Problem A. Pyramid of Unit Cubes

Size: px
Start display at page:

Download "Problem A. Pyramid of Unit Cubes"

Transcription

1 Problem A Pyramid of Unit Cubes Consider a N-level pyramid built of unit cubes. An example for N=3 can be seen in the image below. Formally, a pyramid of size N has N levels, where the i-th level (counting from the top) contains an i by i grid of unit cubes. You have K cubes. First, you select a suitable pyramid size as follows: If K is exactly the number of cubes necessary to build a pyramid of size N for some N, you pick that size. Otherwise, you pick the smallest pyramid size you cannot build. Now you start building the pyramid in a systematic bottom-up way. First you build the complete bottom level, then you build the level above that, etc. When building a level, also proceed in a systematic way, starting the next row only when the previous one is full. For example, for 2 cubes you should get the following incomplete pyramid:

2 Given an integer K specifying the number of cubes you have, return the surface area of the possibly incomplete pyramid you will build according to the instructions above. The first line of the input gives an integer T, which is the number of test cases. Each test case contains an integer K ( N,000,000,000). For each test case, output the surface area of the possibly incomplete pyramid you will build according to the instructions above. Sample

3 Problem B Spreading News You are the manager of a company, and you want all of your employees to be notified of an important news item as quickly as possible. Your company is organized in a tree-like structure: each employee has exactly one direct supervisor, no employee is his own direct or indirect supervisor, and every employee is your direct or indirect subordinate. You will make a phone call to each of your direct subordinates, one at a time. After hearing the news, each subordinate must notify each of his direct subordinates, one at a time. The process continues this way until everyone has heard the news. Each person may only call direct subordinates, and each phone call takes exactly one minute. Note that there may be multiple phone calls taking place simultaneously. Compute the minimum amount of time, in minutes, required for this process to be completed. Employees will be numbered starting from, while you will be numbered 0. Furthermore, every supervisor is numbered lower than his or her direct subordinates.s First line of the input contains T the number of test cases. Each test case contains an integer N ( N 70) denoting the number of employees in your company including you. Next line contains N- integer. The i th integer denote the supervisor of i th employee(i starts from ). Look you(employee 0) do not have any supervisor. For each test case output the minimum amount of time, in minutes, required. Sample

4 Problem C Tree Normalization Trees are important data structures in programming. In this problem, you will be given a tree that was constructed from a fully connected undirected acyclic graph with exactly N nodes. First, a distinct number between 0 and N-, inclusive, was assigned to each node. Then, one of the nodes was selected to be the root of the tree. Finally, each non-root node was assigned its neighbor closest to the root as its parent. You will be given the tree as an array, where the i-th element is the parent of the i-th node, or - if the i-th node is the root (indices are 0-based). A tree is considered equivalent to this tree if it can be constructed from the same original graph using the method described above. This means you can renumber the nodes and select a different node as the root (see examples for clarification). an array containing the equivalent tree that comes first lexicographically. First line of the input contains T the number of test cases. Each test case starts with a line containing N ( N 0) the number of nodes in the tree. Next line contains N integer where i th integer is the parent of i-th node or - if the i-th node is the root. For each test case, output the lexicographically equivalent tree in one line (N integers separated by a single space). Sample

5 Problem D Teleporting The Kingdom of Byteland has a big capital city that is the center of its industry and social life. To connect every city to the capital, the King decided to develop a network of roads. Each city, except for the capital, was responsible for building a single bidirectional road from itself to another city. For each city X, the following algorithm was used to determine the destination of the road built by that city: Measure the Euclidean distances from all the cities to the capital, and consider only those which are strictly closer to the capital than city X (include the capital in that list). If there is more than city, pick the city which is closest to city X. If there are multiple such cities, pick the city among them with the smallest X coordinate. If there are still multiple such cities, pick the city among them with the smallest Y coordinate. After all the roads were built, some people started to complain that they had to go through too many other cities to get to the capital. The King decided to construct M teleports to solve this problem. Each teleport would provide an instant connection between the city where it is placed and the capital. Let's define the inconvenience of a city as the minimal number of roads one needs to follow to get from that city to the capital, or to a city with a teleport. For example, the inconvenience of the capital, and of all cities with teleports, is 0. The inconvenience of a city that doesn't have a teleport but is directly connected to the capital or to a city with a teleport is, and so on. Note that the shortest route from a city to the capital may involve traveling further away from the capital to reach a teleport. The inconvenience of the whole Kingdom is the maximum inconvenience among its cities. You will be given the co-ordinates of the cities. Distribute the M teleports in such a way that minimizes the inconvenience of the kingdom and output that minimum inconvenience values. First line of the input contains T the number of test cases. First line of each test case contains M(0 M 4)the number teleports. Next line contains N( N 0) the number of cities. Each of the next N line contains the co-ordinates of N cities. The co-ordinates are denoted by 2 integers X and Y separated by a single space. The first co-ordinates denote the co-ordinates of the capital. For each test case output the minimum inconvenience values.

