Exception handling. Exceptions can be created by the hardware or by software: Examples. Printer out of paper End of page Divide by 0

Size: px
Start display at page:

Download "Exception handling. Exceptions can be created by the hardware or by software: Examples. Printer out of paper End of page Divide by 0"

Transcription

1 Exception handling Events in a program sometimes occur at unpredictable times, I.e., apparently randomly. That is, the occurrence is an exception to the normal sequencing of events. Such events are called exceptions, and programming language constructed designed to handle these are called exception handlers. Exceptions can be created by the hardware or by software: Examples Power failure Printer out of paper End of page Divide by 0 End of array reached Hardware generated Software generated 1

2 Testing for exceptions Although software exceptions can be tested in the code, the existence of an exception handling mechanism relieves the programmer the burden of constantly checking for this condition. Causing an exception: to raise an exception or throw an exception. Example: End-of-page Without exceptions, need to test at each print statement: print data; if end-of-page then call newpage(); With automatic exceptions, setup mechanism: [PL/I example:] On endpage begin put page; end; /* Resume execution */ can write output without checking end-page condition each time 2

3 Implementation of exceptions Exceptions come from two sources: conditions detected by the virtual machine, and conditions generated by the semantics of the programming language. In the former case, operating system exceptions may be raised directly by hardware interrupts or traps, such as arithmetic overflow, or they may be raised in support software, such as end-of-file condition. In C, the programmer has direct access to these signals processed by the operating system. The programmer may enable an interrupt (e.g., the sigaction function in Unix, which specifies a procedure that gets invoked when the given signal is raised). 3

4 Exceptions in ML One can throw an exception and a handler will catch the exception. (More limited than PL/I example. Need to explicitly raise an exception.): fun dodivide(a,b) = if b=0 then raise baddenominator else a/b; fun divide(a,b) = dodivide(a,b) handle baddenominator => (print Divide error ; 0.0); Note: dodivide is within dynamic scope of divide. Semantics if exception is raised: - If no handler, end function - Check dynamic scope of executing procedures to look for appropriate handler - If handler, execute handler, then return to exception point (e.g., print message and return 0.0 as default value in above example.) 4

5 Exceptions in C++ try clause implements exceptions. Similar to ML: try { statements... If b=0 throw baddenominator; } catch baddenominator {Do something;}; Propagating exceptions: If no local exception handler, who catches exception? Usually dynamic links checked for handler try statement terminates after handling exception. 5

6 Exceptions in Ada procedure Sub is Bad_Data_Value: exception; -other declarations for Sub begin -statements for normal processing in Sub raise Bad_Data_Value -- to raise this exception exception when Bad_Data_Value => -handler for bad data values when Constraint_Error => -handler for predefined exception Constraint_Error when others => -handler for all other exceptions end; [Constraint_Error (e.g., number too large) is a built-in exception in Ada.] 6

7 Propagating exceptions the place at which an exception occurs is not the best place to handle it a particular exception is usually defined in terms of the dynamic chain of subprogram activations each activation record needs to record those active exceptions being passed from calling procedure propagating exceptions allows a subprogram to remain as a programmer-defined abstract operation even in processing exceptions: a subprogram may interrupt its normal processing and raise an exception. to the caller, the effect of a subprogram's raising an exception is the same as a primitive operation's raising an exception if the subprogram does not handle the exception. if the exception is handled within the subprogram, then the subprogram returns in the normal way, and the caller is never aware that an exception has been raised. 7

8 More on implementation of exceptions the language translator may insert additional instructions. For example, to detect Index_Check caused by an invalid array subscript, the translator inserts instructions at each reference to an array, such as A[I,J], to determine whether the values of I and J are within the declared bounds. Unless the hardware or operating system provides the exception checking, checking for an exception requires software simulation. Often this cost is large. For example, it may take longer to perform the subscript bounds check on A[I,J] than it does to access the element of the array. Because of this extra cost, most languages provide a means to turn off checking for exceptions in parts of the program where the programmer determines it is safe to do so [e.g., pragma Supress(Index_Check) in Ada]. Note: programmers are notoriously bad in determining when it is safe to do so. 8

9 Assertions An assertion is a predicate that checks for an invalid value and then raises an exception: In C++: #include <assert.h>... assert(x,y); In C++ it is really a macro that generates: if (x>y) {/* Print error message */} (Compare assertions to pre- and postconditions of axiomatic verification in Section ) 9

