Pointers. Cedric Saule

Size: px
Start display at page:

Download "Pointers. Cedric Saule"

Transcription

1 Pointers Cedric Saule

2 Variables and memory Each variable needs to be stored in memory. Memory is made of plenty cells of 8 bits (1 Byte) A ''char'' is stored in 1 cell, a ''short'' is stored in 2 cells We can access to a variable by two ways : Adress of the first cell. Variable name. 208 Adress of the cell char mychar = 16; 16 Value of the cell (8bits) 2

3 Pointers and variables 208 Adress of the cell &mychar 16 Value of the cell (8bits) mychar 208 Adress of the cell 16 Value of the cell (8bits) char mychar = 16; 567 Adress of the cell 208 Value of the cell (8bits) char* pchar; pchar = &mychar; Pointer is a variable which value is the variable adress. 3

4 Pointers and variables long mylong = ; long* plong; plong = &mylong; Only the first cell is referenced in a pointer. Cells are contiguous in memory. We accessed to the adress by the ''&'' operator. We accessed to the pointed value by the ''*'' 4 operator.

5 Pointers and pointed values 208 Adress of the cell 16 Value of the cell (8bits) char mychar = 16; 567 Adress of the cell 208 Value of the cell (8bits) char* pchar = &mychar; printf(''value %d\n'', mychar); printf(''reference %d\n'', &mychar); printf(''pointer %d\n'', pchar); printf(''pointed value %d\n'', *pchar); Value 16 Reference 208 Pointer 208 Pointed value 16 5

6 Pointers and pointed values 208 Adress of the cell 32 Value of the cell (8bits) char mychar = 32; 567 Adress of the cell 208 Value of the cell (8bits) char* pchar = &mychar; printf(''value %d\n'', mychar); printf(''reference %d\n'', &mychar); printf(''pointer %d\n'', pchar); printf(''pointed value %d\n'', *pchar); mychar = 32; printf(''value %d\n'', mychar); printf(''reference %d\n'', &mychar); printf(''pointer %d\n'', pchar); printf(''pointed value %d\n'', *pchar); Value 16 Reference 208 Pointer 208 Pointed value 16 Value 32 Reference 208 Pointer 208 Pointed value 32 6

7 Pointers and pointed values 208 Adress of the cell 21 Value of the cell (8bits) char mychar = 21; 567 Adress of the cell 208 Value of the cell (8bits) char* pchar = &mychar; printf(''value %d\n'', mychar); printf(''reference %d\n'', &mychar); printf(''pointer %d\n'', pchar); printf(''pointed value %d\n'', *pchar); *pchar = 21; printf(''value %d\n'', mychar); printf(''reference %d\n'', &mychar); printf(''pointer %d\n'', pchar); printf(''pointed value %d\n'', *pchar); Value 16 Reference 208 Pointer 208 Pointed value 16 Value 21 Reference 208 Pointer 208 Pointed value 21 7

8 Pointers and functions In language C, the variables are passed by value. It is the same with pointers but what is the passed value void addone(int a, int* b) { printf(''value a = %d\n'', a); printf(''value b = %d\n'', b); printf(''pointed value b = %d\n'', *b); (*b)++; printf(''pointed value b = %d\n\n'', *b); b = &a; printf(''value a = %d\n'', a); printf(''value b = %d\n'', b); printf(''pointed value b = %d\n\n'', *b); } int main() { int x = 3; int y = ; int* p = &x; printf(''value x = %d\n'', x); printf(''value y = %d\n'', y); printf(''adress x = %d\n'', &x); printf(''adress y = %d\n'', &y); printf(''value p = %d\n\n'', p); addone(y, p); printf(''value %d\n'', x); printf(''value %d\n'', y); printf(''adress %d\n'', &x); printf(''adress %d\n'', &y); printf(''value %d\n'', p); return 0;} Value x = 3 Value y = Adress x = Adress y = Value p = Value a = Value b = Pointed value b = 3 Pointed value b = 4 Value a = Value b = Pointed value b = Value x = 4 Value y = Adress x = 8 Adress y = Value p =

9 What happened Pointers and functions Main x y p 9

10 What happened Pointers and functions x Main 3 a addone Local copy of ''y'' Same value Different local adress y p b Local copy of ''p'' Same value Different local adress 10

11 What happened Pointers and functions Main x y p a b b addone Local copy of ''y'' Same value Different local adress Local copy of ''p'' Same value Different local adress Local copy of ''p'' modifies the value in the pointed cell. But the pointed cell is not local! Main x y p 11

