Simulation 4 Log Periodic Antennae and Linear Uniform Arrays

Size: px
Start display at page:

Download "Simulation 4 Log Periodic Antennae and Linear Uniform Arrays"

Transcription

1 Simulation 4 Log Periodic Antennae and Linear Uniform Arrays In the first simulation one saw that a half-wavelength dipole has the expected performance, when operated at the nominal frequency. However, if the operating frequency deviates considerably from the nominal value, the antenna performance deteriorates. To compensate for this degradation, certain antennae are designed with a performance that is relatively insensitive to changes in the operating frequency, as long as the deviation is within design bounds. The Log Periodic Antennae (LPA) is one example of this type of antenna. In this work we will look at an LPA performance and also investigate certain details of linear uniform arrays which were overlooked during the previous simulations. 1. Log-Periodic Antenna As a first example, we will consider an LPA with 14 elements, designed to operate in the MHz range. There are many references that cover the design of such antennae, one example being Section of the Balanis text book. Another good reference is the American Radio Relay League (ARLL), very popular within the amateur radio community. On the internet one finds many examples of design specifications for these antennae. The address paginas.fe.up.pt/~amoura/aproweb/logperiodicantennadesign.pdf contains one article found this way. Make a copy of the file trab4_inicial.nec and give it the name trab4.nec. Open the file with the Notepad editor and it should have the following appearance. CM CM MHz 14 el 6.35 mm elements 2.5m boom 20 mm square CM This was erected on 23/9/2001, SWR as predicted up to 60 MHz CM FR CM RP CE GW GW GW GW GW AAM/JJC Pg.1 de 7

2 GW GW GW GW GW GW GW GW GW GE EX FR PQ -1 TL TL TL TL TL TL TL TL TL TL TL TL TL RP EN Use this file as input for the 4NEC2 program. Using the NEC editor, as in the other simulations, makes editing easier. The Symbols tab should have no entries. The Geometry tab will have 14 lines, all very similar, which are the lines above that have a 'GW' at the beginning. The first and last are here shown: Nr. Type Tag Seg X1 Y1 Z1 X2 Y2 Z2 Radius 1 Wire Wire AAM/JJC Pg.2 de 7

3 The Source/Load tab will have sub-windows. The top sub-window describes the Source and contains one entry: Nr. Type Tag Seg (opt) Real Imag Magn Phase (norm) 1 Voltage-src The bottom sub-window is labeled Trans-lines, with 13 lines, filled with the information from the lines that start (in the Notepad editor) with 'TL': Nr. Type Tag-1 Seg-1 Tag-2 Seg-2 Z0 Len End-1(G) (B) End-2(G) (B) 1 Trans-line Trans-line The Freq/Ground tab will indicate the Freq-start of 40 MHz, 60 for the number of steps, each of size 1 MHz. Finally, the Comments tab has the information that appears in the input file at the very top, in the lines that start with 'CM'. As will be seen, this antenna has a rather uniform performance, deviating from the expected only at the highest operating frequencies. The following spreadsheet table relates some of the parameters of the original file, as one can easily deduce. The parameter tau is supposed to be constant, and sets the size of the elements according to Li+1= tau * Li, as well as the separation between the same according to di, i+1= tau * Li-1, i X Y tau delta_x freq delta_f incf_f delta_x ratio AAM/JJC Pg.3 de 7

4 We will start by calculating the SWR of the antenna, from 40 to 110 MHz. Run the program, selecting the option Use original file. The window Imp./SWR/Gain should appear, after the run. P1 Using the criteria "the SWR does not exceed 2", measure the frequency band that meets this requirement. Observe the antenna gain plot by selecting 'Show > Forward Gain' on the window. Next, the antenna behavior at the various frequencies will be looked at. Instead of a frequency sweep, the frequency will be fixed at 48 MHz. One can either go to the Freq/Ground tab set the values: Frequency = 48 MHz and uncheck the 'Sweep' box or, if using the Notepad editor, change the line that starts with 'FR' to read: FR Run the program, but this time select Far Field Pattern. Note: depending on the version of the program being used, a message window may open with a warning about 'unequal segmentation'. Close that window, thus disregarding the message, and the program should continue. In the Geometry window select 'Currents > Current Magnitude', in order to view the current distribution in the various elements. Note: For a better view, with the window selected, hit Page Up once or more. Use the arrows to rotate the image, for a more detailed view. P2 For this frequency, which of the elements are more active? How do you justify such behavior? Make a sketch of the radiation diagram. Change the frequency to 60 MHz. P3 Repeat the previous question, for the new situation. Next, we will set the frequency at 77 MHz, where the antenna gain has an anomaly. Run the program and observe the radiation diagram. P4 What is the main difference between this diagram (along with its current distribution) and what was observed for the 60 MHz case? AAM/JJC Pg.4 de 7