10 Issues in synchronization Easy to do - Context switching (and statement, fork() function, task creation) Hardware virtual memory makes it easy for operating system to create independently executing tasks in their own address space Hard to do - Synchronization. How to pass information reliably among a set of independently executing parallel tasks. Consider and statement discussed previously: What is output that is printed? I = 1; I = I+1 and I = I-1 and write(i); write(i) Both first and second write can be 0, 1 or 2. Why? 10

11 Parallel soup (1) I = I+1 and (2) I = I-1 and (3) write(i); (4) write(i) If execution order is (1)(2)(3)(4), output is <1,1> If execution order is (1)(3)(2)(4), output is <2,1> If execution order is (2)(3)(1)(4), output is <0,1> How to get second write of 0: (1) I=I+1 is not a single operation. It is usually 3 instructions: Load from I, Add 1, store into I. What if context switch between instructions 1 and 2? (2) I=I-1 will set I to 0 then context switch back to (1) causes original value of I to be incremented to 2, which is printed as <2,2> If I=I-1 is executed first, we could get <0,0>, etc. 11

12 Critical regions A critical region is a sequence of program statements within a task where the task is operating on some data object shared with other tasks. Must use some mechanism to access this data: Semaphores Messages Monitors Rendezvous 12

13 Mutual exclusion 1. Mutual exclusion - Only one process can be executing a given section of code at one time. block(x) - block semaphore X. wakeup(x) - unblock semaphore X block(x) - if x is free, grab x, else wait until it is free wakeup(x) - free x and start any process waiting on x Example again: I = 1; block(a); I = I+1; wakeup(a) and block(a); I = I-1; wakeup(a) and block (A); write(i); wakeup(a) write(i) Output: Second write is always I=1, but first write can be 0, 1 or 2, depending upon which and statement executes first. 13

14 Semaphores 2. P-V semaphores (Dijkstra). P(X) { If X> 0 continue, else wait until X > 0. X = X-1 (in unit time)} V(X) { X = X+1 (in unit time)} P acts as a gate to limit access to tasks. In addition, you can use the semaphore as a counter to control how much access you need. Buffer manager: Initialization:{ counter = number of buffers available}; GetBuffer: { P(counter}, return buffer and process data}; FreeBuffer: { Put buffer on free list; V{counter}}; In GetBuffer, if no buffers are available, the program will wait until some other process issues a FreeBuffer to unfreeze the blocked process. 14

15 Multiple address spaces P-V assume all semaphores are addressable by all waiting tasks. When processes execute in different address spaces (e.g., on different machines), semaphores don't work. Messages can be used: send(a) - Send a message to pipe A. receive(a) - Receive a message on pipe A. If no pending message, wait until one shows up. Sample Input-Process-Output loop: P1: do loop P2: do loop P3: do loop Get data; Receive(P2, data) Receive(P3, data); Send(P2,data); Process data; Print data end Send(P3, data) end end Synchronization can be handled by sending messages in both directions: Pipe AB sends from A to B. Pipe BA sends from B to A. 15

16 Problem: Deadlock Process A: Block(X); Block(Y);... Do something Wakeup(X); Wakeup(Y); Process B: Block(Y); Block(X);... Do something Wakeup(X); Wakeup(Y) If process A does Block(X) at same time process B does Block(Y), then Both will succeed and then Both will wait for the other resource forever An unlikely occurrence, but it CAN happen. 16

17 Synchronization in Ada Rendezvous in Ada: Sender issues call DataReady Receiver issues accept DataReady. Either waits for other to reach this point. accept DataReady do -- Entry point for task for sender to do call DataReady -- process synchronization taask end; How to prevent receiver of task to be blocked- Use guarded if (select statement)... 17

18 Ada rendezvous select when Device1Status = ON => accept Ready1 do... end; or when Device2Status = ON => accept Ready2 do... end; or when Device3Status = connected => accept Ready3 do... end; else No device is ready; do something end select; rendezvous - Task waits for either of Device 1, 2, or 3, and if none are ON, does something else 18

19 Monitors A monitor is a shared data object together with the set of operations that may manipulate it (i.e., an abstract data type) A task may manipulate the shared data object only by using the defined operations (i.e., data is encapsulated) To enforce mutual exclusion, require that at most one of the operations defined for the data object may be executing at any given time. We could implement monitors in Java or C++ as classes 19

20 Java threads Which synchronization mechanism does Java use? 20

Concurrency. Lecture 14: Concurrency & exceptions. Why concurrent subprograms? Processes and threads. Design Issues for Concurrency.