12 What happened Pointers and functions Main x y p a b b addone Local copy of ''y'' Same value Different local adress Local copy of ''p'' Same value Different local adress Local copy of ''p'' modifies the value in the pointed cell. But the pointed cell is not local! Main x y p a b Local copy of ''p'' points the local adress of ''a'' 12

13 What happened Pointers and functions Main x y p a b b a b addone Local copy of ''y'' Same value Different local adress Local copy of ''p'' Same value Different local adress Local copy of ''p'' modifies the value in the pointed cell. But the pointed cell is not local! Local copy of ''p'' points the local adress of ''a'' x y Main p Outside the function, ''b'', the copy of ''p'', is destroyed and of course ''p'' is unchanged. 13

14 What happened Pointers and functions Main x y p addone Main x y p So, the functions' arguments in C are really passed by values. But some values have a non-local meaning. 14

15 Pointers and functions Of course the adress can be given directly as a parameter. void addone(int a, int* b) { (*b)++; b = &a;} int main() { int x = 3; int y = ; addone(y, &x); return 0;} Give as parameter the adress of ''x'' to the local pointer in the function.

16 Pointers and functions To modify a pointer inside a function, we create a pointer of pointer. int x = 5; int* y = &x; /* Contains the adress of x. */ int** z = &y; /* Contains the adress of y. */ Another problem : int* foo() { } int x = 5; int* p = &x; return p; int main() { int* myp; myp = foo(); printf(''value = %d\n'', (*myp)) return 0;} Local value in the function foo. The value is lost outside the foo function, ''myp'' is erratic! 16

17 Pointers and functions To make it possible, we need a permanent value of the pointer dynamic allocation! int* p = (int *) malloc(sizeof(int)); Transtyping from void* Memory Allocation Size of reserved memory We create an anonymous space in memory. We specify the size allocated. We affect it to a compatible variable. 17

18 Pointers and functions Dynamically allocated memory has to be explicitely freed. int* p = malloc(sizeof(int)); free(p); The convention if poiter does not point to something is that its value be NULL. #define NULL ((void *) 0) in <stddef.h> Only no ''NULL'' value can be freed. 18

19 Pointers and types As pointers indicate the adress of the pointed variable, they all have the same size. The compiler needs to know the number of pointed cells, that means the type. So, we can define anonymous pointer which size will be indicated later ''void*''. ''void*'' is compatible with all pointers types. 19

20 Functions and adresses In C, we cannot work with a variable which type is a function (what would be its size ) But we can work with the adress of a function : float myfunction(int x, double y) { } type : function's adress which arguments are ''int'' and ''double'' et return ''float''. value : adress where myfunction begins is not a lvalue (not contained by something) So we can legally define : float (*pfunc)(int n, double y); pfunc = myfunction; float (pfunc)(3, 3.5); /* Calls myfunction with 3 and 3.5 as arguments. */ 20

21 Formal functions Formal functions are function arguments of other functions. This allows a generic use of functions. double dicho(double x, double y, double val, double (*f)(double)) { double z; /* hypothèse : f(x) * f(y) <= 0 */ if ((*f)(x) > 0) { z = x; x = y; y = z;} while (fabs(y - x) > val) { z = (x + y) / 2; if ((*f)(z) < 0) z = x; else y = z; } return z;} Returns ''z'' such that f(z) == val. 21

22 Quick preview It is possible to name continuous space in memory Arrays. But, as functions, the size of arrays is not always known during the compiling step. Static arrays. Dynamics arrays. 22

Functions. Cedric Saule

Functions. Cedric Saule Cedric Saule cedric.saule@uni-bielefeld.de or procedures? In algorithmic (and some programming languages), we use two kinds of unconditional branchings : Procedures : execute computations and do not return

More information

Complex data structures. Cedric Saule

Complex data structures. Cedric Saule Complex data structures Cedric Saule cedric.saule@uni-bielefeld.de Arrays in language C In language C, arrays are contiguous spaces in memory. We make the difference between two kinds of arrays : Static

More information

Week 7: Pointers and Arrays. BJ Furman 02OCT2009

Week 7: Pointers and Arrays. BJ Furman 02OCT2009 Week 7: Pointers and Arrays BJ Furman 02OCT2009 The Plan for Today Closer look at pointers What is a pointer? Why use pointers? How can we use pointers? Pointer Examples Pointer Practice Learning Objectives

