COMP 11 Class 23 Outline

Size: px
Start display at page:

Download "COMP 11 Class 23 Outline"

Transcription

1 Topics: Approach: Main Ideas: COMP 11 Class 23 Outline Recursion II Discussion, Explanation, Discussion A function calling itself 1. Admin a) Reading assignment: Chapter 14.2 and 14.3 b) Assignment 2B due tonight! 2. Review of Fibonacci: a) Fib sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, b) Recall: Fib(n) = Fib (n-1) + Fib (n-2) c) Two steps in a recursive function (fib.cpp) i. Base-case: the simplest case that returns a pre-defined answer ii. A induction step: A step that decomposes the problem into smaller problems by calling the function itself d) Trace through this program e) Write the same function using a loop (fib-loop.cpp) 3. Compare the differences between Recursive Function and Iterative (Loop) Functions a) What are the differences? b) What happens to a recursive function without a base-case? i. What happens to an iterative function without a stopping condition? ii. Base-case vs. condition iii. Induction step vs. incrementing c) Discussion: equivalence between recursion and loops. Languages without loop. Coverage of some of those languages in COMP 105 (Programming Languages) d) Exam question: be able to convert between loops (while, for, do/while) to a recursive function and vice versa. 4. Exercise: a) Computing the factorial i. Write a looped function that computes the factorial of m (fac-loop.cpp) ii. Write a recursive function that does the same (fac.cpp) b) Computing Power: i. Write a looped function that computes m to the nth power (power-loop.cpp) ii. Write a recursive function that does the same (power.cpp) c) Find the minimum i. Write a looped function that finds the minimum value in an array (findminloop.cpp) ii. Write a recursive function that does the same (findmin.cpp) 5. Recursion with Linked Data Structures a) Adding up all the elements in a linked list (linkedlist.cpp) b) Deleting a linked list c) Recursion with binary tree (binarytree.cpp) i. Building a tree ii. Printing a tree iii. Traversing a tree iv. Deleting a tree

2 :::::::::::::: fib.cpp ::::::::::::: int fib (int n); int num; cout << "computing the Fibonnaci number, input an integer: "; cin >> num; cout << fib(num) << endl; int fib (int n) { if (n == 0) { return 0; else if (n == 1) { return 1; return fib(n-1)+fib(n-2); :::::::::::::: fib-loop.cpp ::::::::::::: int fib (int n) { if (n == 0) { return 0; if (n == 1) { return 1; int i; int* fibarray = new int [n]; fibarray[0] = 0; fibarray[1] = 1; for (i=2; i<n ;i++) { fibarray[i] = fibarray[i-1] + fibarray[i-2]; int answer = (fibarray[n-1] + fibarray[n-2]); delete fibarray; return answer;

3 :::::::::::::: fac.cpp ::::::::::::: int fac (int n); int num; cout << "computing the Factorial, input an integer: "; cin >> num; cout << fac(num) << endl; int fac (int num) { if (num == 1) { return 1; return num * fac (num-1); :::::::::::::: fac-loop.cpp ::::::::::::: int fac (int num) { int i; int total = 1; for (i=1; i<=num; i++) { total = total * i; return total; :::::::::::::: power.cpp ::::::::::::: int power (int n, int m); int num; int pow; cout << "computing the Power, input an integer base: "; cin >> num; cout << "computing the Power, input an integer power: "; cin >> pow; cout << power(num, pow) << endl; int power (int num, int pow) { if (pow == 0) { return 1; return num * power (num, pow-1);

4 :::::::::::::: power-loop.cpp ::::::::::::: int power (int num, int pow) { int i; int answer = 1; for (i=0; i<pow; i++) { answer = answer * num; return answer; :::::::::::::: findmin.cpp ::::::::::::: #include <time.h> int findmin (int* array, int size, int index); int LENGTH = 10; //randomly populate an array srand(time(null)); int* array = new int [LENGTH]; for (int i=0; i<length; i++) { array[i] = rand() % 100; cout << array[i] << " "; cout << endl; //find the minimum cout << findmin(array, LENGTH, 0) << endl; //delete array delete [] array; int findmin (int* array, int size, int index) { //base case if (size <= 0) { return -1; if (index == (size-1)) { return array[index]; //induction step int nextmin = findmin(array, size, index+1); if (nextmin < array[index]) { return nextmin;

5 return array[index]; :::::::::::::: findmin-loop.cpp ::::::::::::: int findmin (int* array, int size, int index) { if (size <= 0) { return -1; int i; int min = array[0]; for (i=1; i<size; i++) { if (array[i] < min) { min = array[i]; return min; :::::::::::::: linkedlist.cpp ::::::::::::: #include <time.h> #include "Node.H" int sum (Node* curnode); Node* buildlist(int size); void deletelist(node* curnode); srand(time(null)); Node* head = buildlist(10); cout << sum(head) << endl; deletelist(head); int sum (Node* curnode) { return 0; return curnode->getvalue() + sum(curnode->getnext()); void deletelist(node* curnode) { return; deletelist(curnode->getnext()); delete curnode;