Concurrency. Lecture 14: Concurrency & exceptions. Why concurrent subprograms? Processes and threads. Design Issues for Concurrency. Lecture 14: Concurrency & exceptions Concurrency Processes and threads Semaphores, monitors and message passing Exception handling Concurrency Is is often desirable or necessary to execute parts of programs

More information

Exception Handling: Control. Exception handling is the control of error conditions or other unusual events during the execution of a program.

Exception Handling: Control. Exception handling is the control of error conditions or other unusual events during the execution of a program. Exception Handling: Control Exception handling is the control of error conditions or other unusual events during the execution of a program. 1 In a language without exception handling: When an exception

More information

Performance Throughput Utilization of system resources

Performance Throughput Utilization of system resources Concurrency 1. Why concurrent programming?... 2 2. Evolution... 2 3. Definitions... 3 4. Concurrent languages... 5 5. Problems with concurrency... 6 6. Process Interactions... 7 7. Low-level Concurrency

More information

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other No efficient solution Involve conflicting

More information

Concurrency: Deadlock and Starvation. Chapter 6

Concurrency: Deadlock and Starvation. Chapter 6 Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other Involve conflicting needs for resources

More information

14. Exception Handling

14. Exception Handling 14. Exception Handling 14.1 Intro to Exception Handling In a language without exception handling When an exception occurs, control goes to the operating system, where a message is displayed and the program

More information

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 6 Concurrency: Deadlock and Starvation Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Deadlock

More information

Chapter Machine instruction level 2. High-level language statement level 3. Unit level 4. Program level

Chapter Machine instruction level 2. High-level language statement level 3. Unit level 4. Program level Concurrency can occur at four levels: 1. Machine instruction level 2. High-level language statement level 3. Unit level 4. Program level Because there are no language issues in instruction- and program-level

More information

UNIT 3

UNIT 3 UNIT 3 Presentation Outline Sequence control with expressions Conditional Statements, Loops Exception Handling Subprogram definition and activation Simple and Recursive Subprogram Subprogram Environment

More information

Ch 9: Control flow. Sequencers. Jumps. Jumps

Ch 9: Control flow. Sequencers. Jumps. Jumps Ch 9: Control flow Sequencers We will study a number of alternatives traditional sequencers: sequential conditional iterative jumps, low-level sequencers to transfer control escapes, sequencers to transfer

More information

Multitasking / Multithreading system Supports multiple tasks

Multitasking / Multithreading system Supports multiple tasks Tasks and Intertask Communication Introduction Multitasking / Multithreading system Supports multiple tasks As we ve noted Important job in multitasking system Exchanging data between tasks Synchronizing

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

Chapter 14. Exception Handling and Event Handling 异常处理和事件处理. 孟小亮 Xiaoliang MENG, 答疑 ISBN

Chapter 14. Exception Handling and Event Handling 异常处理和事件处理. 孟小亮 Xiaoliang MENG, 答疑   ISBN Chapter 14 Exception Handling and Event Handling 异常处理和事件处理 孟小亮 Xiaoliang MENG, 答疑 EMAIL: 1920525866@QQ.COM ISBN 0-321-49362-1 Chapter 14 Topics Introduction to Exception Handling Exception Handling in

More information

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Programming Languages Third Edition. Chapter 9 Control I Expressions and Statements

Programming Languages Third Edition. Chapter 9 Control I Expressions and Statements Programming Languages Third Edition Chapter 9 Control I Expressions and Statements Objectives Understand expressions Understand conditional statements and guards Understand loops and variation on WHILE

More information

Chapter 7 Control I Expressions and Statements

Chapter 7 Control I Expressions and Statements Chapter 7 Control I Expressions and Statements Expressions Conditional Statements and Guards Loops and Variation on WHILE The GOTO Controversy Exception Handling Values and Effects Important Concepts in

More information

Resource management. Real-Time Systems. Resource management. Resource management

Resource management. Real-Time Systems. Resource management. Resource management Real-Time Systems Specification Implementation Verification Mutual exclusion is a general problem that exists at several levels in a real-time system. Shared resources internal to the the run-time system:

