Journal of Pure and Applied Mathematics Volume 75 No. 3 2012, 269-278 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu PETAL GRAPHS V. Kolappan 1, R. Selva Kumar 2 1,2

More information

1. M,M sequential composition: try tactic M; if it succeeds try tactic M. sequential composition (, )

1. M,M sequential composition: try tactic M; if it succeeds try tactic M. sequential composition (, ) Dipl.-Inf. Achim D. Brucker Dr. Burkhart Wolff Computer-supported Modeling and Reasoning http://www.infsec.ethz.ch/ education/permanent/csmr/ (rev. 16802) Submission date: FOL with Equality: Equational

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic.

Overview. CS389L: Automated Logical Reasoning. Lecture 6: First Order Logic Syntax and Semantics. Constants in First-Order Logic. Overview CS389L: Automated Logical Reasoning Lecture 6: First Order Logic Syntax and Semantics Işıl Dillig So far: Automated reasoning in propositional logic. Propositional logic is simple and easy to

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

CSC 501 Semantics of Programming Languages

CSC 501 Semantics of Programming Languages CSC 501 Semantics of Programming Languages Subtitle: An Introduction to Formal Methods. Instructor: Dr. Lutz Hamel Email: hamel@cs.uri.edu Office: Tyler, Rm 251 Books There are no required books in this

More information

Database Theory VU , SS Codd s Theorem. Reinhard Pichler

Database Theory VU , SS Codd s Theorem. Reinhard Pichler Database Theory Database Theory VU 181.140, SS 2011 3. Codd s Theorem Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 29 March, 2011 Pichler 29 March,

More information

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Ramin Zabih Computer Science Department Stanford University Stanford, California 94305 Abstract Bandwidth is a fundamental concept

More information

4 Generating functions in two variables

4 Generating functions in two variables 4 Generating functions in two variables (Wilf, sections.5.6 and 3.4 3.7) Definition. Let a(n, m) (n, m 0) be a function of two integer variables. The 2-variable generating function of a(n, m) is F (x,

More information

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m GARY MACGILLIVRAY BEN TREMBLAY Abstract. We consider homomorphisms and vertex colourings of m-edge-coloured graphs that have a switching operation

More information

SOFTWARE ENGINEERING DESIGN I

SOFTWARE ENGINEERING DESIGN I 2 SOFTWARE ENGINEERING DESIGN I 3. Schemas and Theories The aim of this course is to learn how to write formal specifications of computer systems, using classical logic. The key descriptional technique

More information

CMPSCI 250: Introduction to Computation. Lecture #30: Properties of the Regular Languages David Mix Barrington 7 April 2014

CMPSCI 250: Introduction to Computation. Lecture #30: Properties of the Regular Languages David Mix Barrington 7 April 2014 CMPSCI 250: Introduction to Computation Lecture #30: Properties of the Regular Languages David Mix Barrington 7 April 2014 Properties of Regular Languages Induction on Regular Expressions The One s Complement

More information

Algorithms for Learning and Teaching. Sets of Vertices in Graphs. Patricia A. Evans and Michael R. Fellows. University of Victoria

Algorithms for Learning and Teaching. Sets of Vertices in Graphs. Patricia A. Evans and Michael R. Fellows. University of Victoria Algorithms for Learning and Teaching Sets of Vertices in Graphs Patricia A. Evans and Michael R. Fellows Department of Computer Science University of Victoria Victoria, B.C. V8W 3P6, Canada Lane H. Clark

More information

PART 1 GRAPHICAL STRUCTURE

PART 1 GRAPHICAL STRUCTURE PART 1 GRAPHICAL STRUCTURE in this web service in this web service 1 Treewidth and Hypertree Width Georg Gottlob, Gianluigi Greco, Francesco Scarcello This chapter covers methods for identifying islands

More information

Binary Decision Diagrams

Binary Decision Diagrams Logic and roof Hilary 2016 James Worrell Binary Decision Diagrams A propositional formula is determined up to logical equivalence by its truth table. If the formula has n variables then its truth table

More information

Range Allocation for Separation Logic

Range Allocation for Separation Logic Range Allocation for Separation Logic Muralidhar Talupur, Nishant Sinha, Ofer Strichman 2, Amir Pnueli 3 Carnegie Mellon University, Pittsburgh, PA, USA 2 Technion - Israel Institute of Technology, Haifa,

More information

Reasoning about Reachability at Tom Rep s 60th Birthday Celebration

Reasoning about Reachability at Tom Rep s 60th Birthday Celebration Reasoning about Reachability at Tom Rep s 60th Birthday Celebration Neil Immerman College of Information and Computer Sciences UMass Amherst people.cs.umass.edu/ immerman/ 1978: Tom 22 Neil 24 @Cornell

More information

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1

Introduction to Automata Theory. BİL405 - Automata Theory and Formal Languages 1 Introduction to Automata Theory BİL405 - Automata Theory and Formal Languages 1 Automata, Computability and Complexity Automata, Computability and Complexity are linked by the question: What are the fundamental

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information

Languages and Compilers

Languages and Compilers Principles of Software Engineering and Operational Systems Languages and Compilers SDAGE: Level I 2012-13 3. Formal Languages, Grammars and Automata Dr Valery Adzhiev vadzhiev@bournemouth.ac.uk Office:

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Structural characterizations of schema mapping languages

Structural characterizations of schema mapping languages Structural characterizations of schema mapping languages Balder ten Cate INRIA and ENS Cachan (research done while visiting IBM Almaden and UC Santa Cruz) Joint work with Phokion Kolaitis (ICDT 09) Schema

More information

Is The Missing Axiom of Matroid Theory Lost Forever? or How Hard is Life Over Infinite Fields?