6 Node* buildlist(int size) { Node* head = new Node(); head->setvalue(rand()%100); cout << head->getvalue() << " "; Node* tmp = head; for (int i=1; i<size; i++) { Node* newnode = new Node(); newnode->setvalue(rand()%100); cout << newnode->getvalue() << " "; tmp->setnext(newnode); tmp = newnode; cout << endl; return head; :::::::::::::: Node.H ::::::::::::: #ifndef NODE_H #define NODE_H class Node { public: Node(); ~Node(); void setvalue (int value); void setnext (Node* next); int getvalue(); Node* getnext(); private: int m_value; Node* m_next; ; #endif :::::::::::::: Node.cpp ::::::::::::: Node::Node() { m_value = 0; m_next = NULL; Node::~Node() { void Node::setValue (int value) { m_value = value;

7 void Node::setNext (Node* next) { m_next = next; int Node::getValue() { return m_value; Node* Node::getNext() { return m_next; :::::::::::::: binarytree.cpp ::::::::::::: #include <time.h> #include "Node.H" Node* buildtree(int size); void addtotree(node* curnode, Node* newnode); void deletetree(node* curnode); void printtree(node* curnode, string spacer); int sum (Node* curnode); srand(time(null)); Node* root = buildtree (10); printtree(root, ""); //find the minimum cout << "sum: " << sum(root) << endl; deletetree(root); int sum (Node* curnode) { //base case return 0; return curnode->getvalue() + sum(curnode->getright()) + sum(curnode->getleft()); void printtree(node* curnode, string spacer) { cout << spacer << " NULL" << endl; return; cout << spacer << " " << curnode->getvalue() << endl; printtree(curnode->getright(), spacer+" R:"); printtree(curnode->getleft(), spacer+" L:");

8 Node* buildtree(int size) { Node* root = new Node(); root->setvalue(rand()%100); cout << root->getvalue() << " "; Node* tmp = root; for (int i=1; i<size; i++) { Node* newnode = new Node(); newnode->setvalue(rand()%100); cout << newnode->getvalue() << " "; addtotree(root, newnode); cout << endl; return root; void addtotree(node* curnode, Node* newnode) { int curval = curnode->getvalue(); int newval = newnode->getvalue(); if (newval > curval) { if (curnode->getright() == NULL) { curnode->setright(newnode); addtotree(curnode->getright(), newnode); if (curnode->getleft() == NULL) { curnode->setleft(newnode); addtotree(curnode->getleft(), newnode); void deletetree(node* curnode) { return; deletetree(curnode->getright()); deletetree(curnode->getleft()); delete curnode; :::::::::::::: Node2.H ::::::::::::: #ifndef NODE_H #define NODE_H class Node {

9 public: Node(); ~Node(); void setvalue (int value); void setleft (Node* left); void setright (Node* right); int getvalue(); Node* getleft(); Node* getright(); private: int m_value; Node* m_left; Node* m_right; ; #endif :::::::::::::: Node2.cpp ::::::::::::: #include "Node.H" Node::Node() { m_value = 0; m_left = NULL; m_right = NULL; Node::~Node() { void Node::setValue (int value) { m_value = value; void Node::setLeft (Node* left) { m_left = left; void Node::setRight (Node* right) { m_right = right; int Node::getValue() { return m_value; Node* Node::getLeft() { return m_left; Node* Node::getRight() { return m_right;

COMP-202: Foundations of Programming. Lecture 13: Recursion Sandeep Manjanna, Summer 2015

COMP-202: Foundations of Programming. Lecture 13: Recursion Sandeep Manjanna, Summer 2015 COMP-202: Foundations of Programming Lecture 13: Recursion Sandeep Manjanna, Summer 2015 Announcements Final exams : 26 th of June (2pm to 5pm) @ MAASS 112 Assignment 4 is posted and Due on 29 th of June

More information

Data Structures (CS301) LAB

Data Structures (CS301) LAB Data Structures (CS301) LAB Objectives The objectives of this LAB are, o Enabling students to implement Doubly Linked List practically using c++ and adding more functionality in it. Introduction to Singly

More information

Standard Version of Starting Out with C++, 4th Edition. Chapter 19 Recursion. Copyright 2003 Scott/Jones Publishing

Standard Version of Starting Out with C++, 4th Edition. Chapter 19 Recursion. Copyright 2003 Scott/Jones Publishing Standard Version of Starting Out with C++, 4th Edition Chapter 19 Recursion Copyright 2003 Scott/Jones Publishing Topics 19.1 Introduction to Recursion 19.2 The Recursive Factorial Function 19.3 The Recursive

More information

Recursion. Example 1: Fibonacci Numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Recursion. Example 1: Fibonacci Numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, Example 1: Fibonacci Numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, Recursion public static long fib(int n) if (n

More information

Spring 2008 Data Structures (CS301) LAB

Spring 2008 Data Structures (CS301) LAB Spring 2008 Data Structures (CS301) LAB Objectives The objectives of this LAB are, o Enabling students to implement Singly Linked List practically using c++ and adding more functionality in it. o Enabling

More information

Computer Science Foundation Exam. Dec. 19, 2003 COMPUTER SCIENCE I. Section I A. No Calculators! KEY

Computer Science Foundation Exam. Dec. 19, 2003 COMPUTER SCIENCE I. Section I A. No Calculators! KEY Computer Science Foundation Exam Dec. 19, 2003 COMPUTER SCIENCE I Section I A No Calculators! Name: KEY SSN: Score: 50 In this section of the exam, there are Three (3) problems You must do all of them.