More information

Unix System Programming - Chapter 8

Unix System Programming - Chapter 8 Unix System Programming - Chapter 8 Neal Nelson The Evergreen State College Apr 2010 USP Chapter 8 - Signals Section 8.1 - Basic Signal Concepts Section 8.2 - Generating Signals Section 8.3 - Signal Masks

More information

Chapter 14. Exception Handling and Event Handling ISBN

Chapter 14. Exception Handling and Event Handling ISBN Chapter 14 Exception Handling and Event Handling ISBN 0-321-49362-1 Chapter 14 Topics Introduction to Exception Handling Exception Handling in Ada Exception Handling in C++ Exception Handling in Java Introduction

More information

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Chapter 14. Exception Handling and Event Handling

Chapter 14. Exception Handling and Event Handling Chapter 14 Exception Handling and Event Handling Chapter 14 Topics Introduction to Exception Handling Exception Handling in Ada Exception Handling in C++ Exception Handling in Java Introduction to Event

More information

Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering)

Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering) A. Multiple Choice Questions (60 questions) Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering) Unit-I 1. What is operating system? a) collection of programs that manages hardware

More information

Exceptions Programming 1 C# Programming. Rob Miles

Exceptions Programming 1 C# Programming. Rob Miles Exceptions 08101 Programming 1 C# Programming Rob Miles Exceptions There are two kinds of programming error Compilation error Compiler complains that our source is not valid C# Run time error Program crashes

More information

Exceptions. Exceptions. Exceptional Circumstances 11/25/2013

Exceptions. Exceptions. Exceptional Circumstances 11/25/2013 08101 Programming 1 C# Programming Rob Miles There are two kinds of programming error Compilation error Compiler complains that our source is not valid C# Run time error Program crashes when it runs Most

More information

Concurrent Programming

Concurrent Programming Concurrency Concurrent Programming A sequential program has a single thread of control. Its execution is called a process. A concurrent program has multiple threads of control. They may be executed as

More information

Chapter 13 Topics. Introduction. Introduction

Chapter 13 Topics. Introduction. Introduction Chapter 13 Topics Introduction Introduction to Subprogram-Level Concurrency Semaphores Monitors Java Threads C# Threads Statement-Level Concurrency Copyright 2006 Pearson Addison-Wesley. All rights reserved.

More information

Summary Semaphores. Passing the Baton any await statement. Synchronisation code not linked to the data

Summary Semaphores. Passing the Baton any await statement. Synchronisation code not linked to the data Lecture 4 Monitors Summary Semaphores Good news Simple, efficient, expressive Passing the Baton any await statement Bad news Low level, unstructured omit a V: deadlock omit a P: failure of mutex Synchronisation

More information

Process Management And Synchronization

Process Management And Synchronization Process Management And Synchronization In a single processor multiprogramming system the processor switches between the various jobs until to finish the execution of all jobs. These jobs will share the

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

Last Class: Synchronization. Review. Semaphores. Today: Semaphores. MLFQ CPU scheduler. What is test & set?

Last Class: Synchronization. Review. Semaphores. Today: Semaphores. MLFQ CPU scheduler. What is test & set? Last Class: Synchronization Review Synchronization Mutual exclusion Critical sections Example: Too Much Milk Locks Synchronization primitives are required to ensure that only one thread executes in a critical

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 4: The Producer-Consumer Problem and Solution Methods Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 3,

More information

CS Operating Systems

CS Operating Systems CS 4500 - Operating Systems Module 4: The Producer-Consumer Problem and Solution Methods Stanley Wileman Department of Computer Science University of Nebraska at Omaha Omaha, NE 68182-0500, USA June 3,

More information

Lecture 9: Control Flow

Lecture 9: Control Flow Programming Languages Lecture 9: Control Flow Benjamin J. Keller Department of Computer Science, Virginia Tech Programming Languages Control Flow 2 Command Overview Assignment Control Structures Natural

More information

Informatica 3. Marcello Restelli. Laurea in Ingegneria Informatica Politecnico di Milano 9/15/07 10/29/07