6 Sample

7 Problem E Binary Search Tree A binary tree is either empty or it consists of a root node and two binary trees, called the left subtree and the right subtree of the root node. Each node of our binary trees will contain one lowercase letter. We say that a binary tree is a binary search tree (BST) if and only if for each node the following conditions hold: All letters in the left subtree of the node occur earlier in the alphabet than the letter in the node. All letters in the right subtree of the node occur later in the alphabet than the letter in the node. Examples of BSTs with 4 nodes: c b a /\ /\ \ b d a d c / / /\ a c b d A pre-order code of a BST is a String obtained in the following way: The pre-order code of an empty BST is an empty string. The pre-order code of a non-empty BST is obtained in the following way: Let L and R be the preorder codes of the left and right subtree, respectively. Then the pre-order code of the whole BST is the concatenation of the letter in its root node, L and R (in this order). The pre-order codes for the trees above are "cbad", "badc" and "acbd", respectively. Consider all BSTs with exactly N nodes containing the first N lowercase letters. Order these trees alphabetically by their pre-order codes. Our sequence of BSTs is one-based, i.e., the index of the first tree in this sequence is. Compute the pre-order code of the BST at the specified index M in this sequence. First line of the input contains T the number of test cases. Each test case consists of two integers N( N 9) and M( M 2,000,000,000). For each test case output the pre-order code of the BST at the specified index M in this sequence. If M is larger than the number of BSTs with exactly N nodes, output a blank line.

8 Sample ba cbad abcdeohgfniljkm dcab dcba cbafed abcdekhfgji ihagfedbcjkl

ACM-ICPC Indonesia National Contest Problem A. The Best Team. Time Limit: 2s

ACM-ICPC Indonesia National Contest Problem A. The Best Team. Time Limit: 2s Problem A The Best Team Time Limit: 2s ACM-ICPC 2010 is drawing near and your university want to select three out of N students to form the best team. The university however, has a limited budget, so they

More information

XVIII Open Cup named after E.V. Pankratiev Stage 1: Grand Prix of Romania, Sunday, September 17, 2017

XVIII Open Cup named after E.V. Pankratiev Stage 1: Grand Prix of Romania, Sunday, September 17, 2017 Problem A. Balance file: 1 second 512 mebibytes We say that a matrix A of size N N is balanced if A[i][j] + A[i + 1][j + 1] = A[i + 1][j] + A[i][j + 1] for all 1 i, j N 1. You are given a matrix A of size

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 04 / 26 / 2017 Instructor: Michael Eckmann Today s Topics Questions? Comments? Balanced Binary Search trees AVL trees Michael Eckmann - Skidmore College - CS

More information

Central Europe Regional Contest

Central Europe Regional Contest 0 Central Europe Regional Contest University of Zagreb Faculty of Electrical Engineering and Computing November 9, 0 A: Assignment Algorithm......... B: Buffalo Barricades............ C: Cumulative Code............