More information

Lecture 2, September 4

Lecture 2, September 4 Lecture 2, September 4 Intro to C/C++ Instructor: Prashant Shenoy, TA: Shashi Singh 1 Introduction C++ is an object-oriented language and is one of the most frequently used languages for development due

More information

DECLARAING AND INITIALIZING POINTERS

DECLARAING AND INITIALIZING POINTERS DECLARAING AND INITIALIZING POINTERS Passing arguments Call by Address Introduction to Pointers Within the computer s memory, every stored data item occupies one or more contiguous memory cells (i.e.,

More information

Object oriented programming C++

Object oriented programming C++ http://uranchimeg.com Object oriented programming C++ T.Uranchimeg Prof. Dr. Email uranchimeg@must.edu.mn Power Engineering School M.EC203* -- OOP (C++) -- Lecture 07 Subjects Pointers Pointer and array

More information

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1 Announcements assign due tonight No late submissions Labs start this week Very helpful for assign1 Goals for Today Pointer operators Allocating memory in the heap malloc and free Arrays and pointer arithmetic

More information

Lectures 13 & 14. memory management

Lectures 13 & 14. memory management Lectures 13 & 14 Linked lists and memory management Courtesy of Prof. Garcia (UCB) CS61C L05 Introduction to C (pt 3) (1) Review Pointers and arrays are virtually same C knows how to increment pointers

More information

Reference operator (&)

Reference operator (&) Pointers Each cell can be easily located in the memory because it has a unique address and all the memory cells follow a successive pattern. For example, if we are looking for cell 1776 we know that it

More information

Pointers. Reference operator (&) ted = &andy;

Pointers. Reference operator (&)  ted = &andy; Pointers We have already seen how variables are seen as memory cells that can be accessed using their identifiers. This way we did not have to care about the physical location of our data within memory,

More information

Tutorial 10 Pointers in C. Shuyue Hu

Tutorial 10 Pointers in C. Shuyue Hu Tutorial 10 Pointers in C Shuyue Hu Content Basic concept of pointers Pointer arithmetic Array of pointers Pointer to pointer Passing pointers to functions in C Return pointer from functions in C 2 Content

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto Adapted from the slides Revisões sobre Programação em C, Sérgio Crisóstomo Compilation #include int main()

More information

Dynamic Data Structures. CSCI 112: Programming in C

Dynamic Data Structures. CSCI 112: Programming in C Dynamic Data Structures CSCI 112: Programming in C 1 It s all about flexibility In the programs we ve made so far, the compiler knows at compile time exactly how much memory to allocate for each variable

More information

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline CS 0 Lecture 8 Chapter 5 Louden Outline The symbol table Static scoping vs dynamic scoping Symbol table Dictionary associates names to attributes In general: hash tables, tree and lists (assignment ) can

More information

Lecture 8 Dynamic Memory Allocation

Lecture 8 Dynamic Memory Allocation Lecture 8 Dynamic Memory Allocation CS240 1 Memory Computer programs manipulate an abstraction of the computer s memory subsystem Memory: on the hardware side 3 @ http://computer.howstuffworks.com/computer-memory.htm/printable

More information

Instructions: Submit your answers to these questions to the Curator as OQ02 by the posted due date and time. No late submissions will be accepted.

Instructions: Submit your answers to these questions to the Curator as OQ02 by the posted due date and time. No late submissions will be accepted. Instructions: Submit your answers to these questions to the Curator as OQ02 by the posted due date and time. No late submissions will be accepted. For the next five questions, consider the function to

More information

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming Jagannath Institute of Management Sciences Lajpat Nagar BCA II Sem C Programming UNIT I Pointers: Introduction to Pointers, Pointer Notation,Decalaration and Initialization, Accessing variable through

More information

Assist. Prof. Dr. Caner ÖZCAN

Assist. Prof. Dr. Caner ÖZCAN Assist. Prof. Dr. Caner ÖZCAN Memory Structure When a variable defined it is stored somewhere in memory. Memory can be thought as block consist of cells. When a variable defined, required number of cell

More information

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 5 C Structs & Memory Mangement 1/27/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L05 C Structs (1) C String Standard Functions

More information

Lecture (07) Arrays. By: Dr. Ahmed ElShafee. Dr. Ahmed ElShafee, ACU : Fall 2015, Programming I