More information

Data Structures And Algorithms

Data Structures And Algorithms Data Structures And Algorithms Recursion Eng. Anis Nazer First Semester 2016-2017 Recursion Recursion: to define something in terms of itself Example: factorial n!={ 1 n=0 n (n 1)! n>0 Recursion Example:

More information

Sample Questions for Midterm Exam 2

Sample Questions for Midterm Exam 2 Sample Questions for Midterm Exam 2 The following are meant to give you some examples of questions that might be asked on the second midterm exam. The sample exam questions do not represent the length

More information

Einführung in die Programmierung Introduction to Programming

Einführung in die Programmierung Introduction to Programming Chair of Software Engineering Einführung in die Programmierung Introduction to Programming Prof. Dr. Bertrand Meyer Exercise Session 9 Today Ø Feedback on the mock exam Ø Recursion Ø Recursion Recursion

More information

4/27/2014. Templates II. Warmup Write the templated Swap function. Class Templates CMSC 202

4/27/2014. Templates II. Warmup Write the templated Swap function. Class Templates CMSC 202 Templates II CMSC 202 Warmup Write the templated Swap function void Swap( T& a, T& b ) T temp = a; a = b; b = temp; Class Templates Fundamental Idea Define classes that operate on various types of objects

More information

CSE 143. Complexity Analysis. Program Efficiency. Constant Time Statements. Big Oh notation. Analyzing Loops. Constant Time Statements (2) CSE 143 1

CSE 143. Complexity Analysis. Program Efficiency. Constant Time Statements. Big Oh notation. Analyzing Loops. Constant Time Statements (2) CSE 143 1 CSE 1 Complexity Analysis Program Efficiency [Sections 12.1-12., 12., 12.9] Count number of instructions executed by program on inputs of a given size Express run time as a function of the input size Assume

More information

Unit #2: Recursion, Induction, and Loop Invariants

Unit #2: Recursion, Induction, and Loop Invariants Unit #2: Recursion, Induction, and Loop Invariants CPSC 221: Algorithms and Data Structures Will Evans 2012W1 Unit Outline Thinking Recursively Recursion Examples Analyzing Recursion: Induction and Recurrences

More information

Introduction to the C programming language

Introduction to the C programming language Introduction to the C programming language Lists and Trees Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa March 10, 2010 Outline 1 Searching 2 Lists 3 Balanced Binary Trees

More information

Introduction to the C programming language

Introduction to the C programming language Introduction to the C programming language Lists and Trees Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa March 10, 2010 Outline 1 Searching 2 Lists 3 Balanced Binary Trees

More information

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive)

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive) Final Exam Exercises Chapters 1-7 + 11 Write C++ code to: l Determine if a number is odd or even CS 2308 Fall 2016 Jill Seaman l Determine if a number/character is in a range - 1 to 10 (inclusive) - between

More information

selectors, methodsinsert() andto_string() the depth of a tree and a membership function

selectors, methodsinsert() andto_string() the depth of a tree and a membership function Binary Search Trees 1 Sorting Numbers using a Tree a sorting algorithm using a tree of integer numbers 2 Header Files defining a node struct defining a tree class 3 Definition of Methods selectors, methodsinsert()

More information

Name: UTLN: CS login: Comp 15 Data Structures Midterm 2018 Summer

Name: UTLN: CS login: Comp 15 Data Structures Midterm 2018 Summer [Closed book exam] There are 7 questions leading up to 100 points. Max alloted time: 1 hour Problem 1 (2x10=20 points). Fill in the blanks in terms of the big-theta (Θ) notation to show the asymptotic

More information

Figure 18.4 A Unix directory. 02/13/03 Lecture 11 1

Figure 18.4 A Unix directory. 02/13/03 Lecture 11 1 Figure 18.4 A Unix directory 02/13/03 Lecture 11 1 Figure 18.7 The Unix directory with file sizes 02/13/03 Lecture 11 2 Figure 18.11 Uses of binary trees: (a) an expression tree and (b) a Huffman coding

More information

STUDENT LESSON AB30 Binary Search Trees

STUDENT LESSON AB30 Binary Search Trees STUDENT LESSON AB30 Binary Search Trees Java Curriculum for AP Computer Science, Student Lesson AB30 1 STUDENT LESSON AB30 Binary Search Trees INTRODUCTION: A binary tree is a different kind of data structure

More information

UEE1303(1070) S12: Object-Oriented Programming Constant Pointer and Class

UEE1303(1070) S12: Object-Oriented Programming Constant Pointer and Class UEE1303(1070) S12: Object-Oriented Programming Constant Pointer and Class What you will learn from Lab 4 In this laboratory, you will learn how to use const to identify constant pointer and the basic of

More information

COMP 11 Class 17 Outline

COMP 11 Class 17 Outline COMP 11 Class 17 Outline Topics: Dynamic Arrays and Memory 2 Approach: Main Ideas: Discussion, Explanation, Discussion Memory allocation and pointers 1. Admin a) Sentegy Study Announcment b) Project 2A

More information

Figure 18.4 A Unix directory. 02/10/04 Lecture 9 1

Figure 18.4 A Unix directory. 02/10/04 Lecture 9 1 Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss 2002 Addison Wesley Figure 18.4 A Unix directory 02/10/04 Lecture 9 1 Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss 2002

More information

Data Structures Lab II. Binary Search Tree implementation

Data Structures Lab II. Binary Search Tree implementation Data Structures Lab II Binary Search Tree implementation Objectives: Making students able to understand basic concepts relating to Binary Search Tree (BST). Making students able to implement Binary Search