5 2. Linear uniform array with four elements We will use now an array with four elements, similar to what was used in the previous simulations. Make a copy of the file trab4_4el_inicial.nec giving it the name trab4_4el_anew.nec This file will have the following tabs: The Symbols tab should have two entries and look like this: Nr Symbols and equations comment 1 len=0.5 length of the antenna 2 d=0.25 Spacing between the elements The Geometry tab entries should be: Nr. Type Tag Seg X1 Y1 Z1 X2 Y2 Z2 Radius 1 Wire len/2 -d/2-d 0 len/2 -d/2-d Wire len/2 -d/2 0 len/2 -d/ Wire len/2 d/2 0 len/2 d/ Wire len/2 d/2+d 0 len/2 d/2+d.0001 The Source/Load tab is: Nr. Type Tag Seg (opt) Real Imag Magn Phase (norm) Comment 1 Curr-src Current src 2 Curr-src Current src 3 Curr-src Current src 4 Curr-src Current src For practice, run the simulation and observe the radiation diagram. The array analysis made here will make use of the mapping z = e jψ = e j(ß+kdcosδ). To follow the developments, let's consider the following table : δ ψ = ß + kd cos δ = 0+(2π/λ)(λ/2) cos δ Direction around the unit circle 0 π cos δ=π Starting point. π/2 0 Moving clockwise (=ψ diminishes) π -π Moving clockwise (=ψ diminishes) 3π/2 0 Moving counterclockwise (=ψ increases) 2π π : repeat value; starting point Moving counterclockwise (=ψ increases) In order to use this table, one should remember the unit circle showing the location of the polynomial zeroes associated with any uniform linear array that has N AAM/JJC Pg.5 de 7

6 elements. If N=4, which is the present case, the unit circle contains N-1=3 zeroes, at π/2, π and 3π/2, which is the same as -π/2. When δ varies from 0 to 360 around the physical array, the correspondent displacement around the circle is dictated by the parameters ß (phase) and d (separation), as the table shows: the phase (ß) controls the starting point and the separation (d) controls how much of the unit circle is covered. The calculations become now trivial. Note: The angle δ indicates the radial line around the array, beginning with the line that contains the various elements. In the present configuration, given the orientation of the antennae, the angle δ coincides with the angle θ of the radiation diagram. Having familiarized ourselves with this technique, let's change the separation between elements to d = 1,25 and calculate the diagram. The corresponding table is necessary and it looks like: δ ψ = ß + kd cos δ = 0+(2π/λ)(5λ/4) cos δ Direction around the unit circle 0 (5/2)π Starting point. π/2 0 Moving clockwise (=ψ diminishes) π -(5/2)π Moving clockwise (=ψ diminishes) 3π/2 0 Moving counterclockwise (=ψ increases) 2π (5/2)π : repeat value; starting point Moving counterclockwise (=ψ increases) P5 Why is it that in this case there is a null at θ = 0? Let's say that the exact location of the nulls and maxima of the diagram are needed. As an example, the null located on the interval 120 < θ < 130. To the angle θ = 90 corresponds the value ψ = 0, which yields a maximum. As θ increases to 180, ψ decreases to (5/2)π, passing through the values π/2, π, 3π/2, 2π. One sees that the diagram starts from a maximum, passes by three consecutive nulls, passes again by a maximum and finishes at another null, at (5/2)π. The sought null is the third in this sequence, that is, when ψ = 3π/2. To obtain the angle δ: 3π/2 = (5/2)πcosδ <=> cosδ = 3/5 <=> δ = P6 Determine the angle at which occurs the maximum in the third quadrant. AAM/JJC Pg.6 de 7