Informatica 3. Marcello Restelli. Laurea in Ingegneria Informatica Politecnico di Milano 9/15/07 10/29/07 Informatica 3 Marcello Restelli 9/15/07 10/29/07 Laurea in Ingegneria Informatica Politecnico di Milano Structuring the Computation Control flow can be obtained through control structure at instruction

More information

Real-Time Systems. Lecture #4. Professor Jan Jonsson. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #4. Professor Jan Jonsson. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #4 Professor Jan Jonsson Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Resource management Mutual exclusion

More information

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Semaphores Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Synchronization

More information

Last Class: Deadlocks. Today

Last Class: Deadlocks. Today Last Class: Deadlocks Necessary conditions for deadlock: Mutual exclusion Hold and wait No preemption Circular wait Ways of handling deadlock Deadlock detection and recovery Deadlock prevention Deadlock

More information

Concurrent Programming. CS105 Programming Languages Supplement

Concurrent Programming. CS105 Programming Languages Supplement Concurrent Programming CS105 Programming Languages Supplement Outline Introduction Categories Concepts Semaphores Monitors Message Passing Statement level concurrency Introduction Definitions Process:

More information

College of Computer & Information Science Spring 2010 Northeastern University 26 January 2010

College of Computer & Information Science Spring 2010 Northeastern University 26 January 2010 College of Computer & Information Science Spring 2010 Northeastern University 26 January 2010 CS 7600: Intensive Computer Systems Scribe: Eric Miles In this lecture, we covered some of the (unwanted) behavior

More information

CPS 506 Comparative Programming Languages. Programming Language Paradigms

CPS 506 Comparative Programming Languages. Programming Language Paradigms CPS 506 Comparative Programming Languages Concurrent Programming Language Paradigms Topics Introduction Introduction to Subprogram-Level Concurrency Semaphores Monitors Message Passing Java Threads 2 Introduction

More information

Global shared variables. Message passing paradigm. Communication Ports. Port characteristics. Sending a message 07/11/2018

Global shared variables. Message passing paradigm. Communication Ports. Port characteristics. Sending a message 07/11/2018 Global shared variables In most RT applications, tasks exchange data through global shared variables. Advantages High efficiency Low run-time overhead Schedulability analysis is available Disadvantages

More information

Lecture 8: September 30

Lecture 8: September 30 CMPSCI 377 Operating Systems Fall 2013 Lecture 8: September 30 Lecturer: Prashant Shenoy Scribe: Armand Halbert 8.1 Semaphores A semaphore is a more generalized form of a lock that can be used to regulate

More information

Java Threads and intrinsic locks

Java Threads and intrinsic locks Java Threads and intrinsic locks 1. Java and OOP background fundamentals 1.1. Objects, methods and data One significant advantage of OOP (object oriented programming) is data encapsulation. Each object

More information

What's wrong with Semaphores?

What's wrong with Semaphores? Next: Monitors and Condition Variables What is wrong with semaphores? Monitors What are they? How do we implement monitors? Two types of monitors: Mesa and Hoare Compare semaphore and monitors Lecture

More information

CMSC 433 Programming Language Technologies and Paradigms. Composing Objects

CMSC 433 Programming Language Technologies and Paradigms. Composing Objects CMSC 433 Programming Language Technologies and Paradigms Composing Objects Composing Objects To build systems we often need to Create thread safe objects Compose them in ways that meet requirements while

More information

Deviations are things that modify a thread s normal flow of control. Unix has long had signals, and these must be dealt with in multithreaded

Deviations are things that modify a thread s normal flow of control. Unix has long had signals, and these must be dealt with in multithreaded Deviations are things that modify a thread s normal flow of control. Unix has long had signals, and these must be dealt with in multithreaded improvements to Unix. There are actually two fairly different

More information

Lecture 6 (cont.): Semaphores and Monitors

Lecture 6 (cont.): Semaphores and Monitors Project 1 Due Thursday 10/20 Lecture 6 (cont.): Semaphores and Monitors CSE 120: Principles of Operating Systems Alex C. Snoeren Higher-Level Synchronization We looked at using locks to provide mutual

More information

National University. Faculty of Computer Since and Technology Object Oriented Programming

National University. Faculty of Computer Since and Technology Object Oriented Programming National University Faculty of Computer Since and Technology Object Oriented Programming Lec (8) Exceptions in Java Exceptions in Java What is an exception? An exception is an error condition that changes

More information

Signals are a kernel-supported mechanism for reporting events to user code and forcing a response to them. There are actually two sorts of such

Signals are a kernel-supported mechanism for reporting events to user code and forcing a response to them. There are actually two sorts of such Signals are a kernel-supported mechanism for reporting events to user code and forcing a response to them. There are actually two sorts of such events, to which we sometimes refer as exceptions and interrupts.

