Worksheet #4. Foundations of Programming Languages, WS 2014/15. December 4, 2014

Size: px
Start display at page:

Download "Worksheet #4. Foundations of Programming Languages, WS 2014/15. December 4, 2014"

Transcription

1 Worksheet #4 Foundations of Programming Languages, WS 2014/15 December 4, 2014 In this exercise we will re-examine the techniques used for automatic memory management and implement a Cheney-style garbage collector for AttoVM. 0.1 Collaboration and Submission The maximum amount of points you can get for this exercise is 100; if your points for individual tasks sum up to a greater amount, your score will be capped at 100. You can omit some questions and still get full credit. Specifically, sections labelled as [warm-up] don t give you any credit and don t need answering, though they are strongly recommended as means to prepare you for the actual worksheet challenges. Also, questions marked with a do not need answering. Some questions ask you for code changes. Make sure to submit code changes for different sections separately. Other questions ask you for textual answers. Put all of your textual answers into a single text file (ANSWERS). Submit this one SEPARATELY from your source code. You may work alone or as a team of two. If you are working in a team, make sure to write down the name of your partner in the ANSWERS file. For this question and the following, put all of your textual answers into a separate file. Submit this file separately from your code and do not commit it to the revision control system. Initial submissions are due at 20:00 on Wednesday, December 10th. This is for code only. Your solution need not be complete, but it should show progress. After your submission, we will send you two (partial) solutions from other students to look at. You can write feedback to those solutions, which we will distribute back to your peers. The TA will discuss the details of this process with you. Final submissions are due at 20:00 on Wednesday, December 17th. This is for code and the ANSWERS file. If you changed your code after the initial submission, you must explain the reasoning behind your changes in the ANSWERS file. You can cite code that you reviewed, feedback that you got during the review process, additional tests that you ran, or suitable documentation as sources. You must give a technical explanation for why you chose to change your code, in your own words (e.g., I had to add a separate check here to catch whether $v0 overflows during the addition, since that is what the specification asks for. In that case, my code jumps to label foo, which sets $v0 to zero. ) 1

2 0.2 AttoVM installation Your copy of AttoVM is again stored in a git revision control system. The repositories for the exercises will be: git@sepl.cs.uni-frankfurt.de:mps/teamx/3-1 git@sepl.cs.uni-frankfurt.de:mps/teamx/3-2 git@sepl.cs.uni-frankfurt.de:mps/teamx/3-3 (substitute your own team name for teamx.) This copy of AttoVM has been extended to generate helper information such as stack maps to help you implement garbage collection. Appendix A describes helpful information you may need for this exercise or point you to the relevant modules. To simplify your implementation, we have already provided a skeleton implementation for you to use. You MAY use alternative implementation strategies, as long as you implement a fully oprerational Cheney-style copying garbage collector. This exercise makes heavy use of pointers. You may find it helpful to review the semantics of pointers in Appendix B. Valgrind Use valgrind to check your code for memory errors. When handling raw pointers, it is easy to cause a segmentation fault; valgrind will not only give you meaningful error messages but also help you detect memory errors early. 1 Finding the Root Set [30 points] Copying collection consists of several steps, as discussed in the slides and lecture module on Cheney s Copying Collector. We begin with the search for the root set. AttoVM has a number of useful properties: No heap references are kept in registers during heap allocation. No part of the run-time system may maintain a reference to any object on the AttoVM heap. Thus, the root set consists exclusively of references on the stack and in the global variables. a. To get started, compile AttoVM and download the benchmark program suite from http: // Each of the atl programs in the archive requires more RAM than AttoVM pre-allocates. Run each program to make sure that AttoVM crashes with an out of memory message. b. In this exercise, you will be modifying heap.c exclusively. (You may modify other parts of the system if this helps you, e.g., to print out debug messages, but it is definitely not necesary.) Locate the code that prints the offending error message in heap.c. c. Take a moment to familiarise yourself with the operations in heap.c and heap.h. The purpose of this module is to facilitate dynamic heap allocation. heap init() and heap free() initialise and free the heap, respectively. Heap allocation uses special operating system calls that map heap memory to a particular memory address (0x and above). The allocated memory is then split in half, with each half assigned to a semi-space. Appendix A.2 explains semi-spaces in more detail. d. For testing, set up function gc move() so that it prints out something. (As a start, just a simple string might suffice, but later you may find it helpful to print out the parameter address; e.g., printf("move(%p) points to %p\n", memref, *memref).) 2