7 In order to obtain the diagram value for any angle δ, it suffices to determine the corresponding angle ψ in the unit circle, calculate the coordinates of the point in the circle, calculate the distances from the point to the three zeroes in the circle and multiply the distances. Example: what is the diagram value for δ = 130? To this value of δ corresponds the angle ψ = , with coordinates (0,329; 0,944). Calculating the distances to the zeroes located at (0;1), (-1;0) and (0;-1) and multiplying said distances, the desired value is obtained, namely, 11 db below the maximum. Note: The obtained calculated has to be normalized by the maximum array value, which is 4 in the present case. This unit-circle technique calculates only the "array factor" of the antennae ensemble, i.e. assumes that on the plane investigated each antenna radiates uniformly in each radial direction. If that is not the case (= the elements all have the same individual diagram, which favors certain directions), the array factor has to be multiplied by the individual diagram. P7 Using the above described technique, calculate the diagram value for δ = 45 and compare it with the simulation value, which shows 3 db below the maximum. AAM/JJC Pg.7 de 7

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

MA 154 Lesson 1 Delworth

MA 154 Lesson 1 Delworth DEFINITIONS: An angle is defined as the set of points determined by two rays, or half-lines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

4.1 Radian and Degree Measure

4.1 Radian and Degree Measure 4.1 Radian and Degree Measure Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus 4.1 Radian and Degree Measure Mr. Niedert 1 / 27 4.1 Radian and Degree Measure 1 Angles Accelerated Pre-Calculus

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

5.2. The Sine Function and the Cosine Function. Investigate A

5.2. The Sine Function and the Cosine Function. Investigate A 5.2 The Sine Function and the Cosine Function What do an oceanographer, a stock analyst, an audio engineer, and a musician playing electronic instruments have in common? They all deal with periodic patterns.

More information

Pre-calculus Chapter 4 Part 1 NAME: P.

Pre-calculus Chapter 4 Part 1 NAME: P. Pre-calculus NAME: P. Date Day Lesson Assigned Due 2/12 Tuesday 4.3 Pg. 284: Vocab: 1-3. Ex: 1, 2, 7-13, 27-32, 43, 44, 47 a-c, 57, 58, 63-66 (degrees only), 69, 72, 74, 75, 78, 79, 81, 82, 86, 90, 94,

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Using Polar Coordinates. Graphing and converting polar and rectangular coordinates

Using Polar Coordinates. Graphing and converting polar and rectangular coordinates Using Polar Coordinates Graphing and converting polar and rectangular coordinates Butterflies are among the most celebrated of all insects. It s hard not to notice their beautiful colors and graceful flight.

More information

Unit 2 Intro to Angles and Trigonometry

Unit 2 Intro to Angles and Trigonometry HARTFIELD PRECALCULUS UNIT 2 NOTES PAGE 1 Unit 2 Intro to Angles and Trigonometry This is a BASIC CALCULATORS ONLY unit. (2) Definition of an Angle (3) Angle Measurements & Notation (4) Conversions of

More information

A short antenna optimization tutorial using MMANA-GAL, Part 2

A short antenna optimization tutorial using MMANA-GAL, Part 2 A short antenna optimization tutorial using MMANA-GAL, Part 2 Home MMANA Quick Start Al Couper NH7O Now we can cover in more detail the array of options available to optimize antennas. Here we'll cover

More information

MATHEMATICS 105 Plane Trigonometry

MATHEMATICS 105 Plane Trigonometry Chapter I THE TRIGONOMETRIC FUNCTIONS MATHEMATICS 105 Plane Trigonometry INTRODUCTION The word trigonometry literally means triangle measurement. It is concerned with the measurement of the parts, sides,

More information

Trigonometric Ratios and Functions

Trigonometric Ratios and Functions Algebra 2/Trig Unit 8 Notes Packet Name: Date: Period: # Trigonometric Ratios and Functions (1) Worksheet (Pythagorean Theorem and Special Right Triangles) (2) Worksheet (Special Right Triangles) (3) Page

More information

Chapter 8.1: Circular Functions (Trigonometry)

Chapter 8.1: Circular Functions (Trigonometry) Chapter 8.1: Circular Functions (Trigonometry) SSMTH1: Precalculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 8.1: Circular Functions Lecture 8.1: Basic

More information

6.1 Polar Coordinates

6.1 Polar Coordinates 6.1 Polar Coordinates Introduction This chapter introduces and explores the polar coordinate system, which is based on a radius and theta. Students will learn how to plot points and basic graphs in this

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. Objectives Describe angles. Use radian measure. Use degree

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Consider the classic example of a circular hole in a rectangular plate of constant thickness. The plate

More information

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required.