Lecture (07) Arrays. By: Dr. Ahmed ElShafee. Dr. Ahmed ElShafee, ACU : Fall 2015, Programming I Lecture (07) Arrays By: Dr Ahmed ElShafee ١ introduction An array is used to store a collection of data, but it is often more useful to think of an array as a collection of variables of the same type Instead

More information

To declare an array in C, a programmer specifies the type of the elements and the number of elements required by an array as follows

To declare an array in C, a programmer specifies the type of the elements and the number of elements required by an array as follows Unti 4: C Arrays Arrays a kind of data structure that can store a fixed-size sequential collection of elements of the same type An array is used to store a collection of data, but it is often more useful

More information

Pointers as Arguments

Pointers as Arguments Introduction as Arguments How it Works called program on start of execution xw = &i xf = &d after excution xw = &i xf = &d caller program i? d? i 3 d.14159 x 3.14159 x 3.14159 R. K. Ghosh (IIT-Kanpur)

More information

3.Constructors and Destructors. Develop cpp program to implement constructor and destructor.

3.Constructors and Destructors. Develop cpp program to implement constructor and destructor. 3.Constructors and Destructors Develop cpp program to implement constructor and destructor. Constructors A constructor is a special member function whose task is to initialize the objects of its class.

More information

CS61C Machine Structures. Lecture 4 C Structs & Memory Management. 9/5/2007 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 4 C Structs & Memory Management. 9/5/2007 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 4 C Structs & Memory Management 9/5/2007 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L04 C Structs (1) C String Standard Functions

More information

Pointers. Memory. void foo() { }//return

Pointers. Memory. void foo() { }//return Pointers Pointers Every location in memory has a unique number assigned to it called it s address A pointer is a variable that holds a memory address A pointer can be used to store an object or variable

More information

12. Pointers Address-of operator (&)

12. Pointers Address-of operator (&) 12. Pointers In earlier chapters, variables have been explained as locations in the computer's memory which can be accessed by their identifer (their name). This way, the program does not need to care

More information

HW1 due Monday by 9:30am Assignment online, submission details to come

HW1 due Monday by 9:30am Assignment online, submission details to come inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #2 - C Pointers and Arrays Administrivia Buggy Start Lab schedule, lab machines, HW0 due tomorrow in lab 2009-06-24 HW1 due Monday by 9:30am

More information

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community

CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community CSCI-243 Exam 1 Review February 22, 2015 Presented by the RIT Computer Science Community http://csc.cs.rit.edu History and Evolution of Programming Languages 1. Explain the relationship between machine

More information

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples:

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples: 1 Programming in C Pointer Variable A variable that stores a memory address Allows C programs to simulate call-by-reference Allows a programmer to create and manipulate dynamic data structures Must be

More information

Introduction to C: Pointers

Introduction to C: Pointers Introduction to C: Pointers Nils Moschüring PhD Student (LMU) Nils Moschüring PhD Student (LMU), Introduction to C: Pointers 1 1 Introduction 2 Pointers Basics Useful: Function

More information

SYSC 2006 C Winter 2012

SYSC 2006 C Winter 2012 SYSC 2006 C Winter 2012 Pointers and Arrays Copyright D. Bailey, Systems and Computer Engineering, Carleton University updated Sept. 21, 2011, Oct.18, 2011,Oct. 28, 2011, Feb. 25, 2011 Memory Organization

More information

Review: C Strings. A string in C is just an array of characters. Lecture #4 C Strings, Arrays, & Malloc

Review: C Strings. A string in C is just an array of characters. Lecture #4 C Strings, Arrays, & Malloc CS61C L4 C Pointers (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #4 C Strings, Arrays, & Malloc Albert Chae Instructor 2008-06-26 Review: C Strings A string in C is just an array

More information

Algorithms & Data Structures

Algorithms & Data Structures GATE- 2016-17 Postal Correspondence 1 Algorithms & Data Structures Computer Science & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key

More information

Parameter passing. Programming in C. Important. Parameter passing... C implements call-by-value parameter passing. UVic SEng 265

Parameter passing. Programming in C. Important. Parameter passing... C implements call-by-value parameter passing. UVic SEng 265 Parameter passing Programming in C UVic SEng 265 Daniel M. German Department of Computer Science University of Victoria 1 SEng 265 dmgerman@uvic.ca C implements call-by-value parameter passing int a =

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Memory, Files and Bitoperations (yaseminb@kth.se) Overview Overview Lecture 11: Memory, Files and Bit operations Main function; reading and writing Bitwise Operations Lecture 11: Memory, Files

More information

CS240: Programming in C

CS240: Programming in C CS240: Programming in C Lecture 10: Review - Structures and Memory Allocation Unions Recap: Structures Holds multiple items as a unit Treated as scalar in C: can be returned from functions, passed to functions

More information

QUIZ. What is wrong with this code that uses default arguments?