3 e. Implement gc rootset static(): it should iterate over all global variables and call gc move() to relocate all variables that are of type TYPE OBJ (of course, right now gc move() will only print out debug information). You can use information from the variable img to help you find the globals. Specifically, img is the runtime image, containing all information needed to start up the compiled program. When garbage collection is invoked you are of course already within that compiled program, but most of the information is still accurate. Check runtime.h for a full description. For this exercise, you will only need: img->globals nr (number of global variables) img->globals (symbols for each global variable) img->static memory (memory containing the global variables) The symbols in the int array img->globals reference the symbol table. Using symtab lookup() (symbol-table.h) you can look up each symbol s definition. You can then use SYMTAB TYPE() to check whether the symbol has type TYPE OBJ. If so, the corresponding global variable contains either an object or NULL, and if it contains an object, the object must be moved and the global variable updated to point to the object s new location. Make the system invoke your gc rootset static(), and make sure that the output matches your expectations. f. Implement gc rootset stack(). For this operation, you may find it helpful to recall calling conventions on x86-64, especially Section 4.3 in ws/m-ps/asm-docs.pdf. Note that frame pointers always point to backups of their parent frame pointers, so they form a linked list in RAM. You may find it helpful to break down the process into the following steps: (i) Find all stack frames (activation records) from the stack frame that invoked garbage collection down to heap root frame pointer, which is the frame pointer of the loader program that started AttoVM execution. (ii) For each stack frame, determine the subroutine that called this function and obtain its stack map. You can use stackmap get() from stackmap.h to access AttoVM s pre-computed stack maps. Note that stackmap get() s first parameter takes a return address (not a frame pointer). Hint: Since stackmap get() gives you the stack map for the code containing the return address, make sure that you associate its stack map with the correct stack frame! Make the system invoke your gc rootset stack(). g. Validate that gc rootset stack() produces the expected output. In particular, most of your calls to stackmap get() should be successful (exceptions being non-attol stack frames, such as the loader or the heap allocation function), and all addresses that the stack frame indicates to be objects should be either NULL or point into from-space. 2 Move [30 points] a. Implement the gc move() operation, as described in the slides for Cheney s collector. Note the following resources: object size() in heap.c memcpy(d, s, n) copies n bytes from the address that s points to to the address that d points to. Hint: heap.c already contains some useful helper functions. You may want to search for functions that contain the term forwarding pointer. 3

4 b. Use valgrind to ensure that your code does not introduce any memory errors yet. 3 Copying Collection [30 points] a. Implement the DoScan operation from the slides as the gc scan() operation in heap.c. To determine the layout of an object in memory (cf. object t in object.h) you can use the object maps stored in their type descriptor (Appendix A.4). b. Confirm that your extended version of AttoVM is able finish executing all benchmarks in the archive. A AttoVM Background A.1 Variables, Memory and AttoVM In most VMs, fields (on the heap), stack-dynamic variables and static globals can be one of two things: values, such as integers or floating point numbers, and objects, meaning that they are either NULL or point to a valid heap address. The heap memory that objects point to follows the usual idea of a homogeneous memory layout (Appendix A.4). In your version of AttoVM, objects are identified by the type TYPE OBJ. All other fields, globals, local variables etc. are integers (type TYPE INT). Arrays, strings, and other objects are stored as objects. Both objects and integers are stored in 64 bit words (8 bytes). A.2 Semispaces Cheney-style copying garbage collection splits the heap into two two semi-spaces, called to-space (the space that we allocate to) from-space (the space that we copy from during garbage collection). AttoVM currently allocates memory by increasing the heap free pointer. The heap free pointer always points between the beginning and end of the to-space, and as soon as it hits the end of to-space, garbage collection is triggered. A.3 AttoVM Bit Vectors AttoVM bit vectors store a sequence of bits (0 or 1). Their API is described in bitvector.h. For this exercise, you will only need to use two operations: bitvector size(bitvector), which returns the number of bits stored in the bit vector, and The is-set check, as in BITVECTOR IS SET(bitvector, bitnr) which returns zero if the bit is not set and one otherwise. 4

5 a a[0] a[1] a[2] a[3] one byte a0p a1p a2p sizeof(int) * 2 cp cp3 sizeof(char) * 3 int a[4] =...; int *a0p = &a[0]; int *a1p = a0p + 1; int *a2p = a0p + 2; char *cp = (char *)a2p; char *cp3 = cp + 3; Figure 1: Example of arrays, pointers, and pointer arithmetic in C. The grid represents individual bytes. Assumptions: sizeof(int) = 4, sizeof(char) = 1. A.4 AttoVM Objects and Object Maps AttoVM objects fall into two categories: Regular objects (most objects) Irregular objects (only arrays and strings). Both regular and irregular objects follow the following layout: class t classref: Dynamic type descriptor (8 bytes) field[0] First field, if allocated (8 bytes) field[1] Second field, if allocated (8 bytes)... The dynamic type descriptor classref is described in class.h. It maintains a hashtable for selector lookups, the virtual method table, object map. For regular objects, this object map describes for each field whether that field stores objects (1) or not (0). The object map is again a bitvector (see above). For irregular objects, the fields follow the follwing rules: strings: Strings contain no sub-objects. Their first field contains the number of characters; the string body is encoded in subsequent fields. Given the string length, we can compute how much space it uses up in memory (cf. object size). arrays: The first field (index 0) of an array stores how many entries there are in the array. All subsequent fields store those exact entries. All array entries are objects 1. B Pointers Garbage collection makes heavy use of pointers. Keeping pointers and pointees apart can take some practice, and even experienced programmers occasionally mix up the various levels of abstraction involved in pointer handling. Thus, take care to think about what pointers you are dealing with. Recall the C primitives: int* p; declares p to have the type of a pointer to an int. This means that the variable p has one binding (the storage binding) that is able to store arbitrary memory addresses, and another binding (the value binding) that represents the current address stored in p. 1 This is actually configurable, but for this exercise we assume the default, i.e., objects. 5