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

Algorithms Assignment 3 Solutions

Algorithms Assignment 3 Solutions Algorithms Assignment 3 Solutions 1. There is a row of n items, numbered from 1 to n. Each item has an integer value: item i has value A[i], where A[1..n] is an array. You wish to pick some of the items

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MH 1301 DISCRETE MATHEMATICS TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MH 1301 DISCRETE MATHEMATICS TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2015-2016 MH 1301 DISCRETE MATHEMATICS May 2016 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FIVE (5) questions

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach CSC 8301- Design and Analysis of Algorithms Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms Brute-Force Approach Brute force is a straightforward approach to solving a problem, usually

More information

Data Structures Brett Bernstein

Data Structures Brett Bernstein Data Structures Brett Bernstein Final Review 1. Consider a binary tree of height k. (a) What is the maximum number of nodes? (b) What is the maximum number of leaves? (c) What is the minimum number of

More information

A. Petr and a calendar

A. Petr and a calendar 1-29 Spring 2017 #2 A. Petr and a calendar time limit per test: 2 seconds : standard : standard Petr wants to make a calendar for current month. For this purpose he draws a table in which columns correspond

More information

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207.

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207. MAT 7003 : Mathematical Foundations (for Software Engineering) J Paul Gibson, A207 paul.gibson@it-sudparis.eu http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/ Graphs and Trees http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/l2-graphsandtrees.pdf

More information

CS 280 Problem Set 10 Solutions Due May 3, Part A

CS 280 Problem Set 10 Solutions Due May 3, Part A CS 280 Problem Set 10 Due May 3, 2002 Part A (1) You are given a directed graph G with 1000 vertices. There is one weakly connected component of size 800 and several other weakly connected components of

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

B-Trees and External Memory

B-Trees and External Memory Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 and External Memory 1 1 (2, 4) Trees: Generalization of BSTs Each internal node

More information

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Chapter 7 Trees 7.1 Introduction A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Tree Terminology Parent Ancestor Child Descendant Siblings

More information

B-Trees and External Memory

B-Trees and External Memory Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 B-Trees and External Memory 1 (2, 4) Trees: Generalization of BSTs Each internal

More information

Search. The Nearest Neighbor Problem

Search. The Nearest Neighbor Problem 3 Nearest Neighbor Search Lab Objective: The nearest neighbor problem is an optimization problem that arises in applications such as computer vision, pattern recognition, internet marketing, and data compression.

More information

EE 368. Weeks 5 (Notes)

EE 368. Weeks 5 (Notes) EE 368 Weeks 5 (Notes) 1 Chapter 5: Trees Skip pages 273-281, Section 5.6 - If A is the root of a tree and B is the root of a subtree of that tree, then A is B s parent (or father or mother) and B is A

More information

Recursion Problems. Warm Ups. Enumeration 1 / 7

Recursion Problems. Warm Ups. Enumeration 1 / 7 1 / 7 Recursion Problems Warm Ups 1. Write a recursive implementation of the factorial function. Recall that n! = 1 2 n, with the special case that 0! = 1. 2. Write a recursive function that, given a number

More information

1. You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive.

1. You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive. 牛客网暑期 ACM 多校训练营 ( 第七场 ) 一. 编程题 1. You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive. The weight of the edge connecting two vertices with numbers

More information

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits.

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits. Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: o There is a unique simple path between any 2 of its vertices. o No loops. o No multiple edges. Example

More information

MA/CSSE 473 Day 12. Questions? Insertion sort analysis Depth first Search Breadth first Search. (Introduce permutation and subset generation)

MA/CSSE 473 Day 12. Questions? Insertion sort analysis Depth first Search Breadth first Search. (Introduce permutation and subset generation) MA/CSSE 473 Day 12 Interpolation Search Insertion Sort quick review DFS, BFS Topological Sort MA/CSSE 473 Day 12 Questions? Interpolation Search Insertion sort analysis Depth first Search Breadth first

More information

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents Section 5.5 Binary Tree A binary tree is a rooted tree in which each vertex has at most two children and each child is designated as being a left child or a right child. Thus, in a binary tree, each vertex

More information

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices.

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices. Trees Trees form the most widely used subclasses of graphs. In CS, we make extensive use of trees. Trees are useful in organizing and relating data in databases, file systems and other applications. Formal

More information

XV Open Cup named after E.V. Pankratiev Stage 6, Grand Prix of Japan, Sunday, February 1, 2015

XV Open Cup named after E.V. Pankratiev Stage 6, Grand Prix of Japan, Sunday, February 1, 2015 Problem A. Manhattan file: file: 1 second In Manhattan, there are streets x = i and y = i for each integer i. It is known that both Snuke s house and Smeke s house are on streets, and the Euclidean distance