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required. 1 of 10 23/07/2016 05:15 Paul's Online Math Notes Calculus III (Notes) / Line Integrals / Line Integrals - Part I Problems] [Notes] [Practice Problems] [Assignment Calculus III - Notes Line Integrals Part

More information

Trigonometric Graphs. Graphs of Sine and Cosine

Trigonometric Graphs. Graphs of Sine and Cosine Trigonometric Graphs Page 1 4 Trigonometric Graphs Graphs of Sine and Cosine In Figure 13, we showed the graphs of = sin and = cos, for angles from 0 rad to rad. In reality these graphs extend indefinitely

More information

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions

Algebra II. Slide 1 / 162. Slide 2 / 162. Slide 3 / 162. Trigonometric Functions. Trig Functions Slide 1 / 162 Algebra II Slide 2 / 162 Trigonometric Functions 2015-12-17 www.njctl.org Trig Functions click on the topic to go to that section Slide 3 / 162 Radians & Degrees & Co-terminal angles Arc

More information

Algebra II Trigonometric Functions

Algebra II Trigonometric Functions Slide 1 / 162 Slide 2 / 162 Algebra II Trigonometric Functions 2015-12-17 www.njctl.org Slide 3 / 162 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc

More information

In this section, we will study the following topics:

In this section, we will study the following topics: 6.1 Radian and Degree Measure In this section, we will study the following topics: Terminology used to describe angles Degree measure of an angle Radian measure of an angle Converting between radian and

More information

Date Lesson Text TOPIC Homework. Getting Started Pg. 314 # 1-7. Radian Measure and Special Angles Sine and Cosine CAST

Date Lesson Text TOPIC Homework. Getting Started Pg. 314 # 1-7. Radian Measure and Special Angles Sine and Cosine CAST UNIT 5 TRIGONOMETRIC FUNCTIONS Date Lesson Text TOPIC Homework Oct. 0 5.0 (50).0 Getting Started Pg. # - 7 Nov. 5. (5). Radian Measure Angular Velocit Pg. 0 # ( 9)doso,,, a Nov. 5 Nov. 5. (5) 5. (5)..

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

A lg e b ra II. Trig o n o m e tric F u n c tio

A lg e b ra II. Trig o n o m e tric F u n c tio 1 A lg e b ra II Trig o n o m e tric F u n c tio 2015-12-17 www.njctl.org 2 Trig Functions click on the topic to go to that section Radians & Degrees & Co-terminal angles Arc Length & Area of a Sector

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Math for Geometric Optics

Math for Geometric Optics Algebra skills Math for Geometric Optics general rules some common types of equations units problems with several variables (substitution) Geometry basics Trigonometry Pythagorean theorem definitions,

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

Unit 13: Periodic Functions and Trig

Unit 13: Periodic Functions and Trig Date Period Unit 13: Periodic Functions and Trig Day Topic 0 Special Right Triangles and Periodic Function 1 Special Right Triangles Standard Position Coterminal Angles 2 Unit Circle Cosine & Sine (x,

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

A Beginner s Guide to Modeling with NEC

A Beginner s Guide to Modeling with NEC By L. B. Cebik, W4RNL A Beginner s Guide to Modeling with NEC Part 2: The Ins and Outs of Modeling Last month we developed a basic understanding of what antenna modeling is, and became acquainted with

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Unit Circle. Project Response Sheet

Unit Circle. Project Response Sheet NAME: PROJECT ACTIVITY: Trigonometry TOPIC Unit Circle GOALS MATERIALS Explore Degree and Radian Measure Explore x- and y- coordinates on the Unit Circle Investigate Odd and Even functions Investigate

More information

3.0 Trigonometry Review

3.0 Trigonometry Review 3.0 Trigonometry Review In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C. Sides are usually labeled with

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

CCNY Math Review Chapters 5 and 6: Trigonometric functions and graphs

CCNY Math Review Chapters 5 and 6: Trigonometric functions and graphs Ch 5. Trigonometry 6. Angles 6. Right triangles 6. Trig funs for general angles 5.: Trigonometric functions and graphs 5.5 Inverse functions CCNY Math Review Chapters 5 and 6: Trigonometric functions and