6 In C, assigning to or reading from p accesses its storage binding. However, there are also ways to access the value binding, described below. *p accesses a pointer s value binding. If p is int*, then *p is an int. We can assign to and read from *p, thereby accessing the variable that p points to. Note that pointers may be pointers to pointers etc., in which case expressions such as **p may arise. Let int i. Then &i is of type int * and represents the address at which the variable i is stored in memory. For example, if p is int*, as above, then &p is of type int**. The actual in-memory size of a C data type τ can be computed by calling sizeof(τ). On x86-64 machines, we have sizeof(τ *) = 8 for any pointer and sizeof(char) = 1 or sizeof(unsigned char) = 1. For that reason, unsigned char * and char * are often used as pointers if we want to operate in a byte-wise fashion. We can cast between pointers freely. If you have a void *z and want to read a byte from it, you can write the following: *(unsigned char *)z Pointer arithmetic takes place when you have a number and add it to a pointer. In that case, the memory address changes by the number multiplied by the size of the object it is pointing at. So if (void **p) points to 0x1000, then (p + 1) points to 0x1008, but if (char *q) points to 0x1000, then (p + 1) points to 0x1001. Figure 1 illustrates a brief C example and the state of all pointers at the end. You can find tutorials on C pointers in various places 2, including a discussion in Kernighan & Ritchie s language manual. 2 such as tjensen/ptr/pointers.htm, especially Chapters 1 and 5. 6

HOT-Compilation: Garbage Collection

HOT-Compilation: Garbage Collection HOT-Compilation: Garbage Collection TA: Akiva Leffert aleffert@andrew.cmu.edu Out: Saturday, December 9th In: Tuesday, December 9th (Before midnight) Introduction It s time to take a step back and congratulate

More information

What goes inside when you declare a variable?

What goes inside when you declare a variable? Stack, heap, value types, reference types, boxing, and unboxing Introduction This article will explain six important concepts: stack, heap, value types, reference types, boxing, and unboxing. This article

More information

Programming Project 4: COOL Code Generation

Programming Project 4: COOL Code Generation CS 331 Compilers Fall 2017 Programming Project 4: COOL Code Generation Prof. Szajda Due Tuesday, December 5, 11:59:59 pm NOTE: There will be no extensions whatsoever given for this project! So, begin it

More information

Programming Assignment IV Due Thursday, November 18th, 2010 at 11:59 PM

Programming Assignment IV Due Thursday, November 18th, 2010 at 11:59 PM Programming Assignment IV Due Thursday, November 18th, 2010 at 11:59 PM 1 Introduction In this assignment, you will implement a code generator for Cool. When successfully completed, you will have a fully

More information

Lecture 8 Dynamic Memory Allocation

Lecture 8 Dynamic Memory Allocation Lecture 8 Dynamic Memory Allocation CS240 1 Memory Computer programs manipulate an abstraction of the computer s memory subsystem Memory: on the hardware side 3 @ http://computer.howstuffworks.com/computer-memory.htm/printable

More information

CS 553 Compiler Construction Fall 2006 Project #4 Garbage Collection Due November 27, 2005

CS 553 Compiler Construction Fall 2006 Project #4 Garbage Collection Due November 27, 2005 CS 553 Compiler Construction Fall 2006 Project #4 Garbage Collection Due November 27, 2005 In this assignment you will implement garbage collection for the MiniJava compiler. The project includes the two

More information

Compiling Techniques

Compiling Techniques Lecture 10: Introduction to 10 November 2015 Coursework: Block and Procedure Table of contents Introduction 1 Introduction Overview Java Virtual Machine Frames and Function Call 2 JVM Types and Mnemonics

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1 Announcements assign due tonight No late submissions Labs start this week Very helpful for assign1 Goals for Today Pointer operators Allocating memory in the heap malloc and free Arrays and pointer arithmetic

More information

Structure of Programming Languages Lecture 10

Structure of Programming Languages Lecture 10 Structure of Programming Languages Lecture 10 CS 6636 4536 Spring 2017 CS 6636 4536 Lecture 10: Classes... 1/23 Spring 2017 1 / 23 Outline 1 1. Types Type Coercion and Conversion Type Classes, Generics,

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

Spring 2016, Malloc Lab: Writing Dynamic Memory Allocator

Spring 2016, Malloc Lab: Writing Dynamic Memory Allocator 1. Introduction Spring 2016, Malloc Lab: Writing Dynamic Memory Allocator Assigned: Mar. 03 Due: Mar. 17, 15:59 In this lab you will be writing a dynamic memory allocator for C programs, i.e., your own

More information

Hacking in C. Pointers. Radboud University, Nijmegen, The Netherlands. Spring 2019

Hacking in C. Pointers. Radboud University, Nijmegen, The Netherlands. Spring 2019 Hacking in C Pointers Radboud University, Nijmegen, The Netherlands Spring 2019 Allocation of multiple variables Consider the program main(){ char x; int i; short s; char y;... } What will the layout of

More information

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS Pages 792 to 800 Anna Rakitianskaia, University of Pretoria INITIALISING POINTER VARIABLES Pointer variables are declared by putting