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

ACM International Collegiate Programming Contest 2013

ACM International Collegiate Programming Contest 2013 International Collegiate acm Programming Contest 013 event sponsor ACM International Collegiate Programming Contest 013 Latin American Regional Contests November 8th-9th, 013 Contest Session This problem

More information

UNIT 3. Greedy Method. Design and Analysis of Algorithms GENERAL METHOD

UNIT 3. Greedy Method. Design and Analysis of Algorithms GENERAL METHOD UNIT 3 Greedy Method GENERAL METHOD Greedy is the most straight forward design technique. Most of the problems have n inputs and require us to obtain a subset that satisfies some constraints. Any subset

More information

Question 2 (Strongly Connected Components, 15 points). What are the strongly connected components of the graph below?

Question 2 (Strongly Connected Components, 15 points). What are the strongly connected components of the graph below? Question 1 (Huffman Code, 15 points). Consider the following set of letters each occurring with the associated frequencies: A 2, B 3, C 7, D 8, E 10, F 15, G 20, H 40, I 50. Give the tree for the corresponding

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk A. Maus, R.K. Runde, I. Yu INF2220: algorithms and data structures Series 1 Topic Trees & estimation of running time (Exercises with hints for solution) Issued:

More information

Problem A A New Alphabet

Problem A A New Alphabet Problem A A New Alphabet A New Alphabet has been developed for Internet communications. While the glyphs of the new alphabet don t necessarily improve communications in any meaningful way, they certainly

More information

COMP 182: Algorithmic Thinking Prim and Dijkstra: Efficiency and Correctness

COMP 182: Algorithmic Thinking Prim and Dijkstra: Efficiency and Correctness Prim and Dijkstra: Efficiency and Correctness Luay Nakhleh 1 Prim s Algorithm In class we saw Prim s algorithm for computing a minimum spanning tree (MST) of a weighted, undirected graph g. The pseudo-code

More information

* Due 11:59pm on Sunday 10/4 for Monday lab and Tuesday 10/6 Wednesday Lab

* Due 11:59pm on Sunday 10/4 for Monday lab and Tuesday 10/6 Wednesday Lab ===Lab Info=== *100 points * Due 11:59pm on Sunday 10/4 for Monday lab and Tuesday 10/6 Wednesday Lab ==Assignment== In this assignment you will work on designing a class for a binary search tree. You

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Graphs Data Structures

Graphs Data Structures Graphs Data Structures Introduction We looked previously at the binary tree data structure, which provides a useful way of storing data for efficient searching. In a binary tree, each node can have up

More information

Graph Theory II. Po-Shen Loh. June edges each. Solution: Spread the n vertices around a circle. Take parallel classes.

Graph Theory II. Po-Shen Loh. June edges each. Solution: Spread the n vertices around a circle. Take parallel classes. Graph Theory II Po-Shen Loh June 009 1 Warm-up 1. Let n be odd. Partition the edge set of K n into n matchings with n 1 edges each. Solution: Spread the n vertices around a circle. Take parallel classes..

More information

Recoloring k-degenerate graphs

Recoloring k-degenerate graphs Recoloring k-degenerate graphs Jozef Jirásek jirasekjozef@gmailcom Pavel Klavík pavel@klavikcz May 2, 2008 bstract This article presents several methods of transforming a given correct coloring of a k-degenerate

More information

Algorithms after Dijkstra and Kruskal for Big Data. User Manual

Algorithms after Dijkstra and Kruskal for Big Data. User Manual Algorithms after Dijkstra and Kruskal for Big Data User Manual Ovak Technologies 2016 Contents 1. Introduction... 3 1.1. Definition and Acronyms... 3 1.2. Purpose... 3 1.3. Overview... 3 2. Algorithms...