Is The Missing Axiom of Matroid Theory Lost Forever? or How Hard is Life Over Infinite Fields? Is The Missing Axiom of Matroid Theory Lost Forever? or How Hard is Life Over Infinite Fields? General Theme There exist strong theorems for matroids representable over finite fields, but it all turns

More information

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Leonor Aquino-Ruivivar Mathematics Department, De La Salle University Leonorruivivar@dlsueduph

More information

Rewriting. Andreas Rümpel Faculty of Computer Science Technische Universität Dresden Dresden, Germany.

Rewriting. Andreas Rümpel Faculty of Computer Science Technische Universität Dresden Dresden, Germany. Rewriting Andreas Rümpel Faculty of Computer Science Technische Universität Dresden Dresden, Germany s9843882@inf.tu-dresden.de ABSTRACT This is an overview paper regarding the common technologies of rewriting.

More information

On the computational complexity of reachability in 2D binary images and some basic problems of 2D digital topology

On the computational complexity of reachability in 2D binary images and some basic problems of 2D digital topology Theoretical Computer Science 283 (2002) 67 108 www.elsevier.com/locate/tcs On the computational complexity of reachability in 2D binary images and some basic problems of 2D digital topology Remy Malgouyres

More information

Algorithmic number theory Cryptographic hardness assumptions. Table of contents

Algorithmic number theory Cryptographic hardness assumptions. Table of contents Algorithmic number theory Cryptographic hardness assumptions Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Primes and Divisibility Modular

More information

Endomorphisms and synchronization, 2: Graphs and transformation monoids

Endomorphisms and synchronization, 2: Graphs and transformation monoids Endomorphisms and synchronization, 2: Graphs and transformation monoids Peter J. Cameron BIRS, November 2014 Relations and algebras Given a relational structure R, there are several similar ways to produce

More information

Lecture 5: Predicate Calculus. ffl Predicate Logic ffl The Language ffl Semantics: Structures

Lecture 5: Predicate Calculus. ffl Predicate Logic ffl The Language ffl Semantics: Structures Lecture 5: Predicate Calculus ffl Predicate Logic ffl The Language ffl Semantics: Structures 1 Why Predicate Logic? Propositional logic is not powerful enough to express statements such as ffl For every

More information

A Constant-Space Sequential Model of Computation for First-Order Logic*

A Constant-Space Sequential Model of Computation for First-Order Logic* Information and Computation 143, 231250 (1998) Article No. IC982702 A Constant-Space Sequential Model of Computation for First-Order Logic* Steven Lindell - Department of Computer Science, Haverford College,

More information

Binary Search to find item in sorted array

Binary Search to find item in sorted array Binary Search to find item in sorted array January 15, 2008 QUESTION: Suppose we are given a sorted list A[1..n] (as an array), of n real numbers: A[1] A[2] A[n]. Given a real number x, decide whether

More information

Program Analysis: Lecture 02 Page 1 of 32

Program Analysis: Lecture 02 Page 1 of 32 Program Analysis: Lecture 02 Page 1 of 32 Program Analysis/ Mooly Sagiv Lecture 1, 31/10/2012 Operational Semantics Notes by: Kalev Alpernas As background to the subject of Program Analysis, we will first

More information

Formal Model. Figure 1: The target concept T is a subset of the concept S = [0, 1]. The search agent needs to search S for a point in T.

Formal Model. Figure 1: The target concept T is a subset of the concept S = [0, 1]. The search agent needs to search S for a point in T. Although this paper analyzes shaping with respect to its benefits on search problems, the reader should recognize that shaping is often intimately related to reinforcement learning. The objective in reinforcement

More information

Lectures 20, 21: Axiomatic Semantics

Lectures 20, 21: Axiomatic Semantics Lectures 20, 21: Axiomatic Semantics Polyvios Pratikakis Computer Science Department, University of Crete Type Systems and Static Analysis Based on slides by George Necula Pratikakis (CSD) Axiomatic Semantics

More information

Decision Procedures in First Order Logic

Decision Procedures in First Order Logic in irst Order Logic for Equality Logic Part III for Equality Logic and Uninterpreted unctions Algorithm I rom Equality to Propositional Logic Adding transitivity constraints Making the graph chordal An

More information

Parallel Computation: Many computations at once, we measure parallel time and amount of hardware. (time measure, hardware measure)

Parallel Computation: Many computations at once, we measure parallel time and amount of hardware. (time measure, hardware measure) CMPSCI 601: Recall From Last Time Lecture 24 Parallel Computation: Many computations at once, we measure parallel time and amount of hardware. Models: (time measure, hardware measure) Parallel RAM: number

More information