More information

Agenda. CSE P 501 Compilers. Java Implementation Overview. JVM Architecture. JVM Runtime Data Areas (1) JVM Data Types. CSE P 501 Su04 T-1

Agenda. CSE P 501 Compilers. Java Implementation Overview. JVM Architecture. JVM Runtime Data Areas (1) JVM Data Types. CSE P 501 Su04 T-1 Agenda CSE P 501 Compilers Java Implementation JVMs, JITs &c Hal Perkins Summer 2004 Java virtual machine architecture.class files Class loading Execution engines Interpreters & JITs various strategies

More information

CSC C69: OPERATING SYSTEMS

CSC C69: OPERATING SYSTEMS CSC C69: OPERATING SYSTEMS Tutorial 1 Thursday, Jan 17, 2013 TA: Ioan Stefanovici (ioan@cs.toronto.edu) HOW DO YOU SUCCEED IN THIS COURSE? Show up to lectures & tutorials (way too much material) Work on

More information

Introduction to Programming Using Java (98-388)

Introduction to Programming Using Java (98-388) Introduction to Programming Using Java (98-388) Understand Java fundamentals Describe the use of main in a Java application Signature of main, why it is static; how to consume an instance of your own class;

More information

Qualifying Exam in Programming Languages and Compilers

Qualifying Exam in Programming Languages and Compilers Qualifying Exam in Programming Languages and Compilers University of Wisconsin Fall 1991 Instructions This exam contains nine questions, divided into two parts. All students taking the exam should answer

More information

CS 251 Intermediate Programming Java Basics

CS 251 Intermediate Programming Java Basics CS 251 Intermediate Programming Java Basics Brooke Chenoweth University of New Mexico Spring 2018 Prerequisites These are the topics that I assume that you have already seen: Variables Boolean expressions

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

Java: framework overview and in-the-small features

Java: framework overview and in-the-small features Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Java: framework overview and in-the-small features Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 4 Introduction to C (pt 2) 2014-09-08!!!Senior Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia! C most popular! TIOBE programming

More information

C PROGRAMMING LANGUAGE. POINTERS, ARRAYS, OPERATORS AND LOOP. CAAM 519, CHAPTER5

C PROGRAMMING LANGUAGE. POINTERS, ARRAYS, OPERATORS AND LOOP. CAAM 519, CHAPTER5 C PROGRAMMING LANGUAGE. POINTERS, ARRAYS, OPERATORS AND LOOP. CAAM 519, CHAPTER5 1. Pointers As Kernighan and Ritchie state, a pointer is a variable that contains the address of a variable. They have been

More information

Introduction to C. Sean Ogden. Cornell CS 4411, August 30, Geared toward programmers

Introduction to C. Sean Ogden. Cornell CS 4411, August 30, Geared toward programmers Introduction to C Geared toward programmers Sean Ogden Slide heritage: Alin Dobra Niranjan Nagarajan Owen Arden Robert Escriva Zhiyuan Teo Ayush Dubey Cornell CS 4411, August 30, 2013 Administrative Information

More information

18-600: Recitation #3

18-600: Recitation #3 18-600: Recitation #3 Bomb Lab & GDB Overview September 12th, 2017 1 Today X86-64 Overview Bomb Lab Introduction GDB Tutorial 2 3 x86-64: Register Conventions Arguments passed in registers: %rdi, %rsi,

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Introduction to C. Ayush Dubey. Cornell CS 4411, August 31, Geared toward programmers

Introduction to C. Ayush Dubey. Cornell CS 4411, August 31, Geared toward programmers Introduction to C Geared toward programmers Ayush Dubey Slide heritage: Alin Dobra Niranjan Nagarajan Owen Arden Robert Escriva Zhiyuan Teo Cornell CS 4411, August 31, 2012 Administrative Information Outline

More information

Algorithms & Data Structures

Algorithms & Data Structures GATE- 2016-17 Postal Correspondence 1 Algorithms & Data Structures Computer Science & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key

More information

CS164: Programming Assignment 5 Decaf Semantic Analysis and Code Generation

CS164: Programming Assignment 5 Decaf Semantic Analysis and Code Generation CS164: Programming Assignment 5 Decaf Semantic Analysis and Code Generation Assigned: Sunday, November 14, 2004 Due: Thursday, Dec 9, 2004, at 11:59pm No solution will be accepted after Sunday, Dec 12,

More information

CE221 Programming in C++ Part 1 Introduction

CE221 Programming in C++ Part 1 Introduction CE221 Programming in C++ Part 1 Introduction 06/10/2017 CE221 Part 1 1 Module Schedule There are two lectures (Monday 13.00-13.50 and Tuesday 11.00-11.50) each week in the autumn term, and a 2-hour lab

More information

CE221 Programming in C++ Part 2 References and Pointers, Arrays and Strings

CE221 Programming in C++ Part 2 References and Pointers, Arrays and Strings CE221 Programming in C++ Part 2 References and Pointers, Arrays and Strings 19/10/2017 CE221 Part 2 1 Variables and References 1 In Java a variable of primitive type is associated with a memory location

More information

Programming Assignment 2

Programming Assignment 2 CS 122 Fall, 2004 Programming Assignment 2 New Mexico Tech Department of Computer Science Programming Assignment 2 CS122 Algorithms and Data Structures Due 11:00AM, Wednesday, October 13th, 2004 Objectives:

More information

CSE P 501 Compilers. Java Implementation JVMs, JITs &c Hal Perkins Winter /11/ Hal Perkins & UW CSE V-1

CSE P 501 Compilers. Java Implementation JVMs, JITs &c Hal Perkins Winter /11/ Hal Perkins & UW CSE V-1 CSE P 501 Compilers Java Implementation JVMs, JITs &c Hal Perkins Winter 2008 3/11/2008 2002-08 Hal Perkins & UW CSE V-1 Agenda Java virtual machine architecture.class files Class loading Execution engines

More information

[0569] p 0318 garbage

[0569] p 0318 garbage A Pointer is a variable which contains the address of another variable. Declaration syntax: Pointer_type *pointer_name; This declaration will create a pointer of the pointer_name which will point to the

More information

CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic

CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic Review from Letctures 3 & 4 C++ class syntax, designing classes, classes vs. structs; Passing comparison functions to

More information

Programming Assignment IV Due Thursday, June 1, 2017 at 11:59pm

Programming Assignment IV Due Thursday, June 1, 2017 at 11:59pm Programming Assignment IV Due Thursday, June 1, 2017 at 11:59pm 1 Introduction In this assignment, you will implement a code generator for Cool. When successfully completed, you will have a fully functional

More information

Memory Management: The Details

Memory Management: The Details Lecture 10 Memory Management: The Details Sizing Up Memory Primitive Data Types Complex Data Types byte: char: short: basic value (8 bits) 1 byte 2 bytes Pointer: platform dependent 4 bytes on 32 bit machine

More information

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline CS 0 Lecture 8 Chapter 5 Louden Outline The symbol table Static scoping vs dynamic scoping Symbol table Dictionary associates names to attributes In general: hash tables, tree and lists (assignment ) can

More information

last time Assembly part 2 / C part 1 condition codes reminder: quiz

last time Assembly part 2 / C part 1 condition codes reminder: quiz last time Assembly part 2 / C part 1 linking extras: different kinds of relocations addresses versus offset to addresses dynamic linking (briefly) AT&T syntax destination last O(B, I, S) B + I S + O jmp

More information

Memory and Addresses. Pointers in C. Memory is just a sequence of byte-sized storage devices.

Memory and Addresses. Pointers in C. Memory is just a sequence of byte-sized storage devices. Memory and Addresses Memory is just a sequence of byte-sized storage devices. 1 The bytes are assigned numeric addresses, starting with zero, just like the indexing of the cells of an array. It is the

More information

CS 231 Data Structures and Algorithms, Fall 2016

CS 231 Data Structures and Algorithms, Fall 2016 CS 231 Data Structures and Algorithms, Fall 2016 Dr. Bruce A. Maxwell Department of Computer Science Colby College Course Description Focuses on the common structures used to store data and the standard

More information

MPATE-GE 2618: C Programming for Music Technology. Unit 4.1

MPATE-GE 2618: C Programming for Music Technology. Unit 4.1 MPATE-GE 2618: C Programming for Music Technology Unit 4.1 Memory Memory in the computer can be thought of as a long string of consecutive bytes. Each byte has a corresponding address. When we declare

More information

Class Information ANNOUCEMENTS

Class Information ANNOUCEMENTS Class Information ANNOUCEMENTS Third homework due TODAY at 11:59pm. Extension? First project has been posted, due Monday October 23, 11:59pm. Midterm exam: Friday, October 27, in class. Don t forget to

More information

Lesson 10A OOP Fundamentals. By John B. Owen All rights reserved 2011, revised 2014

Lesson 10A OOP Fundamentals. By John B. Owen All rights reserved 2011, revised 2014 Lesson 10A OOP Fundamentals By John B. Owen All rights reserved 2011, revised 2014 Table of Contents Objectives Definition Pointers vs containers Object vs primitives Constructors Methods Object class

More information

Why Study Assembly Language?

Why Study Assembly Language? Why Study Assembly Language? This depends on the decade in which you studied assembly language. 1940 s You cannot study assembly language. It does not exist yet. 1950 s You study assembly language because,

More information

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver CS 61C: Great Ideas in Computer Architecture C Pointers Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Agenda Pointers Arrays in C 2 Address vs. Value Consider

More information

Writing a Dynamic Storage Allocator

Writing a Dynamic Storage Allocator Project 3 Writing a Dynamic Storage Allocator Out: In class on Thursday, 8 Oct 2009 Due: In class on Thursday, 22 Oct 2009 In this project, you will be writing a dynamic storage allocator for C programs,

More information

Garbage Collection. Vyacheslav Egorov

Garbage Collection. Vyacheslav Egorov Garbage Collection Vyacheslav Egorov 28.02.2012 class Heap { public: void* Allocate(size_t sz); }; class Heap { public: void* Allocate(size_t sz); void Deallocate(void* ptr); }; class Heap { public: void*

More information

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor

CS 261 Fall C Introduction. Variables, Memory Model, Pointers, and Debugging. Mike Lam, Professor CS 261 Fall 2017 Mike Lam, Professor C Introduction Variables, Memory Model, Pointers, and Debugging The C Language Systems language originally developed for Unix Imperative, compiled language with static