More information

looking ahead to see the optimum

looking ahead to see the optimum ! Make choice based on immediate rewards rather than looking ahead to see the optimum! In many cases this is effective as the look ahead variation can require exponential time as the number of possible

More information

Analysis of Algorithms

Analysis of Algorithms Algorithm An algorithm is a procedure or formula for solving a problem, based on conducting a sequence of specified actions. A computer program can be viewed as an elaborate algorithm. In mathematics and

More information

Competitive Programming Network - 2nd Activity March 11th, Alphabet.c, Alphabet.cpp, Alphabet.java, Alphabet.py Standard Standard

Competitive Programming Network - 2nd Activity March 11th, Alphabet.c, Alphabet.cpp, Alphabet.java, Alphabet.py Standard Standard Problem A. Alphabet Source file name: : : Alphabet.c, Alphabet.cpp, Alphabet.java, Alphabet.py A string of lowercase letters is called alphabetical if deleting zero or more of its letters can result in

More information

CS 251, LE 2 Fall MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY

CS 251, LE 2 Fall MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY CS 251, LE 2 Fall 2016 MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY W1.) (i) Show one possible valid 2-3 tree containing the nine elements: 1 3 4 5 6 8 9 10 12. (ii) Draw the final binary search

More information

Final Examination CSE 100 UCSD (Practice)

Final Examination CSE 100 UCSD (Practice) Final Examination UCSD (Practice) RULES: 1. Don t start the exam until the instructor says to. 2. This is a closed-book, closed-notes, no-calculator exam. Don t refer to any materials other than the exam

More information

12 Abstract Data Types

12 Abstract Data Types 12 Abstract Data Types 12.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT). Define

More information

Trees. Truong Tuan Anh CSE-HCMUT

Trees. Truong Tuan Anh CSE-HCMUT Trees Truong Tuan Anh CSE-HCMUT Outline Basic concepts Trees Trees A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called branches, that connect the nodes

More information

Graph Algorithms. Definition

Graph Algorithms. Definition Graph Algorithms Many problems in CS can be modeled as graph problems. Algorithms for solving graph problems are fundamental to the field of algorithm design. Definition A graph G = (V, E) consists of

More information

UNIVERSITY OF MASSACHUSETTS LOWELL Department of Electrical and Computer Engineering. Program 8 EECE.3220 Data Structures Fall 2017

UNIVERSITY OF MASSACHUSETTS LOWELL Department of Electrical and Computer Engineering. Program 8 EECE.3220 Data Structures Fall 2017 UNIVERSITY OF MASSACHUSETTS LOWELL Department of Electrical and Computer Engineering Program 8 EECE.3220 Data Structures Fall 2017 Binary Search Trees and Class Templates Word Counter Application The object

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 13: Shortest Paths: Dijkstra s Algorithm, Heaps DFS(?) Feb 0, 018 Navigation s 9 15 14 5 6 3 18 30 11 5 0 16 4 6 6 3 19 t Weighted Graphs A graph with

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 04 / 25 / 2018 Instructor: Michael Eckmann Today s Topics Questions? Comments? Balanced Binary Search trees AVL trees / Compression Uses binary trees Balanced

More information

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Greedy Algorithms (continued) The best known application where the greedy algorithm is optimal is surely

More information

15.4 Longest common subsequence

15.4 Longest common subsequence 15.4 Longest common subsequence Biological applications often need to compare the DNA of two (or more) different organisms A strand of DNA consists of a string of molecules called bases, where the possible

More information

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE

A6-R3: DATA STRUCTURE THROUGH C LANGUAGE A6-R3: DATA STRUCTURE THROUGH C LANGUAGE NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF

More information

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F))

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F)) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES UNIT IV NONLINEAR DATA STRUCTURES Part A 1. Define Tree [N/D 08]

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Problems Overview. The 2015 Asia ACM-ICPC Hanoi Regional Contest. Note: The input and output for all the problems are standard input and output.

Problems Overview. The 2015 Asia ACM-ICPC Hanoi Regional Contest. Note: The input and output for all the problems are standard input and output. Problems Overview Problem A: Obfuscated Emails Problem B: Parallelogram Problem C: Egyptian Encryption Problem D: Work Effectiveness Problem E: Pepsi Distribution Problem F: Genome Problem G: Cloud Computing

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Trees. Reading: Weiss, Chapter 4. Cpt S 223, Fall 2007 Copyright: Washington State University

Trees. Reading: Weiss, Chapter 4. Cpt S 223, Fall 2007 Copyright: Washington State University Trees Reading: Weiss, Chapter 4 1 Generic Rooted Trees 2 Terms Node, Edge Internal node Root Leaf Child Sibling Descendant Ancestor 3 Tree Representations n-ary trees Each internal node can have at most

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

COP 3502 (Computer Science I) Final Exam 12/10/2015. Last Name:, First Name:

COP 3502 (Computer Science I) Final Exam 12/10/2015. Last Name:, First Name: COP 3502 (Computer Science I) Final Exam 12/10/2015 Last Name:, First Name: 1) (10 pts) Perform the following base conversions: a) 134710 converted to base 7. b) 45628 converted to base 10. c) 100111010111012

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 31 Advanced Data Structures and Algorithms Graphs July 18, 17 Tong Wang UMass Boston CS 31 July 18, 17 1 / 4 Graph Definitions Graph a mathematical construction that describes objects and relations

More information

CS210 (161) with Dr. Basit Qureshi Final Exam Weight 40%

CS210 (161) with Dr. Basit Qureshi Final Exam Weight 40% CS210 (161) with Dr. Basit Qureshi Final Exam Weight 40% Name ID Directions: There are 9 questions in this exam. To earn a possible full score, you must solve all questions. Time allowed: 180 minutes Closed

More information

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number:

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number: Name: Entry number: There are 6 questions for a total of 75 points. 1. Consider functions f(n) = 10n2 n + 3 n and g(n) = n3 n. Answer the following: (a) ( 1 / 2 point) State true or false: f(n) is O(g(n)).

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

Lecture Summary CSC 263H. August 5, 2016

Lecture Summary CSC 263H. August 5, 2016 Lecture Summary CSC 263H August 5, 2016 This document is a very brief overview of what we did in each lecture, it is by no means a replacement for attending lecture or doing the readings. 1. Week 1 2.

More information

The import option allows you to import from 4 different source files.

The import option allows you to import from 4 different source files. Importing Data Importing Data - Overview The import option is located in the File menu. The import option provides an alternative method of getting your employees, employee's dependents, and if you used

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. V = {

More information

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms

CSE 417: Algorithms and Computational Complexity. 3.1 Basic Definitions and Applications. Goals. Chapter 3. Winter 2012 Graphs and Graph Algorithms Chapter 3 CSE 417: Algorithms and Computational Complexity Graphs Reading: 3.1-3.6 Winter 2012 Graphs and Graph Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

More information

CS F-11 B-Trees 1

CS F-11 B-Trees 1 CS673-2016F-11 B-Trees 1 11-0: Binary Search Trees Binary Tree data structure All values in left subtree< value stored in root All values in the right subtree>value stored in root 11-1: Generalizing BSTs

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Lecture 5 Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Reading: Randomized Search Trees by Aragon & Seidel, Algorithmica 1996, http://sims.berkeley.edu/~aragon/pubs/rst96.pdf;

More information

Spring 2017 #5 A. Two Buttons

Spring 2017 #5 A. Two Buttons 15-295 Spring 2017 #5 A. Two Buttons time limit per test: 2 seconds : standard : standard Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display

More information

Trees. Arash Rafiey. 20 October, 2015

Trees. Arash Rafiey. 20 October, 2015 20 October, 2015 Definition Let G = (V, E) be a loop-free undirected graph. G is called a tree if G is connected and contains no cycle. Definition Let G = (V, E) be a loop-free undirected graph. G is called

More information

CS 337 Project 1: Minimum-Weight Binary Search Trees

CS 337 Project 1: Minimum-Weight Binary Search Trees CS 337 Project 1: Minimum-Weight Binary Search Trees September 6, 2006 1 Preliminaries Let X denote a set of keys drawn from some totally ordered universe U, such as the set of all integers, or the set

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information

CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018

CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018 CIS 121 Data Structures and Algorithms Midterm 3 Review Solution Sketches Fall 2018 Q1: Prove or disprove: You are given a connected undirected graph G = (V, E) with a weight function w defined over its

More information

Advanced routing topics. Tuomas Launiainen

Advanced routing topics. Tuomas Launiainen Advanced routing topics Tuomas Launiainen Suboptimal routing Routing trees Measurement of routing trees Adaptive routing Problems Fault-tolerant tables Point-of-failure rerouting Point-of-failure shortest

More information

Problem A limit 1 second. Alphabet

Problem A limit 1 second. Alphabet Problem A limit 1 second Alphabet A string of lowercase letters is called alphabetical if deleting zero or more of its letters can result in the alphabet string abcdefghijklmnopqrstuvwxyz. Given a string