More information

CHAPTER 2.2 CONTROL STRUCTURES (ITERATION) Dr. Shady Yehia Elmashad

CHAPTER 2.2 CONTROL STRUCTURES (ITERATION) Dr. Shady Yehia Elmashad CHAPTER 2.2 CONTROL STRUCTURES (ITERATION) Dr. Shady Yehia Elmashad Outline 1. C++ Iterative Constructs 2. The for Repetition Structure 3. Examples Using the for Structure 4. The while Repetition Structure

More information

INTRODUCTION TO C++ FUNCTIONS. Dept. of Electronic Engineering, NCHU. Original slides are from

INTRODUCTION TO C++ FUNCTIONS. Dept. of Electronic Engineering, NCHU. Original slides are from INTRODUCTION TO C++ FUNCTIONS Original slides are from http://sites.google.com/site/progntut/ Dept. of Electronic Engineering, NCHU Outline 2 Functions: Program modules in C Function Definitions Function

More information

(Constructor) public A (int n){ for (int i = 0; i < n; i++) { new A(i); } System.out.println("*"); }

(Constructor) public A (int n){ for (int i = 0; i < n; i++) { new A(i); } System.out.println(*); } !!#!#"! (Constructor) A public A (int n){ for (int i = 0; i < n; i++) { new A(i); System.out.println("*"); % 1. new A(0); 2. new A(1); 3. new A(2); 4. new A(3); & ) n 5. A a = new A(n);! '#" +"()* " %floating

More information

CS1 Recitation. Week 2

CS1 Recitation. Week 2 CS1 Recitation Week 2 Sum of Squares Write a function that takes an integer n n must be at least 0 Function returns the sum of the square of each value between 0 and n, inclusive Code: (define (square

More information

34. Recursion. Java. Summer 2008 Instructor: Dr. Masoud Yaghini

34. Recursion. Java. Summer 2008 Instructor: Dr. Masoud Yaghini 34. Recursion Java Summer 2008 Instructor: Dr. Masoud Yaghini Outline Introduction Example: Factorials Example: Fibonacci Numbers Recursion vs. Iteration References Introduction Introduction Recursion

More information

Chapter 4 Functions By C.K. Liang

Chapter 4 Functions By C.K. Liang 1 Chapter 4 Functions By C.K. Liang What you should learn? 2 To construct programs modularly from small pieces called functions Math functions in C standard library Create new functions Pass information

More information

CmpSci 187: Programming with Data Structures Spring 2015

CmpSci 187: Programming with Data Structures Spring 2015 CmpSci 187: Programming with Data Structures Spring 2015 Lecture #17, Implementing Binary Search Trees John Ridgway April 2, 2015 1 Implementing Binary Search Trees Review: The BST Interface Binary search

More information

Recursion. Example R1

Recursion. Example R1 Recursion Certain computer problems are solved by repeating the execution of one or more statements a certain number of times. So far, we have implemented the repetition of one or more statements by using

More information

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion Consider the following recursive function: int what ( int x, int y) if (x > y) return what (x-y, y); else if (y > x) return what (x, y-x);

More information

8/5/10 TODAY'S OUTLINE. Recursion COMP 10 EXPLORING COMPUTER SCIENCE. Revisit search and sorting using recursion. Recursion WHAT DOES THIS CODE DO?

8/5/10 TODAY'S OUTLINE. Recursion COMP 10 EXPLORING COMPUTER SCIENCE. Revisit search and sorting using recursion. Recursion WHAT DOES THIS CODE DO? 8/5/10 TODAY'S OUTLINE Recursion COMP 10 EXPLORING COMPUTER SCIENCE Revisit search and sorting using recursion Binary search Merge sort Lecture 8 Recursion WHAT DOES THIS CODE DO? A function is recursive

More information

Two Approaches to Algorithms An Example (1) Iteration (2) Recursion

Two Approaches to Algorithms An Example (1) Iteration (2) Recursion 2. Recursion Algorithm Two Approaches to Algorithms (1) Iteration It exploits while-loop, for-loop, repeat-until etc. Classical, conventional, and general approach (2) Recursion Self-function call It exploits

More information

Unit #3: Recursion, Induction, and Loop Invariants

Unit #3: Recursion, Induction, and Loop Invariants Unit #3: Recursion, Induction, and Loop Invariants CPSC 221: Basic Algorithms and Data Structures Anthony Estey, Ed Knorr, and Mehrdad Oveisi 2016W2 Unit Outline I Thinking Recursively I Recursion Examples

More information

24-Oct-18. Lecture No.08. Trace of insert. node 17, 9, 14, 5. p->setright( node );

24-Oct-18. Lecture No.08. Trace of insert. node 17, 9, 14, 5. p->setright( node ); Lecture No.08 Trace of insert p 16 20 1,,, node 1 p->setright( node ); 1 Cost of Search Given that a binary tree is level d deep. How long does it take to find out whether a number is already present?

More information

! Determine if a number is odd or even. ! Determine if a number/character is in a range. - 1 to 10 (inclusive) - between a and z (inclusive)

! Determine if a number is odd or even. ! Determine if a number/character is in a range. - 1 to 10 (inclusive) - between a and z (inclusive) Final Exam Exercises CS 2308 Spring 2014 Jill Seaman Chapters 1-7 + 11 Write C++ code to: Determine if a number is odd or even Determine if a number/character is in a range - 1 to 10 (inclusive) - between

More information

CHAPTER 4 FUNCTIONS. Dr. Shady Yehia Elmashad

CHAPTER 4 FUNCTIONS. Dr. Shady Yehia Elmashad CHAPTER 4 FUNCTIONS Dr. Shady Yehia Elmashad Outline 1. Introduction 2. Program Components in C++ 3. Math Library Functions 4. Functions 5. Function Definitions 6. Function Prototypes 7. Header Files 8.