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

Chapter 4: Trigonometry

Chapter 4: Trigonometry Chapter 4: Trigonometry Section 4-1: Radian and Degree Measure INTRODUCTION An angle is determined by rotating a ray about its endpoint. The starting position of the ray is the of the angle, and the position

More information

POLARIZATION 3.5 RETARDATION PLATES

POLARIZATION 3.5 RETARDATION PLATES Nicol Prism as Polarizer and Analyzer: Nicol prism can be used both as polarizer and as an analyzer. When two Nicol prisms are mounted co axially, then the first Nicol prism N 1 which produces plane polarized

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Size Transformations in the Coordinate Plane

Size Transformations in the Coordinate Plane Size Transformations in the Coordinate Plane I.e. Dilations (adapted from Core Plus Math, Course 2) Concepts 21-26 Lesson Objectives In this investigation you will use coordinate methods to discover several

More information

Trigonometry, Pt 1: Angles and Their Measure. Mr. Velazquez Honors Precalculus

Trigonometry, Pt 1: Angles and Their Measure. Mr. Velazquez Honors Precalculus Trigonometry, Pt 1: Angles and Their Measure Mr. Velazquez Honors Precalculus Defining Angles An angle is formed by two rays or segments that intersect at a common endpoint. One side of the angle is called

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important Many artists use geometric concepts in their work. Think about what you have learned in geometry. How do these examples of First Nations art and architecture show geometry ideas? What You ll Learn Identify

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions Section 7.6 Graphs of the Sine and Cosine Functions We are going to learn how to graph the sine and cosine functions on the xy-plane. Just like with any other function, it is easy to do by plotting points.

More information

Section 14: Trigonometry Part 1

Section 14: Trigonometry Part 1 Section 14: Trigonometry Part 1 The following Mathematics Florida Standards will be covered in this section: MAFS.912.F-TF.1.1 MAFS.912.F-TF.1.2 MAFS.912.F-TF.1.3 Understand radian measure of an angle

More information

4.1: Angles & Angle Measure

4.1: Angles & Angle Measure 4.1: Angles & Angle Measure In Trigonometry, we use degrees to measure angles in triangles. However, degree is not user friendly in many situations (just as % is not user friendly unless we change it into

More information

4.1 Radian and Degree Measure: Day 1. Trignometry is the measurement of triangles.

4.1 Radian and Degree Measure: Day 1. Trignometry is the measurement of triangles. 4.1 Radian and Degree Measure: Day 1 Trignometry is the measurement of triangles. An angle is formed by rotating a half-line called a ray around its endpoint. The initial side of the angle remains fixed.

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Ch. 2 Trigonometry Notes

Ch. 2 Trigonometry Notes First Name: Last Name: Block: Ch. Trigonometry Notes.0 PRE-REQUISITES: SOLVING RIGHT TRIANGLES.1 ANGLES IN STANDARD POSITION 6 Ch..1 HW: p. 83 #1,, 4, 5, 7, 9, 10, 8. - TRIGONOMETRIC FUNCTIONS OF AN ANGLE

More information

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017 Math 3B Discussion Session Week Notes January 7 and 4, 7 This week we ll finish discussing the double integral for non-rectangular regions (see the last few pages of the week notes) and then we ll touch

More information

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman Assignment #1. (Due date: 10/23/2012) x P. = z

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman   Assignment #1. (Due date: 10/23/2012) x P. = z Computer Vision I Name : CSE 252A, Fall 202 Student ID : David Kriegman E-Mail : Assignment (Due date: 0/23/202). Perspective Projection [2pts] Consider a perspective projection where a point = z y x P

More information

PATTERN SYNTHESIS FOR PLANAR ARRAY BASED ON ELEMENTS ROTATION

PATTERN SYNTHESIS FOR PLANAR ARRAY BASED ON ELEMENTS ROTATION Progress In Electromagnetics Research Letters, Vol. 11, 55 64, 2009 PATTERN SYNTHESIS FOR PLANAR ARRAY BASED ON ELEMENTS ROTATION F. Zhang, F.-S. Zhang, C. Lin, G. Zhao, and Y.-C. Jiao National Key Laboratory

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

by Kevin M. Chevalier

by Kevin M. Chevalier Precalculus Review Handout.4 Trigonometric Functions: Identities, Graphs, and Equations, Part I by Kevin M. Chevalier Angles, Degree and Radian Measures An angle is composed of: an initial ray (side) -

More information

I. Meshing and Accuracy Settings

I. Meshing and Accuracy Settings Guidelines to Set CST Solver Accuracy and Mesh Parameter Settings to Improve Simulation Results with the Time Domain Solver and Hexahedral Meshing System illustrated with a finite length horizontal dipole

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Investigating the Sine and Cosine Functions Part 1

Investigating the Sine and Cosine Functions Part 1 Investigating the Sine and Cosine Functions Part 1 Name: Period: Date: Set-Up Press. Move down to 5: Cabri Jr and press. Press for the F1 menu and select New. Press for F5 and select Hide/Show > Axes.