More information

Lecture 10. Graphs Vertices, edges, paths, cycles Sparse and dense graphs Representations: adjacency matrices and adjacency lists Implementation notes

Lecture 10. Graphs Vertices, edges, paths, cycles Sparse and dense graphs Representations: adjacency matrices and adjacency lists Implementation notes Lecture 10 Graphs Vertices, edges, paths, cycles Sparse and dense graphs Representations: adjacency matrices and adjacency lists Implementation notes Reading: Weiss, Chapter 9 Page 1 of 24 Midterm exam

More information

Final Exam May 8, 2018

Final Exam May 8, 2018 Real name: CS/ECE 374 A Spring 2018 Final Exam May 8, 2018 NetID: Gradescope name: Gradescope email: Don t panic! If you brought anything except your writing implements and your two double-sided 8½" 11"

More information

put your answers to b and c in human-oriented terms.

put your answers to b and c in human-oriented terms. 2. A. A person object has a social security number, a name, and a phone number. Give a complete C++ implementation of quicksort or mergesort that will sort an array of N pointers to person objects so that

More information

An undirected graph G can be represented by G = (V, E), where

An undirected graph G can be represented by G = (V, E), where CISC 4080 Computer Algorithms Spring, 2017 Note Spring/2017 1 What is graph? A graph is a set of vertices (or nodes) V, and a set of edges E between pairs of vertices. Graph represents some kind of binary

More information

SURIEM 2016 Final Report: Games on Graphs

SURIEM 2016 Final Report: Games on Graphs SURIEM 2016 Final Report: Games on Graphs Julie Anne Bowman, Arthur Diep-Nguyen, Rashmika Goswami, Dylan King, Nicholas Lindell, Emily Olson, Robert W. Bell July 14, 2016 1 Introduction The game of Cops

More information

Discrete Mathematics. Chapter 7. trees Sanguk Noh

Discrete Mathematics. Chapter 7. trees Sanguk Noh Discrete Mathematics Chapter 7. trees Sanguk Noh Table Trees Labeled Trees Tree searching Undirected trees Minimal Spanning Trees Trees Theorem : Let (T, v ) be a rooted tree. Then, There are no cycles

More information

CAD Algorithms. Categorizing Algorithms

CAD Algorithms. Categorizing Algorithms CAD Algorithms Categorizing Algorithms Mohammad Tehranipoor ECE Department 2 September 2008 1 Categorizing Algorithms Greedy Algorithms Prim s Algorithm (Minimum Spanning Tree) A subgraph that is a tree

More information

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms IV Dynamic Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Dynamic Programming Shortest Paths in Dags, Revisited Shortest Paths in Dags, Revisited The special distinguishing

More information

Problem A. Character Encoding

Problem A. Character Encoding Problem A. Character Encoding second In computer science, a character is a letter, a digit, a punctuation mark or some other similar symbol. Since computers can only process numbers, number codes are used

More information

Problem A: Repetition

Problem A: Repetition Problem A: Repetition Source: A.(c cpp pas java) Input: A.in Output: A.out Knowing the subject that how many a word has been repeated in a text helps us to understand the style of writing from an author.

More information

Multicasting in the Hypercube, Chord and Binomial Graphs

Multicasting in the Hypercube, Chord and Binomial Graphs Multicasting in the Hypercube, Chord and Binomial Graphs Christopher C. Cipriano and Teofilo F. Gonzalez Department of Computer Science University of California, Santa Barbara, CA, 93106 E-mail: {ccc,teo}@cs.ucsb.edu

More information

Page 1. Kobrin/Losquadro Math 8. Unit 10 - Types of Numbers Test Review. Questions 1 and 2 refer to the following:

Page 1. Kobrin/Losquadro Math 8. Unit 10 - Types of Numbers Test Review. Questions 1 and 2 refer to the following: 9195-1 - Page 1 Name: Date: Kobrin/Losquadro Math 8 Unit 10 - Types of Numbers Test Review Questions 1 and 2 refer to the following: Use the number line below to answer the given question. 1) Which of

More information

Solutions to Assessment

Solutions to Assessment Solutions to Assessment 1. Consider a directed weighted graph G containing 7 vertices, labelled from 1 to 7. Each edge in G is of the form e(i,j) where i

More information