QUIZ. What is wrong with this code that uses default arguments? QUIZ What is wrong with this code that uses default arguments? Solution The value of the default argument should be placed in either declaration or definition, not both! QUIZ What is wrong with this code

More information

Pointers. September 13, 2017 Hassan Khosravi / Geoffrey Tien 1

Pointers. September 13, 2017 Hassan Khosravi / Geoffrey Tien 1 Pointers September 13, 2017 Hassan Khosravi / Geoffrey Tien 1 Multi-dimensional arrays A two-dimensional array is specified using two indices First index denotes the row, second index denotes column int

More information

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C Lecture 1 C primer What we will cover A crash course in the basics of C You should read the K&R C book for lots more details Various details will be exemplified later in the course Outline Overview comparison

More information

Memory Allocation. General Questions

Memory Allocation. General Questions General Questions 1 Memory Allocation 1. Which header file should be included to use functions like malloc() and calloc()? A. memory.h B. stdlib.h C. string.h D. dos.h 2. What function should be used to

More information

Computer Science & Engineering 150A Problem Solving Using Computers

Computer Science & Engineering 150A Problem Solving Using Computers Computer Science & Engineering 150A Problem Solving Using Computers Lecture 06 - Stephen Scott Adapted from Christopher M. Bourke 1 / 30 Fall 2009 Chapter 8 8.1 Declaring and 8.2 Array Subscripts 8.3 Using

More information

Chapter 6: User-Defined Functions. Objectives (cont d.) Objectives. Introduction. Predefined Functions 12/2/2016

Chapter 6: User-Defined Functions. Objectives (cont d.) Objectives. Introduction. Predefined Functions 12/2/2016 Chapter 6: User-Defined Functions Objectives In this chapter, you will: Learn about standard (predefined) functions Learn about user-defined functions Examine value-returning functions Construct and use

More information

Topics Introduction to Microprocessors

Topics Introduction to Microprocessors Topics 22440 Introduction to Microprocessors C-Language Review (I) Important: : You will not learn how to code in C in this one lecture! You ll still need some sort of C reference. C Syntax Important Tidits

More information

C Programming Basics II

C Programming Basics II C Programming Basics II Xianyi Zeng xzeng@utep.edu Department of Mathematical Sciences The University of Texas at El Paso. September 20, 2016. Pointers and Passing by Address Upon declaring a variable,

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 5 C Memory Management Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia CS61C L05 C Structures, Memory Management (1) 2005-01-28 The

More information

Language comparison. C has pointers. Java has references. C++ has pointers and references

Language comparison. C has pointers. Java has references. C++ has pointers and references Pointers CSE 2451 Language comparison C has pointers Java has references C++ has pointers and references Pointers Values of variables are stored in memory, at a particular location A location is identified

More information

Common Misunderstandings from Exam 1 Material

Common Misunderstandings from Exam 1 Material Common Misunderstandings from Exam 1 Material Kyle Dewey Stack and Heap Allocation with Pointers char c = c ; char* p1 = malloc(sizeof(char)); char** p2 = &p1; Where is c allocated? Where is p1 itself

More information

Laboratory 10 POINTERS I. FUNDAMENTALS

Laboratory 10 POINTERS I. FUNDAMENTALS PROGRAMMING LANGUAGES Laboratory 10 POINTERS I. FUNDAMENTALS As already known, a program together with its data is stored in the computer s memory. The RAM memory is a random access memory (RAM) which,

More information

Object-Oriented Principles and Practice / C++

Object-Oriented Principles and Practice / C++ Object-Oriented Principles and Practice / C++ Alice E. Fischer September 26, 2016 OOPP / C++ Lecture 4... 1/33 Global vs. Class Static Parameters Move Semantics OOPP / C++ Lecture 4... 2/33 Global Functions

More information

377 Student Guide to C++

377 Student Guide to C++ 377 Student Guide to C++ c Mark Corner January 21, 2004 1 Introduction In this course you will be using the C++ language to complete several programming assignments. Up to this point we have only provided

More information

Memory Management in C (Dynamic Strings) Personal Software Engineering

Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Organization Function Call Frames The Stack The call stack grows from the top of memory down. sp Available for allocation The