More information

Structuring the Computation. Structuring the Computation

Structuring the Computation. Structuring the Computation 2016-06-10 Structuring the Computation Structuring the Computation 2016-06-10 Structuring the Computation 1 Expressions infix notation prefix notation postfix notation a (b + c) a + b c a b c + operator

More information

(In columns, of course.)

(In columns, of course.) CPS 310 first midterm exam, 10/9/2013 Your name please: Part 1. Fun with forks (a) What is the output generated by this program? In fact the output is not uniquely defined, i.e., it is not always the same.

More information

Synchronization for Concurrent Tasks

Synchronization for Concurrent Tasks Synchronization for Concurrent Tasks Minsoo Ryu Department of Computer Science and Engineering 2 1 Race Condition and Critical Section Page X 2 Algorithmic Approaches Page X 3 Hardware Support Page X 4

More information

Chapter 13. Concurrency ISBN

Chapter 13. Concurrency ISBN Chapter 13 Concurrency ISBN 0-321-49362-1 Chapter 13 Topics Introduction Introduction to Subprogram-Level Concurrency Semaphores Monitors Message Passing Ada Support for Concurrency Java Threads C# Threads

More information

St. MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St. MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St. MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-00 014 Subject: PPL Class : CSE III 1 P a g e DEPARTMENT COMPUTER SCIENCE AND ENGINEERING S No QUESTION Blooms Course taxonomy level Outcomes UNIT-I

More information

A read or write being atomic means that its effect is as if it happens instantaneously.

A read or write being atomic means that its effect is as if it happens instantaneously. A read or write being atomic means that its effect is as if it happens instantaneously. Signals are a kernel-supported mechanism for reporting events to user code and forcing a response to them. There

More information

Resource Sharing & Management

Resource Sharing & Management Resource Sharing & Management P.C.P Bhatt P.C.P Bhatt OS/M6/V1/2004 1 Introduction Some of the resources connected to a computer system (image processing resource) may be expensive. These resources may

More information

1 Process Coordination

1 Process Coordination COMP 730 (242) Class Notes Section 5: Process Coordination 1 Process Coordination Process coordination consists of synchronization and mutual exclusion, which were discussed earlier. We will now study

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : I Year / II Semester Section : CSE - I Subject Code : CS7203 Subject Name : PRINCIPLES OF PROGRAMMING LANGUAGES Degree & Branch : M.E C.S.E.

More information

Chapter 5 Asynchronous Concurrent Execution

Chapter 5 Asynchronous Concurrent Execution Chapter 5 Asynchronous Concurrent Execution Outline 5.1 Introduction 5.2 Mutual Exclusion 5.2.1 Java Multithreading Case Study 5.2.2 Critical Sections 5.2.3 Mutual Exclusion Primitives 5.3 Implementing

More information

Dr. Rafiq Zakaria Campus. Maulana Azad College of Arts, Science & Commerce, Aurangabad. Department of Computer Science. Academic Year

Dr. Rafiq Zakaria Campus. Maulana Azad College of Arts, Science & Commerce, Aurangabad. Department of Computer Science. Academic Year Dr. Rafiq Zakaria Campus Maulana Azad College of Arts, Science & Commerce, Aurangabad Department of Computer Science Academic Year 2015-16 MCQs on Operating System Sem.-II 1.What is operating system? a)

More information

EE458 - Embedded Systems Lecture 8 Semaphores

EE458 - Embedded Systems Lecture 8 Semaphores EE458 - Embedded Systems Lecture 8 Semaphores Outline Introduction to Semaphores Binary and Counting Semaphores Mutexes Typical Applications RTEMS Semaphores References RTC: Chapter 6 CUG: Chapter 9 1

More information

Casting -Allows a narrowing assignment by asking the Java compiler to "trust us"

Casting -Allows a narrowing assignment by asking the Java compiler to trust us Primitives Integral types: int, short, long, char, byte Floating point types: double, float Boolean types: boolean -passed by value (copied when returned or passed as actual parameters) Arithmetic Operators:

More information

Iterators. Lecture 24: Iterators & Exceptions. Implementing Iterators. When Good Programs Go Bad! - where! Abstract over control structures (in Clu)!