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

There are a few links in the text to other parts of the text. These function correctly only if all sections are expanded.

There are a few links in the text to other parts of the text. These function correctly only if all sections are expanded. CAUTION Printing this document can produce errors in the hard copy. For example, on some platforms, output to a postscript file converts plus-minus signs to plus signs. It is suggested that this manuscript

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Trigonometry Review Day 1

Trigonometry Review Day 1 Name Trigonometry Review Day 1 Algebra II Rotations and Angle Terminology II Terminal y I Positive angles rotate in a counterclockwise direction. Reference Ray Negative angles rotate in a clockwise direction.

More information

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the.

2.0 Trigonometry Review Date: Pythagorean Theorem: where c is always the. 2.0 Trigonometry Review Date: Key Ideas: The three angles in a triangle sum to. Pythagorean Theorem: where c is always the. In trigonometry problems, all vertices (corners or angles) of the triangle are

More information

6. Find P, the image of P( 3, 6), after a reflection across the line y = x.

6. Find P, the image of P( 3, 6), after a reflection across the line y = x. Name: 1. What is the image of point after a rotation of 90 in the counterclockwise direction? 4. is the image of. Which of the following rotations could be used to perform this transformation? I. 90 counterclockwise

More information

Math 32B Discussion Session Week 2 Notes April 5 and 7, 2016

Math 32B Discussion Session Week 2 Notes April 5 and 7, 2016 Math 3B Discussion Session Week Notes April 5 and 7, 6 We have a little flexibility this week: we can tie up some loose ends from double integrals over vertically or horizontally simple regions, we can

More information

Lecture 15 Nyquist Criterion and Diagram

Lecture 15 Nyquist Criterion and Diagram Lecture 15 Nyquist Criterion and Diagram Department of Mechanical Engineering, University Of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada 1 1. Review of System Stability and Some Concepts

More information

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers.

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers. 1 Purpose This lab illustrates the use of looping structures by introducing a class of programming problems called numerical algorithms. 1. Practice the use of the C ++ repetition constructs of for, while,

More information

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective Standard : Number and Computation Benchmark : Number Sense M7-..K The student knows, explains, and uses equivalent representations for rational numbers and simple algebraic expressions including integers,

More information

I can identify reflections, rotations, and translations. I can graph transformations in the coordinate plane.

I can identify reflections, rotations, and translations. I can graph transformations in the coordinate plane. Page! 1 of! 14 Attendance Problems. 1. Sketch a right angle and its angle bisector. 2. Draw three different squares with (3, 2) as one vertex. 3. Find the values of x and y if (3, 2) = (x + 1, y 3) Vocabulary

More information

Chapter 5. Transforming Shapes

Chapter 5. Transforming Shapes Chapter 5 Transforming Shapes It is difficult to walk through daily life without being able to see geometric transformations in your surroundings. Notice how the leaves of plants, for example, are almost

More information

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009 Introduction An important property of waves is interference. You are familiar with some simple examples of interference of sound waves. This interference effect produces positions having large amplitude

More information

Isometry: When the preimage and image are congruent. It is a motion that preserves the size and shape of the image as it is transformed.

Isometry: When the preimage and image are congruent. It is a motion that preserves the size and shape of the image as it is transformed. Chapter Notes Notes #36: Translations and Smmetr (Sections.1,.) Transformation: A transformation of a geometric figure is a change in its position, shape or size. Preimage: The original figure. Image:

More information

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.70 Optics Spring 09 Solutions to Problem Set # Posted Wednesday, Feb. 8, 009 Problem : Spherical waves and energy conservation In class we mentioned that the radiation

More information

UNSW School Mathematics Competition

UNSW School Mathematics Competition Parabola Volume 44, Issue (008) UNSW School Mathematics Competition Problems and Solutions Junior Division Problem. What is the angle between the long hand and the short hand of a clock at twenty minutes

More information

Honors Geometry Review Packet ) List all pairs of congruent angles.