More information

Chapter 2 (Dynamic variable (i.e. pointer), Static variable)

Chapter 2 (Dynamic variable (i.e. pointer), Static variable) Chapter 2 (Dynamic variable (i.e. pointer), Static variable) August_04 A2. Identify and explain the error in the program below. [4] #include int *pptr; void fun1() { int num; num=25; pptr= &num;

More information

Class Information ANNOUCEMENTS

Class Information ANNOUCEMENTS Class Information ANNOUCEMENTS Third homework due TODAY at 11:59pm. Extension? First project has been posted, due Monday October 23, 11:59pm. Midterm exam: Friday, October 27, in class. Don t forget to

More information

Lecture 04 Introduction to pointers

Lecture 04 Introduction to pointers Lecture 04 Introduction to pointers A pointer is an address in the memory. One of the unique advantages of using C is that it provides direct access to a memory location through its address. A variable

More information

ESC101N Fundamentals of Computing

ESC101N Fundamentals of Computing ESC101N Fundamentals of Computing Arnab Bhattacharya arnabb@iitk.ac.in Indian Institute of Technology, Kanpur http://www.iitk.ac.in/esc101/ 1 st semester, 2010-11 Tue, Wed, Fri 0800-0900 at L7 Arnab Bhattacharya

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 4 Introduction to C (pt 2) 2014-09-08!!!Senior Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia! C most popular! TIOBE programming

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

The output: The address of i is 0xbf85416c. The address of main is 0x80483e4. arrays.c. 1 #include <stdio.h> 3 int main(int argc, char **argv) 4 {

The output: The address of i is 0xbf85416c. The address of main is 0x80483e4. arrays.c. 1 #include <stdio.h> 3 int main(int argc, char **argv) 4 { Memory A bit is a binary digit, either 0 or 1. A byte is eight bits, and can thus represent 256 unique values, such as 00000000 and 10010110. Computer scientists often think in terms of hexadecimal, rather

More information

UNIT V Sub u P b ro r g o r g a r m a s

UNIT V Sub u P b ro r g o r g a r m a s UNIT V SubPrograms Outline Subprograms Parameter Passing Parameter correspondence Main Issues when designing subroutine in programming languages Parameter passing techniques Characteristics of Subprogram

More information

[0569] p 0318 garbage

[0569] p 0318 garbage A Pointer is a variable which contains the address of another variable. Declaration syntax: Pointer_type *pointer_name; This declaration will create a pointer of the pointer_name which will point to the

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

C++ Arrays. To declare an array in C++, the programmer specifies the type of the elements and the number of elements required by an array as follows

C++ Arrays. To declare an array in C++, the programmer specifies the type of the elements and the number of elements required by an array as follows Source: Tutorials Point C++ Arrays C++ Arrays C++ provides a data structure, the array, which stores a fixed-size, sequential collection of elements of the same type An array is used to store a collection

More information

Procedural Programming & Fundamentals of Programming

Procedural Programming & Fundamentals of Programming Procedural Programming & Fundamentals of Programming Lecture 3 - Summer Semester 2018 & Joachim Zumbrägel What we know so far... Data type serves to organize data (in the memory), its possible values,

More information

CSE409, Rob Johnson, Alin Tomescu, November 11 th, 2011 Buffer overflow defenses

CSE409, Rob Johnson,   Alin Tomescu, November 11 th, 2011 Buffer overflow defenses Buffer overflow defenses There are two categories of buffer-overflow defenses: - Make it hard for the attacker to exploit buffer overflow o Address space layout randomization o Model checking to catch

More information

Data Types and Computer Storage Arrays and Pointers. K&R, chapter 5

Data Types and Computer Storage Arrays and Pointers. K&R, chapter 5 Data Types and Computer Storage Arrays and Pointers K&R, chapter 5 Fundamental Data Types Most fundamental types are numeric (integer): - char - signed or unsigned - short int - signed or unsigned - int

More information

Pointers, Arrays, Memory: AKA the cause of those Segfaults

Pointers, Arrays, Memory: AKA the cause of those Segfaults Computer Science 61C Spring 2018 Wawrzynek and Weaver Pointers, Arrays, Memory: AKA the cause of those F@#)(#@*( Segfaults 1 Agenda Computer Science 61C Spring 2018 Pointers Arrays in C Memory Allocation

More information

by Pearson Education, Inc. All Rights Reserved.