More information

Introduce C# as Object Oriented programming language. Explain, tokens,

Introduce C# as Object Oriented programming language. Explain, tokens, Module 2 98 Assignment 1 Introduce C# as Object Oriented programming language. Explain, tokens, lexicals and control flow constructs. 99 The C# Family Tree C Platform Independence C++ Object Orientation

More information

CprE 288 Introduction to Embedded Systems Exam 1 Review. 1

CprE 288 Introduction to Embedded Systems Exam 1 Review.  1 CprE 288 Introduction to Embedded Systems Exam 1 Review http://class.ece.iastate.edu/cpre288 1 Overview of Today s Lecture Announcements Exam 1 Review http://class.ece.iastate.edu/cpre288 2 Announcements

More information

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find CS1622 Lecture 15 Semantic Analysis CS 1622 Lecture 15 1 Semantic Analysis How to build symbol tables How to use them to find multiply-declared and undeclared variables. How to perform type checking CS

More information

Dynamic Data Structures. CSCI 112: Programming in C

Dynamic Data Structures. CSCI 112: Programming in C Dynamic Data Structures CSCI 112: Programming in C 1 It s all about flexibility In the programs we ve made so far, the compiler knows at compile time exactly how much memory to allocate for each variable

More information

Lecture 3: C Programm

Lecture 3: C Programm 0 3 E CS 1 Lecture 3: C Programm ing Reading Quiz Note the intimidating red border! 2 A variable is: A. an area in memory that is reserved at run time to hold a value of particular type B. an area in memory

More information

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1 SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine David Bélanger dbelan2@cs.mcgill.ca Sable Research Group McGill University Montreal, QC January 28, 2004 SABLEJIT: A Retargetable

More information

NOTE: Answer ANY FOUR of the following 6 sections:

NOTE: Answer ANY FOUR of the following 6 sections: A-PDF MERGER DEMO Philadelphia University Lecturer: Dr. Nadia Y. Yousif Coordinator: Dr. Nadia Y. Yousif Internal Examiner: Dr. Raad Fadhel Examination Paper... Programming Languages Paradigms (750321)

More information

Recitation: C Review. TA s 20 Feb 2017

Recitation: C Review. TA s 20 Feb 2017 15-213 Recitation: C Review TA s 20 Feb 2017 Agenda Logistics Attack Lab Conclusion C Assessment C Programming Style C Exercise Cache Lab Overview Appendix: Valgrind Clang / LLVM Cache Structure Logistics

More information

Introduction to C++ with content from

Introduction to C++ with content from Introduction to C++ with content from www.cplusplus.com 2 Introduction C++ widely-used general-purpose programming language procedural and object-oriented support strong support created by Bjarne Stroustrup

More information

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313.

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313. NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313 http://www.csee.umbc.edu/courses/undergraduate/313/fall11/" Programming in C! Advanced Pointers! Reminder! You can t use a pointer until it points

More information

Project 5 - The Meta-Circular Evaluator

Project 5 - The Meta-Circular Evaluator MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Fall Semester, 2005 Project 5 - The Meta-Circular

More information

Announcements. My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM.

Announcements. My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM. IR Generation Announcements My office hours are today in Gates 160 from 1PM-3PM. Programming Project 3 checkpoint due tomorrow night at 11:59PM. This is a hard deadline and no late submissions will be

More information

Heap Arrays. Steven R. Bagley

Heap Arrays. Steven R. Bagley Heap Arrays Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index a[42] = 35; Variables and arrays have a type int, char, double,

More information

High Performance Computing MPI and C-Language Seminars 2009

High Performance Computing MPI and C-Language Seminars 2009 High Performance Computing - Seminar Plan Welcome to the High Performance Computing seminars for 2009. Aims: Introduce the C Programming Language. Basic coverage of C and programming techniques needed

More information

Introduction to C. Zhiyuan Teo. Cornell CS 4411, August 26, Geared toward programmers

Introduction to C. Zhiyuan Teo. Cornell CS 4411, August 26, Geared toward programmers Introduction to C Geared toward programmers Zhiyuan Teo Slide heritage: Alin Dobra Niranjan Nagarajan Owen Arden Robert Escriva Cornell CS 4411, August 26, 2011 1 Administrative Information 2 Why C? 3

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

Pointers (continued), arrays and strings

Pointers (continued), arrays and strings Pointers (continued), arrays and strings 1 Last week We have seen pointers, e.g. of type char *p with the operators * and & These are tricky to understand, unless you draw pictures 2 Pointer arithmetic

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

Due: 9 February 2017 at 1159pm (2359, Pacific Standard Time)

Due: 9 February 2017 at 1159pm (2359, Pacific Standard Time) CSE 11 Winter 2017 Program Assignment #2 (100 points) START EARLY! Due: 9 February 2017 at 1159pm (2359, Pacific Standard Time) PROGRAM #2: DoubleArray11 READ THE ENTIRE ASSIGNMENT BEFORE STARTING In lecture,

More information

Object Oriented Software Design II

Object Oriented Software Design II Object Oriented Software Design II Introduction to C++ Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa February 20, 2012 G. Lipari (Scuola Superiore Sant Anna) C++ Intro February