Iterators. Lecture 24: Iterators & Exceptions. Implementing Iterators. When Good Programs Go Bad! - where! Abstract over control structures (in Clu)! Iterators Lecture 24: Iterators & Exceptions CSC 131 Fall, 2014 Kim Bruce Abstract over control structures (in Clu) - where for c : char in string_chars(s) do string_chars = iter (s : string) yields (char);

More information

R13 SET Discuss how producer-consumer problem and Dining philosopher s problem are solved using concurrency in ADA.

R13 SET Discuss how producer-consumer problem and Dining philosopher s problem are solved using concurrency in ADA. R13 SET - 1 III B. Tech I Semester Regular Examinations, November - 2015 1 a) What constitutes a programming environment? [3M] b) What mixed-mode assignments are allowed in C and Java? [4M] c) What is

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 INFORMATION TECHNOLOGY TUTORIAL QUESTION BANK Name : PRINCIPLES OF PROGRAMMING LANGUAGES Code : A40511 Class : II B. Tech

More information

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019 CS 31: Introduction to Computer Systems 22-23: Threads & Synchronization April 16-18, 2019 Making Programs Run Faster We all like how fast computers are In the old days (1980 s - 2005): Algorithm too slow?

More information

Concurrency - Topics. Introduction Introduction to Subprogram-Level Concurrency Semaphores Monitors Message Passing Java Threads

Concurrency - Topics. Introduction Introduction to Subprogram-Level Concurrency Semaphores Monitors Message Passing Java Threads Concurrency - Topics Introduction Introduction to Subprogram-Level Concurrency Semaphores Monitors Message Passing Java Threads 1 Introduction Concurrency can occur at four levels: Machine instruction

More information

Operating Systems ECE344

Operating Systems ECE344 Operating Systems ECE344 Ding Yuan Announcement & Reminder Lab 0 mark posted on Piazza Great job! One problem: compilation error I fixed some for you this time, but won t do it next time Make sure you

More information

HY345 - Operating Systems

HY345 - Operating Systems HY345 - Operating Systems Recitation 1 - Process Management and Synchronization Solutions Dimitris Deyannis deyannis@csd.uoc.gr Problem 3 On all current computers, at least part of the interrupt handlers

More information

Chapter 6 Concurrency: Deadlock and Starvation

Chapter 6 Concurrency: Deadlock and Starvation Operating Systems: Internals and Design Principles Chapter 6 Concurrency: Deadlock and Starvation Seventh Edition By William Stallings Operating Systems: Internals and Design Principles When two trains

More information

Opera&ng Systems ECE344

Opera&ng Systems ECE344 Opera&ng Systems ECE344 Lecture 6: Synchroniza&on (II) Semaphores and Monitors Ding Yuan Higher- Level Synchroniza&on We looked at using locks to provide mutual exclusion Locks work, but they have some

More information

Deadlock and Starvation

Deadlock and Starvation Deadlock and Starvation Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other Involve conflicting needs for resources by two or more

More information

CONCURRENT/DISTRIBUTED PROGRAMMING ILLUSTRATED USING THE DINING PHILOSOPHERS PROBLEM *

CONCURRENT/DISTRIBUTED PROGRAMMING ILLUSTRATED USING THE DINING PHILOSOPHERS PROBLEM * CONCURRENT/DISTRIBUTED PROGRAMMING ILLUSTRATED USING THE DINING PHILOSOPHERS PROBLEM * S. Krishnaprasad Mathematical, Computing, and Information Sciences Jacksonville State University Jacksonville, AL

More information

The SPIN Model Checker

The SPIN Model Checker The SPIN Model Checker Metodi di Verifica del Software Andrea Corradini Lezione 1 2013 Slides liberamente adattate da Logic Model Checking, per gentile concessione di Gerard J. Holzmann http://spinroot.com/spin/doc/course/

More information

Sequencers. Markus Roggenbach. 18. März 2004

Sequencers. Markus Roggenbach. 18. März 2004 Sequencers Markus Roggenbach 18. März 2004 Programming Languages today Programming Languages today 2 M.Broy, J.Siedersleben: Objektorientierte Programmierung und Softwareentwicklung, Informatik Spektrum,