by Pearson Education, Inc. All Rights Reserved. Let s improve the bubble sort program of Fig. 6.15 to use two functions bubblesort and swap. Function bubblesort sorts the array. It calls function swap (line 51) to exchange the array elements array[j]

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #3 C Strings, Arrays, & Malloc 2007-06-27 Scott Beamer, Instructor Sun announces new supercomputer: Sun Constellation CS61C L3 C Pointers

More information

b. array s first element address c. base address of an array d. all elements of an array e. both b and c 9. An array elements are always stored in a.

b. array s first element address c. base address of an array d. all elements of an array e. both b and c 9. An array elements are always stored in a. UNIT IV 1. Appropriately comment on the following declaration int a[20]; a. Array declaration b. array initialization c. pointer array declaration d. integer array of size 20 2. Appropriately comment on

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Structures and Memory (yaseminb@kth.se) Overview Overview Lecture 11: Structures and Memory Structures Continued Memory Allocation Lecture 11: Structures and Memory Structures Continued Memory

More information

Learning Objectives. Introduction to Arrays. Arrays in Functions. Programming with Arrays. Multidimensional Arrays

Learning Objectives. Introduction to Arrays. Arrays in Functions. Programming with Arrays. Multidimensional Arrays Chapter 5 Arrays Learning Objectives Introduction to Arrays Declaring and referencing arrays For-loops and arrays Arrays in memory Arrays in Functions Arrays as function arguments, return values Programming

More information

At this time we have all the pieces necessary to allocate memory for an array dynamically. Following our example, we allocate N integers as follows:

At this time we have all the pieces necessary to allocate memory for an array dynamically. Following our example, we allocate N integers as follows: Pointers and Arrays Part II We will continue with our discussion on the relationship between pointers and arrays, and in particular, discuss how arrays with dynamical length can be created at run-time

More information

Flow Control. CSC215 Lecture

Flow Control. CSC215 Lecture Flow Control CSC215 Lecture Outline Blocks and compound statements Conditional statements if - statement if-else - statement switch - statement? : opertator Nested conditional statements Repetitive statements

More information

Advanced Pointer Topics

Advanced Pointer Topics Advanced Pointer Topics Pointers to Pointers A pointer variable is a variable that takes some memory address as its value. Therefore, you can have another pointer pointing to it. int x; int * px; int **

More information

DAY 3. CS3600, Northeastern University. Alan Mislove

DAY 3. CS3600, Northeastern University. Alan Mislove C BOOTCAMP DAY 3 CS3600, Northeastern University Slides adapted from Anandha Gopalan s CS132 course at Univ. of Pittsburgh and Pascal Meunier s course at Purdue Memory management 2 Memory management Two

More information

Introduction to Computers and Programming

Introduction to Computers and Programming 16.070 Introduction to Computers and Programming February 27 Recitation 4 Spring 2002 Topics: New Material Quick review of PS2 issues Structures Pointers Exam 1 Review Logistics How to trace a variable

More information

Francesco Nidito. Programmazione Avanzata AA 2007/08

Francesco Nidito. Programmazione Avanzata AA 2007/08 Francesco Nidito in the Programmazione Avanzata AA 2007/08 Outline 1 2 3 in the in the 4 Reference: Micheal L. Scott, Programming Languages Pragmatics, Chapter 7 What is a type? in the What is a type?

More information

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100 ECE 2035(B) Programming for Hardware/Software Systems Fall 2013 Exam Two October 22 nd 2013 Name: Q1: /20 Q2: /30 Q3: /24 Q4: /26 Total: /100 1/6 For functional call related questions, let s assume the

More information

Process s Address Space. Dynamic Memory. Backing the Heap. Dynamic memory allocation 3/29/2013. When a process starts the heap is empty

Process s Address Space. Dynamic Memory. Backing the Heap. Dynamic memory allocation 3/29/2013. When a process starts the heap is empty /9/01 Process s Address Space Dynamic Memory 0x7fffffff Stack Data (Heap) Data (Heap) 0 Text (Code) Backing the Heap When a process starts the heap is empty The process is responsible for requesting memory

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2017 Lecture 3a Andrew Tolmach Portland State University 1994-2017 Binding, Scope, Storage Part of being a high-level language is letting the programmer name things: variables

More information

CA341 - Comparative Programming Languages

CA341 - Comparative Programming Languages CA341 - Comparative Programming Languages David Sinclair Dynamic Data Structures Generally we do not know how much data a program will have to process. There are 2 ways to handle this: Create a fixed data