More information

CS103L SPRING 2017 UNIT 8: RECURSION

CS103L SPRING 2017 UNIT 8: RECURSION CS103L SPRING 2017 UNIT 8: RECURSION RECURSION A recursion function is defined in terms of itself Applies to math, e.g. recursion relations, sequences Fibonacci: F 0 = 1, F 1 = 1, F n = F n-1 + F n-2 Applies

More information

recursive algorithms 1

recursive algorithms 1 COMP 250 Lecture 11 recursive algorithms 1 Oct. 2, 2017 1 Example 1: Factorial (iterative)! = 1 2 3 1 factorial( n ){ // assume n >= 1 result = 1 for (k = 2; k

More information

Unit #3: Recursion, Induction, and Loop Invariants

Unit #3: Recursion, Induction, and Loop Invariants Unit #3: Recursion, Induction, and Loop Invariants CPSC 221: Basic Algorithms and Data Structures Jan Manuch 2017S1: May June 2017 Unit Outline Thinking Recursively Recursion Examples Analyzing Recursion:

More information

CS 211: Recursion. Chris Kauffman. Week 13-1

CS 211: Recursion. Chris Kauffman. Week 13-1 CS 211: Recursion Chris Kauffman Week 13-1 Front Matter Today P6 Questions Recursion, Stacks Labs 13: Due today 14: Review and evals Incentive to attend lab 14, announce Tue/Wed End Game 4/24 Mon P6, Comparisons

More information

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion Review from Lectures 5 & 6 Arrays and pointers, Pointer arithmetic and dereferencing, Types of memory ( automatic, static,

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Linked Lists Implementation of the Bag ADT Kostas Alexis Consider we need to store data, we need to store data of certain type and we need to have a specific way

More information

Lecture No.07. // print the final avaerage wait time.

Lecture No.07. // print the final avaerage wait time. Lecture No.0 Code for Simulation // print the final avaerage wait time. double avgwait = (totaltime*1.0)/count; cout

More information

Binary Search Trees 1

Binary Search Trees 1 Binary Search Trees 1 The Problem with Linked Lists 8Accessing a item from a linked list takes O(N) time for an arbitrary element 8Binary trees can improve upon this and reduce access to O( log N ) time

More information

! Determine if a number is odd or even. ! Determine if a number/character is in a range. - 1 to 10 (inclusive) - between a and z (inclusive)

! Determine if a number is odd or even. ! Determine if a number/character is in a range. - 1 to 10 (inclusive) - between a and z (inclusive) Final Exam Exercises Chapters 1-7 + 11 Write C++ code to:! Determine if a number is odd or even CS 2308 Fall 2018 Jill Seaman! Determine if a number/character is in a range - 1 to 10 (inclusive) - between

More information

CS 101: Computer Programming and Utilization

CS 101: Computer Programming and Utilization CS 101: Computer Programming and Utilization Jul - Nov 2016 Bernard Menezes (cs101@cse.iitb.ac.in) Lecture 13: Recursive Functions About These Slides Based on Chapter 10 of the book An Introduction to

More information

Lecture 8 Recursion. The Mirrors

Lecture 8 Recursion. The Mirrors Lecture 8 Recursion The Mirrors Lecture Outline Recursion: Basic Idea, Factorial Iteration versus Recursion How Recursion Works Recursion: How to More Examples on Recursion Printing a Linked List (in Reverse)

More information

Chapter 17: Linked Lists

Chapter 17: Linked Lists Chapter 17: Linked Lists 17.1 Introduction to the Linked List ADT Introduction to the Linked List ADT Linked list: set of data structures (nodes) that contain references to other data structures list head

More information

Recursion. ! When the initial copy finishes executing, it returns to the part of the program that made the initial call to the function.

Recursion. ! When the initial copy finishes executing, it returns to the part of the program that made the initial call to the function. Recursion! A Recursive function is a functions that calls itself.! Recursive functions can be useful in solving problems that can be broken down into smaller or simpler subproblems of the same type.! A

More information

Binary Node. private Object element; private BinaryNode left; private BinaryNode right; 02/18/03 Lecture 12 1

Binary Node. private Object element; private BinaryNode left; private BinaryNode right; 02/18/03 Lecture 12 1 Binary Node class BinaryNode public BinaryNode( ) this( null, null, null ); public BinaryNode( Object theelement,binarynode lt,binarynode rt); public static int size( BinaryNode t ); // size of subtree

More information

The cin Object. cout << "Enter the length and the width of the rectangle? "; cin >> length >> width;

The cin Object. cout << Enter the length and the width of the rectangle? ; cin >> length >> width; The cin Object Short for console input. It is used to read data typed at the keyboard. Must include the iostream library. When this instruction is executed, it waits for the user to type, it reads the

More information

UEE1302(1066) F12: Introduction to Computers and Programming Function (II) - Parameter

UEE1302(1066) F12: Introduction to Computers and Programming Function (II) - Parameter UEE1302(1066) F12: Introduction to Computers and Programming Function (II) - Parameter What you will learn from Lab 7 In this laboratory, you will understand how to use typical function prototype with

More information

Recursion. General Algorithm for Recursion. When to use and not use Recursion. Recursion Removal. Examples

Recursion. General Algorithm for Recursion. When to use and not use Recursion. Recursion Removal. Examples Recursion General Algorithm for Recursion When to use and not use Recursion Recursion Removal Examples Comparison of the Iterative and Recursive Solutions Exercises Unit 19 1 General Algorithm for Recursion

More information

// Pointer to the first thing in the list

// Pointer to the first thing in the list Linked Lists Dynamic variables combined with structs or classes can be linked together to form dynamic lists or other structures. We define a record (called a node) that has at least two members: next

More information

Chapter 5: Control Structures II (Repetition) Objectives (cont d.) Objectives. while Looping (Repetition) Structure. Why Is Repetition Needed?