Honors Geometry Review Packet ) List all pairs of congruent angles. Honors Geometry Review Packet 2015 Note: Exam will include problems from 11.5-11.8 that are not included on this packet PQR ~ CDE. 1) List all pairs of congruent angles. 2) Write the ratios of the corresponding

More information

Math 3C Section 9.1 & 9.2

Math 3C Section 9.1 & 9.2 Math 3C Section 9.1 & 9.2 Yucheng Tu 11/14/2018 1 Unit Circle The unit circle comes to the stage when we enter the field of trigonometry, i.e. the study of relations among the sides and angles of an arbitrary

More information

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 CHAPTER

More information

Number- Algebra. Problem solving Statistics Investigations

Number- Algebra. Problem solving Statistics Investigations Place Value Addition, Subtraction, Multiplication and Division Fractions Position and Direction Decimals Percentages Algebra Converting units Perimeter, Area and Volume Ratio Properties of Shapes Problem

More information

11.4 CIRCUMFERENCE AND ARC LENGTH 11.5 AREA OF A CIRCLE & SECTORS

11.4 CIRCUMFERENCE AND ARC LENGTH 11.5 AREA OF A CIRCLE & SECTORS 11.4 CIRCUMFERENCE AND ARC LENGTH 11.5 AREA OF A CIRCLE & SECTORS Section 4.1, Figure 4.2, Standard Position of an Angle, pg. 248 Measuring Angles The measure of an angle is determined by the amount of

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates

Polar Coordinates. OpenStax. 1 Dening Polar Coordinates OpenStax-CNX module: m53852 1 Polar Coordinates OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 4.0 Abstract Locate points

More information

Brake Test Software User Guide

Brake Test Software User Guide Brake Test Software User Guide - 1-12/06/09 Contents Software Overview... 3 How to setup your equipment for live testing... 3 Auto Configuration... 3 Live Data... 4 How to view Post Processed Data... 5

More information

Geometer s Sketchpad Techno Polly

Geometer s Sketchpad Techno Polly Geometer s Sketchpad Techno Polly Opening an Existing Sketch 1. To open an existing sketch in Geometer s Sketchpad, first click on the icon on your desktop then when the program opens click on File, Open.

More information

Math 2 Final Exam Study Guide. Translate down 2 units (x, y-2)

Math 2 Final Exam Study Guide. Translate down 2 units (x, y-2) Math 2 Final Exam Study Guide Name: Unit 2 Transformations Translation translate Slide Moving your original point to the left (-) or right (+) changes the. Moving your original point up (+) or down (-)

More information

Trigonometry and the Unit Circle. Chapter 4

Trigonometry and the Unit Circle. Chapter 4 Trigonometry and the Unit Circle Chapter 4 Topics Demonstrate an understanding of angles in standard position, expressed in degrees and radians. Develop and apply the equation of the unit circle. Solve

More information

Near-field time-of-arrival measurements for four feed-arms with a bicone switch

Near-field time-of-arrival measurements for four feed-arms with a bicone switch EM Implosion Memos Memo 37 February 2010 Near-field time-of-arrival measurements for four feed-arms with a bicone switch Prashanth Kumar, Serhat Altunc, Carl E. Baum, Christos G. Christodoulou and Edl

More information

FM Antenna Pattern Evaluation using Numerical Electromagnetics Code

FM Antenna Pattern Evaluation using Numerical Electromagnetics Code FM Antenna Pattern Evaluation using Numerical Electromagnetics Code Richard Fry, CPBE Slide 1 of 27 Copyright 2003 Richard Fry Numerical Electromagnetics Code (NEC)! Simulates the electromagnetic response

More information

Mathematics; Gateshead Assessment Profile (MGAP) Year 6 Understanding and investigating within number

Mathematics; Gateshead Assessment Profile (MGAP) Year 6 Understanding and investigating within number Year 6 Understanding and investigating within number Place value, ordering and rounding Counting reading, writing, comparing, ordering and rounding whole numbers using place value Properties of numbers

More information

UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS

UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS KEY FEATURES OF POLYNOMIALS Intercepts of a function o x-intercepts - a point on the graph where y is zero {Also called the zeros of the function.} o y-intercepts

More information