More information

Lectures 13 & 14. memory management

Lectures 13 & 14. memory management Lectures 13 & 14 Linked lists and memory management Courtesy of Prof. Garcia (UCB) CS61C L05 Introduction to C (pt 3) (1) Review Pointers and arrays are virtually same C knows how to increment pointers

More information

Data Representation and Storage. Some definitions (in C)

Data Representation and Storage. Some definitions (in C) Data Representation and Storage Learning Objectives Define the following terms (with respect to C): Object Declaration Definition Alias Fundamental type Derived type Use pointer arithmetic correctly Explain

More information

Outline. Computer programming. Debugging. What is it. Debugging. Hints. Debugging

Outline. Computer programming. Debugging. What is it. Debugging. Hints. Debugging Outline Computer programming Debugging Hints Gathering evidence Common C errors "Education is a progressive discovery of our own ignorance." Will Durant T.U. Cluj-Napoca - Computer Programming - lecture

More information

CS 314 Principles of Programming Languages. Lecture 11

CS 314 Principles of Programming Languages. Lecture 11 CS 314 Principles of Programming Languages Lecture 11 Zheng Zhang Department of Computer Science Rutgers University Wednesday 12 th October, 2016 Zheng Zhang 1 eddy.zhengzhang@cs.rutgers.edu Class Information

More information

Lectures 5-6: Introduction to C

Lectures 5-6: Introduction to C Lectures 5-6: Introduction to C Motivation: C is both a high and a low-level language Very useful for systems programming Faster than Java This intro assumes knowledge of Java Focus is on differences Most

More information

Pointers and Arrays CS 201. This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book.

Pointers and Arrays CS 201. This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book. Pointers and Arrays CS 201 This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book. Pointers Powerful but difficult to master Used to simulate pass-by-reference

More information

Project #1 rev 2 Computer Science 2334 Fall 2013 This project is individual work. Each student must complete this assignment independently.

Project #1 rev 2 Computer Science 2334 Fall 2013 This project is individual work. Each student must complete this assignment independently. Project #1 rev 2 Computer Science 2334 Fall 2013 This project is individual work. Each student must complete this assignment independently. User Request: Create a simple magazine data system. Milestones:

More information

CS 240 Final Exam Review

CS 240 Final Exam Review CS 240 Final Exam Review Linux I/O redirection Pipelines Standard commands C++ Pointers How to declare How to use Pointer arithmetic new, delete Memory leaks C++ Parameter Passing modes value pointer reference

More information

Name: CIS 341 Final Examination 10 December 2008

Name: CIS 341 Final Examination 10 December 2008 Name: CIS 341 Final Examination 10 December 2008 1 /8 2 /12 3 /18 4 /18 5 /14 Total /70 Do not begin the exam until you are told to do so. You have 120 minutes to complete the exam. There are 11 pages

More information

APS105. Malloc and 2D Arrays. Textbook Chapters 6.4, Datatype Size

APS105. Malloc and 2D Arrays. Textbook Chapters 6.4, Datatype Size APS105 Malloc and 2D Arrays Textbook Chapters 6.4, 10.2 Datatype Size Datatypes have varying size: char: 1B int: 4B double: 8B int sizeof(): a builtin function that returns size of a type int x =

More information

Chapter 1 Getting Started

Chapter 1 Getting Started Chapter 1 Getting Started The C# class Just like all object oriented programming languages, C# supports the concept of a class. A class is a little like a data structure in that it aggregates different

More information

Chapter 1 GETTING STARTED. SYS-ED/ Computer Education Techniques, Inc.

Chapter 1 GETTING STARTED. SYS-ED/ Computer Education Techniques, Inc. Chapter 1 GETTING STARTED SYS-ED/ Computer Education Techniques, Inc. Objectives You will learn: Java platform. Applets and applications. Java programming language: facilities and foundation. Memory management

More information

Common Misunderstandings from Exam 1 Material

Common Misunderstandings from Exam 1 Material Common Misunderstandings from Exam 1 Material Kyle Dewey Stack and Heap Allocation with Pointers char c = c ; char* p1 = malloc(sizeof(char)); char** p2 = &p1; Where is c allocated? Where is p1 itself

More information

Introduction to C. Sami Ilvonen Petri Nikunen. Oct 6 8, CSC IT Center for Science Ltd, Espoo. int **b1, **b2;

Introduction to C. Sami Ilvonen Petri Nikunen. Oct 6 8, CSC IT Center for Science Ltd, Espoo. int **b1, **b2; Sami Ilvonen Petri Nikunen Introduction to C Oct 6 8, 2015 @ CSC IT Center for Science Ltd, Espoo int **b1, **b2; /* Initialise metadata */ board_1->height = height; board_1->width = width; board_2->height

More information

a) Do exercise (5th Edition Patterson & Hennessy). Note: Branches are calculated in the execution stage.

a) Do exercise (5th Edition Patterson & Hennessy). Note: Branches are calculated in the execution stage. CS3410 Spring 2015 Problem Set 2 (version 3) Due Saturday, April 25, 11:59 PM (Due date for Problem-5 is April 20, 11:59 PM) NetID: Name: 200 points total. Start early! This is a big problem set. Problem

More information

CSE 361S Intro to Systems Software Final Project

CSE 361S Intro to Systems Software Final Project Due: Tuesday, December 9, 2008. CSE 361S Intro to Systems Software Final Project In this project, you will be writing a dynamic storage allocator for C programs (i.e., your own version of malloc, free,

More information

Programming refresher and intro to C programming

Programming refresher and intro to C programming Applied mechatronics Programming refresher and intro to C programming Sven Gestegård Robertz sven.robertz@cs.lth.se Department of Computer Science, Lund University 2018 Outline 1 C programming intro 2

More information

So far, system calls have had easy syntax. Integer, character string, and structure arguments.