Chapter 5: Control Structures II (Repetition) Objectives (cont d.) Objectives. while Looping (Repetition) Structure. Why Is Repetition Needed? Chapter 5: Control Structures II (Repetition) Objectives In this chapter, you will: Learn about repetition (looping) control structures Explore how to construct and use countercontrolled, sentinel-controlled,

More information

CMSC 202 Midterm Exam 1 Fall 2015

CMSC 202 Midterm Exam 1 Fall 2015 1. (15 points) There are six logic or syntax errors in the following program; find five of them. Circle each of the five errors you find and write the line number and correction in the space provided below.

More information

COMP-202. Recursion. COMP Recursion, 2011 Jörg Kienzle and others

COMP-202. Recursion. COMP Recursion, 2011 Jörg Kienzle and others COMP-202 Recursion Recursion Recursive Definitions Run-time Stacks Recursive Programming Recursion vs. Iteration Indirect Recursion Lecture Outline 2 Recursive Definitions (1) A recursive definition is

More information

What is recursion? Recursion. How can a function call itself? Recursive message() modified. Week 10. contains a reference to itself.

What is recursion? Recursion. How can a function call itself? Recursive message() modified. Week 10. contains a reference to itself. Recursion What is recursion? Week 10 Generally, when something contains a reference to itself Gaddis:19.1-19.5 CS 5301 Spring 2014 Jill Seaman 1 Math: defining a function in terms of itself Computer science:

More information

RECURSION, RECURSION, (TREE) RECURSION! 3

RECURSION, RECURSION, (TREE) RECURSION! 3 RECURSION, RECURSION, (TREE) RECURSION! 3 COMPUTER SCIENCE 61A September 18, 2013 A function is recursive if it calls itself. Below is recursive factorial function. def factorial(n): if n == 0 or n ==

More information

For loops, nested loops and scopes. Jordi Cortadella Department of Computer Science

For loops, nested loops and scopes. Jordi Cortadella Department of Computer Science For loops, nested loops and scopes Jordi Cortadella Department of Computer Science Outline For loops Scopes Nested loops Introduction to Programming Dept. CS, UPC 2 Calculate x y Algorithm: repeated multiplication

More information

Search,Sort,Recursion

Search,Sort,Recursion Search,Sort,Recursion Searching, Sorting and Recursion Searching Linear Search Inserting into an Array Deleting from an Array Selection Sort Bubble Sort Binary Search Recursive Binary Search Searching

More information

C: How to Program. Week /Apr/16

C: How to Program. Week /Apr/16 C: How to Program Week 8 2006/Apr/16 1 Storage class specifiers 5.11 Storage Classes Storage duration how long an object exists in memory Scope where object can be referenced in program Linkage specifies

More information

UEE1303(1070) S12: Object-Oriented Programming Constructors and Destructors

UEE1303(1070) S12: Object-Oriented Programming Constructors and Destructors UEE1303(1070) S12: Object-Oriented Programming Constructors and Destructors What you will learn from Lab 5 In this laboratory, you will learn how to use constructor and copy constructor to create an object

More information

LAB 4.1 Relational Operators and the if Statement

LAB 4.1 Relational Operators and the if Statement LAB 4.1 Relational Operators and the if Statement // This program tests whether or not an initialized value of num2 // is equal to a value of num1 input by the user. int main( ) int num1, // num1 is not

More information

Chapter 3 - Functions

Chapter 3 - Functions Chapter 3 - Functions 1 Outline 3.1 Introduction 3.2 Program Components in C++ 3.3 Math Library Functions 3.4 Functions 3.5 Function Definitions 3.6 Function Prototypes 3.7 Header Files 3.8 Random Number

More information

CS427 Inheritance and Virtual Functions. Linked lists. 2/27. 01Replacement.cpp link! i n t GetY ( void ) { return ( y ) ; } ;

CS427 Inheritance and Virtual Functions. Linked lists. 2/27. 01Replacement.cpp link! i n t GetY ( void ) { return ( y ) ; } ; Inheritance and Virtual Functions. Linked lists. CS427 Lecture 12.2, 11am, 26th March 2012 In today s class 1 Recall... Inheritance 2 3 4 Limitations of arrays 5 Linked lists 6 7 8 Further linked list

More information

CS 161 Intro to CS I. Finish Pointers/Start Recursion

CS 161 Intro to CS I. Finish Pointers/Start Recursion CS 161 Intro to CS I Finish Pointers/Start Recursion 1 In-class Exercise #3 Understanding Pointers Create a pointer to a double, i.e. double *d; and three doubles d1, d2, and, d3 that get the values 7.8,

More information

Summer Session 2004 Prelim I July 12, CUID: NetID:

Summer Session 2004 Prelim I July 12, CUID: NetID: COM S / ENGRD 211 Computers and Programming Summer Session 2004 Prelim I July 12, 2004 Name: CUID: NetID: You have one hour and fifteen minutes to do this exam. All programs must be written in Java. Where

More information

https://cs.uiowa.edu/resources/events Searching an array Let R(N) be the running time to search for an integer in an unsorted array. Can we find an f(n) such that R N O(f N )? Searching an array Let R(N)

More information

COMP171 Data Structures and Algorithms Fall 2006 Midterm Examination

COMP171 Data Structures and Algorithms Fall 2006 Midterm Examination COMP171 Data Structures and Algorithms Fall 2006 Midterm Examination L1: Dr Qiang Yang L2: Dr Lei Chen Date: 6 Nov 2006 Time: 6-8p.m. Venue: LTA November 7, 2006 Question Marks 1 /12 2 /8 3 /25 4 /7 5

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 310 Advanced Data Structures and Algorithms Recursion June 27, 2017 Tong Wang UMass Boston CS 310 June 27, 2017 1 / 20 Recursion Recursion means defining something, such as a function, in terms of itself

More information

The Problem with Linked Lists. Topic 18. Attendance Question 1. Binary Search Trees. -Monty Python and The Holy Grail

The Problem with Linked Lists. Topic 18. Attendance Question 1. Binary Search Trees. -Monty Python and The Holy Grail Topic 18 Binary Search Trees "Yes. Shrubberies are my trade. I am a shrubber. My name is 'Roger the Shrubber'. I arrange, design, and sell shrubberies." -Monty Python and The Holy Grail The Problem with

More information

Tree traversals. Review: recursion Tree traversals. October 05, 2017 Cinda Heeren / Geoffrey Tien 1

Tree traversals. Review: recursion Tree traversals. October 05, 2017 Cinda Heeren / Geoffrey Tien 1 Tree traversals Review: recursion Tree traversals Cinda Heeren / Geoffrey Tien 1 Rabbits! What happens when you put a pair of rabbits in a field? More rabbits! Let s model the rabbit population, with a

More information

CSCI 101L - Data Structures. Practice problems for Final Exam. Instructor: Prof Tejada

CSCI 101L - Data Structures. Practice problems for Final Exam. Instructor: Prof Tejada CSCI 101L - Data Structures Practice problems for Final Exam Instructor: Prof Tejada 1 Problem 1. Debug this code Given the following code to increase the value of a variable: void Increment(int x) { x

More information

Recursion Chapter 8. What is recursion? How can a function call itself? How can a function call itself?

Recursion Chapter 8. What is recursion? How can a function call itself? How can a function call itself? Recursion Chapter 8 CS 3358 Summer I 2012 Jill Seaman What is recursion? Generally, when something contains a reference to itself Math: defining a function in terms of itself Computer science: when a function

More information

Outline. For loops, nested loops and scopes. Calculate x y. For loops. Scopes. Nested loops. Algorithm: repeated multiplication x x x x

Outline. For loops, nested loops and scopes. Calculate x y. For loops. Scopes. Nested loops. Algorithm: repeated multiplication x x x x Outline For loops, nested loops and scopes For loops Scopes Jordi Cortadella Department of Computer Science Nested loops Calculate x y Algorithm: repeated multiplication x x x x y times y x i p=x i 4 3

More information

Control Structures of C++ Programming (2)

Control Structures of C++ Programming (2) Control Structures of C++ Programming (2) CISC1600/1610 Computer Science I/Lab Fall 2016 CISC 1600 Yanjun Li 1 Loops Purpose: Execute a block of code multiple times (repeat) Types: for, while, do/while

More information

CS 231 Data Structures and Algorithms Fall Binary Search Trees Lecture 23 October 29, Prof. Zadia Codabux

CS 231 Data Structures and Algorithms Fall Binary Search Trees Lecture 23 October 29, Prof. Zadia Codabux CS 231 Data Structures and Algorithms Fall 2018 Binary Search Trees Lecture 23 October 29, 2018 Prof. Zadia Codabux 1 Agenda Ternary Operator Binary Search Tree Node based implementation Complexity 2 Administrative

More information

Recursion Chapter 8. What is recursion? How can a function call itself? How can a function call itself? contains a reference to itself.

Recursion Chapter 8. What is recursion? How can a function call itself? How can a function call itself? contains a reference to itself. Recursion Chapter 8 CS 3358 Summer II 2013 Jill Seaman What is recursion?! Generally, when something contains a reference to itself! Math: defining a function in terms of itself! Computer science: when

More information

Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A

Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A Jordan University of Science & Technology Department of Computer Science CS 211 Exam #1 (23/10/2010) -- Form A Name: ID#: Section #: Day & Time: Instructor: Answer all questions as indicated. Closed book/closed

More information

CS101: Fundamentals of Computer Programming. Dr. Tejada www-bcf.usc.edu/~stejada Week 14: Recursion

CS101: Fundamentals of Computer Programming. Dr. Tejada www-bcf.usc.edu/~stejada Week 14: Recursion CS101: Fundamentals of Computer Programming Dr. Tejada stejada@usc.edu www-bcf.usc.edu/~stejada Week 14: Recursion Recursion in Nature 2 The Art of Problem Solving It has been proven that the process of

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution 1. (40 points) Write the following subroutine in x86 assembly: Recall that: int f(int v1, int v2, int v3) { int x = v1 + v2; urn (x + v3) * (x v3); Subroutine arguments are passed on the stack, and can