More information

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017 143A: Principles of Operating Systems Lecture 4: Calling conventions Anton Burtsev October, 2017 Recap from last time Stack and procedure calls What is stack? Stack It's just a region of memory Pointed

More information

APSC 160 Review Part 2

APSC 160 Review Part 2 APSC 160 Review Part 2 Arrays September 11, 2017 Hassan Khosravi / Geoffrey Tien 1 Arrays A collection of data elements of the same type Stored in consecutive memory locations and each element referenced

More information

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018 Pointer Basics Lecture 13 COP 3014 Spring 2018 March 28, 2018 What is a Pointer? A pointer is a variable that stores a memory address. Pointers are used to store the addresses of other variables or memory

More information

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science

Memory Allocation in C C Programming and Software Tools. N.C. State Department of Computer Science Memory Allocation in C C Programming and Software Tools N.C. State Department of Computer Science The Easy Way Java (JVM) automatically allocates and reclaims memory for you, e.g... Removed object is implicitly

More information

Parameters. However, one important class of variables is still missing Þ parameters. Terminology: Example: Java, C, C++ Chap 18.

Parameters. However, one important class of variables is still missing Þ parameters. Terminology: Example: Java, C, C++ Chap 18. Parameters We have discussed different classes of variables so far: lobal/static variables - Function local or automatic variables -Dynamic, heap allocated variables Chap 18 However, one important class

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 4a Andrew Tolmach Portland State University 1994-2017 Semantics and Erroneous Programs Important part of language specification is distinguishing valid from

More information

Memory Corruption 101 From Primitives to Exploit

Memory Corruption 101 From Primitives to Exploit Memory Corruption 101 From Primitives to Exploit Created by Nick Walker @ MWR Infosecurity / @tel0seh What is it? A result of Undefined Behaviour Undefined Behaviour A result of executing computer code

More information

CS 33. Intro to Storage Allocation. CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Intro to Storage Allocation. CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Intro to Storage Allocation CS33 Intro to Computer Systems XXVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. A Queue head typedef struct list_element { int value; struct list_element

More information

Arrays and Memory Management

Arrays and Memory Management Arrays and Memory Management 1 Pointing to Different Size Objects Modern machines are byte-addressable Hardware s memory composed of 8-bit storage cells, each has a unique address A C pointer is just abstracted

More information

Basic Pointers. CSCI 112: Programming in C

Basic Pointers. CSCI 112: Programming in C Basic Pointers CSCI 112: Programming in C What the #$@# is a pointer? Pointers are variables Instead of holding values, they hold the address of another variable. They point to where that other variable

More information

Heap Arrays and Linked Lists. Steven R. Bagley

Heap Arrays and Linked Lists. Steven R. Bagley Heap Arrays and Linked Lists Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index Variables and arrays have a type Create our

More information

High-performance computing and programming Intro to C on Unix/Linux. Uppsala universitet

High-performance computing and programming Intro to C on Unix/Linux. Uppsala universitet High-performance computing and programming Intro to C on Unix/Linux IT Uppsala universitet What is C? An old imperative language that remains rooted close to the hardware C is relatively small and easy

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 5 C Memory Management Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia CS 61C L04 C Structures, Memory Management (1) 2004-09-10 Barry

More information

Review of Important Topics in CS1600. Functions Arrays C-strings

Review of Important Topics in CS1600. Functions Arrays C-strings Review of Important Topics in CS1600 Functions Arrays C-strings Array Basics Arrays An array is used to process a collection of data of the same type Examples: A list of names A list of temperatures Why

More information

CSE 374 Programming Concepts & Tools

CSE 374 Programming Concepts & Tools CSE 374 Programming Concepts & Tools Hal Perkins Fall 2017 Lecture 8 C: Miscellanea Control, Declarations, Preprocessor, printf/scanf 1 The story so far The low-level execution model of a process (one

More information

Array Initialization

Array Initialization Array Initialization Array declarations can specify initializations for the elements of the array: int primes[10] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ; initializes primes[0] to 2, primes[1] to 3, primes[2]

More information

Advanced Pointer & Data Storage

Advanced Pointer & Data Storage 18, 19: storage classes 14: Preprocessor & Polymorphism in C) 15 : command line building 26 : stdarg Advanced Pointer & Data Storage (for ch. 14, 15 18, 19, 26) Contents Preprocessor & Polymorphism in

More information