So far, system calls have had easy syntax. Integer, character string, and structure arguments. Pointers Page 1 So far, system calls have had easy syntax Wednesday, September 30, 2015 10:45 AM Integer, character string, and structure arguments. But this is not always true. Today, we begin to explore

More information

Pointer Casts and Data Accesses

Pointer Casts and Data Accesses C Programming Pointer Casts and Data Accesses For this assignment, you will implement a C function similar to printf(). While implementing the function you will encounter pointers, strings, and bit-wise

More information

Final CSE 131B Spring 2004

Final CSE 131B Spring 2004 Login name Signature Name Student ID Final CSE 131B Spring 2004 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 (25 points) (24 points) (32 points) (24 points) (28 points) (26 points) (22 points)

More information

Computer Science E-119 Fall Problem Set 4. Due prior to lecture on Wednesday, November 28

Computer Science E-119 Fall Problem Set 4. Due prior to lecture on Wednesday, November 28 Computer Science E-119 Fall 2012 Due prior to lecture on Wednesday, November 28 Getting Started To get the files that you will need for this problem set, log into nice.harvard.edu and enter the following

More information

Index. object lifetimes, and ownership, use after change by an alias errors, use after drop errors, BTreeMap, 309

Index. object lifetimes, and ownership, use after change by an alias errors, use after drop errors, BTreeMap, 309 A Arithmetic operation floating-point arithmetic, 11 12 integer numbers, 9 11 Arrays, 97 copying, 59 60 creation, 48 elements, 48 empty arrays and vectors, 57 58 executable program, 49 expressions, 48

More information

Introduction to Programming (Java) 2/12

Introduction to Programming (Java) 2/12 Introduction to Programming (Java) 2/12 Michal Krátký Department of Computer Science Technical University of Ostrava Introduction to Programming (Java) 2008/2009 c 2006 2008 Michal Krátký Introduction

More information

ECE454, Fall 2014 Homework3: Dynamic Memory Allocation Assigned: Oct 9th, Due: Nov 6th, 11:59PM

ECE454, Fall 2014 Homework3: Dynamic Memory Allocation Assigned: Oct 9th, Due: Nov 6th, 11:59PM ECE454, Fall 2014 Homework3: Dynamic Memory Allocation Assigned: Oct 9th, Due: Nov 6th, 11:59PM The TA for this assignment is Xu Zhao (nuk.zhao@mail.utoronto.ca). 1 Introduction OptsRus is doing really

More information

Chapter 2 Basic Elements of C++

Chapter 2 Basic Elements of C++ C++ Programming: From Problem Analysis to Program Design, Fifth Edition 2-1 Chapter 2 Basic Elements of C++ At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion

More information

Dynamic Data Structures (II)

Dynamic Data Structures (II) Lecture 23 Dynamic Data Structures (II) CptS 121 Summer 2016 Armen Abnousi Data Structure Data structures are different ways of organizing data in computer We design new data structures to make the programs

More information

CSE 303: Concepts and Tools for Software Development

CSE 303: Concepts and Tools for Software Development CSE 303: Concepts and Tools for Software Development Hal Perkins Winter 2009 Lecture 7 Introduction to C: The C-Level of Abstraction CSE 303 Winter 2009, Lecture 7 1 Welcome to C Compared to Java, in rough

More information

Lecture 03 Bits, Bytes and Data Types

Lecture 03 Bits, Bytes and Data Types Lecture 03 Bits, Bytes and Data Types Computer Languages A computer language is a language that is used to communicate with a machine. Like all languages, computer languages have syntax (form) and semantics

More information

CS143 Final Spring 2016

CS143 Final Spring 2016 CS143 Final Spring 2016 Please read all instructions (including these) carefully. There are 5 questions on the exam, all with multiple parts. This exam is designed to take 2 hours, but you have the full

More information

2. Reachability in garbage collection is just an approximation of garbage.

2. Reachability in garbage collection is just an approximation of garbage. symbol tables were on the first exam of this particular year's exam. We did not discuss register allocation in this This exam has questions from previous CISC 471/672. particular year. Not all questions

More information

Page 1. Where Have We Been? Chapter 2 Representing and Manipulating Information. Why Don t Computers Use Base 10?

Page 1. Where Have We Been? Chapter 2 Representing and Manipulating Information. Why Don t Computers Use Base 10? Where Have We Been? Class Introduction Great Realities of Computing Int s are not Integers, Float s are not Reals You must know assembly Memory Matters Performance! Asymptotic Complexity It s more than

More information