More information

Lecture 10: Recursive Functions. Computer System and programming in C 1

Lecture 10: Recursive Functions. Computer System and programming in C 1 Lecture 10: Recursive Functions Computer System and programming in C 1 Outline Introducing Recursive Functions Format of recursive Functions Tracing Recursive Functions Examples Tracing using Recursive

More information

1 Short Answer (8 Points Each)

1 Short Answer (8 Points Each) 1 Short Answer (8 Points Each) 1. State the definitions of Big-O, Big-Ω, and Big-Θ. Big-O (Upper Bound): A function f(x) is O(g(x)) if and only if there exist a constant C and a constant k such that, for

More information

CMPSCI 250: Introduction to Computation. Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013

CMPSCI 250: Introduction to Computation. Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013 CMPSCI 250: Introduction to Computation Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013 Induction and Recursion Three Rules for Recursive Algorithms Proving

More information

Midterm Practice TA: Brian Choi Section Webpage:

Midterm Practice TA: Brian Choi Section Webpage: Midterm Practice TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs32 *** Make sure you try all exercises by hand! You won t have access to Visual C++ during the exam.

More information

CS Week 14. Jim Williams, PhD

CS Week 14. Jim Williams, PhD CS 200 - Week 14 Jim Williams, PhD This Week 1. Final Exam: Conflict Alternatives Emailed 2. Team Lab: Object Oriented Space Game 3. BP2 Milestone 3: Strategy 4. Lecture: More Classes and Additional Topics

More information

COMP 202 Recursion. CONTENTS: Recursion. COMP Recursion 1

COMP 202 Recursion. CONTENTS: Recursion. COMP Recursion 1 COMP 202 Recursion CONTENTS: Recursion COMP 202 - Recursion 1 Recursive Thinking A recursive definition is one which uses the word or concept being defined in the definition itself COMP 202 - Recursion

More information

Koch snowflake. Fractal Fern

Koch snowflake. Fractal Fern CSC 111: Recursive Methods Fractals: Self Similar Shapes http://en.wikipedia.org/wiki/fractal Koch snowflake Fractal Fern Functions: Example Problem Factorial of a number: 0! = 1 Factorial(N)= 1! = 1 Product

More information

TREES. Tree Overview 9/28/16. Prelim 1 tonight! Important Announcements. Tree terminology. Binary trees were in A1!

TREES. Tree Overview 9/28/16. Prelim 1 tonight! Important Announcements. Tree terminology. Binary trees were in A1! //16 Prelim 1 tonight! :3 prelim is very crowded. You HAVE to follow these directions: 1. Students taking the normal :3 prelim (not the quiet room) and whose last names begin with A through Da MUST go

More information

CS 315 April 1. Goals: Heap (Chapter 6) continued review of Algorithms for Insert DeleteMin. algoritms for decrasekey increasekey Build-heap

CS 315 April 1. Goals: Heap (Chapter 6) continued review of Algorithms for Insert DeleteMin. algoritms for decrasekey increasekey Build-heap CS 315 April 1 Goals: Heap (Chapter 6) continued review of Algorithms for Insert DeleteMin percolate-down algoritms for decrasekey increasekey Build-heap heap-sorting, machine scheduling application Binary

More information

What is Recursion? ! Each problem is a smaller instance of itself. ! Implemented via functions. ! Very powerful solving technique.

What is Recursion? ! Each problem is a smaller instance of itself. ! Implemented via functions. ! Very powerful solving technique. Recursion 1 What is Recursion? Solution given in terms of problem. Huh? Each problem is a smaller instance of itself. Implemented via functions. Very powerful solving technique. Base Case and Recursive

More information

CSC148-Section:L0301

CSC148-Section:L0301 Slides adapted from Professor Danny Heap course material winter17 CSC148-Section:L0301 Week#9-Monday Instructed by AbdulAziz Al-Helali a.alhelali@mail.utoronto.ca Office hours: Wednesday 11-1, BA2230.

More information

Binary Search Trees Part Two

Binary Search Trees Part Two Binary Search Trees Part Two Recap from Last Time Binary Search Trees A binary search tree (or BST) is a data structure often used to implement maps and sets. The tree consists of a number of nodes, each

More information

Practice question Answers

Practice question Answers Practice question Answers COMP-322, Winter 2012, All Sections These questions are not necessarily the same as a final as they aren t necessarily exactly representative of the degree of difficulty, length,

More information

Lecture 3. Review. CS 141 Lecture 3 By Ziad Kobti -Control Structures Examples -Built-in functions. Conditions: Loops: if( ) / else switch

Lecture 3. Review. CS 141 Lecture 3 By Ziad Kobti -Control Structures Examples -Built-in functions. Conditions: Loops: if( ) / else switch Lecture 3 CS 141 Lecture 3 By Ziad Kobti -Control Structures Examples -Built-in functions Review Conditions: if( ) / else switch Loops: for( ) do...while( ) while( )... 1 Examples Display the first 10

More information

Why Is Repetition Needed?

Why Is Repetition Needed? Why Is Repetition Needed? Repetition allows efficient use of variables. It lets you process many values using a small number of variables. For example, to add five numbers: Inefficient way: Declare a variable

More information

Examples

Examples Examples 1 Example [ proper binary tree properties ] Draw a proper binary tree with exactly 3 internal vertices and exactly 10 leaves. If not possible, explain why no such tree exists. Recall: the root

More information