More information

Control Abstraction. Hwansoo Han

Control Abstraction. Hwansoo Han Control Abstraction Hwansoo Han Review of Static Allocation Static allocation strategies Code Global variables Own variables (live within an encapsulation - static in C) Explicit constants (including strings,

More information

Concurrency Problems Signals & Synchronization Semaphore Mutual Exclusion Critical Section Monitors

Concurrency Problems Signals & Synchronization Semaphore Mutual Exclusion Critical Section Monitors 4 Concurrency Concurrency Problems Signals & Synchronization Semaphore Mutual Exclusion Critical Section Monitors 2009 Universität Karlsruhe (TU), System Architecture Group 1 Roadmap for Today Concurrency

More information

! The Process Control Block (PCB) " is included in the context,

! The Process Control Block (PCB)  is included in the context, CSE 421/521 - Operating Systems Fall 2012 Lecture - III Processes Tevfik Koşar Roadmap Processes Basic Concepts Process Creation Process Termination Context Switching Process Queues Process Scheduling

More information

Concurrent Processes Rab Nawaz Jadoon

Concurrent Processes Rab Nawaz Jadoon Concurrent Processes Rab Nawaz Jadoon DCS COMSATS Institute of Information Technology Assistant Professor COMSATS Lahore Pakistan Operating System Concepts Concurrent Processes If more than one threads

More information

Roadmap. Tevfik Ko!ar. CSC Operating Systems Fall Lecture - III Processes. Louisiana State University. Processes. September 1 st, 2009

Roadmap. Tevfik Ko!ar. CSC Operating Systems Fall Lecture - III Processes. Louisiana State University. Processes. September 1 st, 2009 CSC 4103 - Operating Systems Fall 2009 Lecture - III Processes Tevfik Ko!ar Louisiana State University September 1 st, 2009 1 Roadmap Processes Basic Concepts Process Creation Process Termination Context

More information

Deadlock. Lecture 4: Synchronization & Communication - Part 2. Necessary conditions. Deadlock handling. Hierarchical resource allocation

Deadlock. Lecture 4: Synchronization & Communication - Part 2. Necessary conditions. Deadlock handling. Hierarchical resource allocation Lecture 4: Synchronization & ommunication - Part 2 [RTS h 4] Deadlock Priority Inversion & Inheritance Mailbox ommunication ommunication with Objects Deadlock Improper allocation of common resources may

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Lecture 10: Monitors Monitors A monitor is a programming language construct that controls access to shared data Synchronization code added by compiler, enforced

More information

Processes and More. CSCI 315 Operating Systems Design Department of Computer Science

Processes and More. CSCI 315 Operating Systems Design Department of Computer Science Processes and More CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating Systems Concepts,

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION PROCESS SYNCHRONIZATION Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization

More information

CS3502 OPERATING SYSTEMS

CS3502 OPERATING SYSTEMS CS3502 OPERATING SYSTEMS Spring 2018 Synchronization Chapter 6 Synchronization The coordination of the activities of the processes Processes interfere with each other Processes compete for resources Processes

More information

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 13 Robert Grimm, New York University 1 Review Last week Exceptions 2 Outline Concurrency Discussion of Final Sources for today s lecture: PLP, 12

More information

Unix System Programming - Chapter 2, part a

Unix System Programming - Chapter 2, part a Unix System Programming - Chapter 2, part a Neal Nelson The Evergreen State College Mar 23, 2010 USP Chapter 2.1 to 2.6 Processes and Threads Program Storage and Linkage Library Function Calls Error Handling

More information

Concurrency Race Conditions and Deadlocks

Concurrency Race Conditions and Deadlocks Concurrency Race Conditions and Deadlocks Kartik Gopalan Chapters 2 (2.3) and 6 Tanenbaum s Modern OS Sequential Loosely, doing many things, but one after another E.g. Finish one assignment, then another

More information

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Multiple Processes OS design is concerned with the management of processes and threads: Multiprogramming Multiprocessing Distributed processing

More information

Operating Systems Overview. Chapter 2

Operating Systems Overview. Chapter 2 Operating Systems Overview Chapter 2 Operating System A program that controls the execution of application programs An interface between the user and hardware Masks the details of the hardware Layers and

More information

Lecture 9: Parameter Passing, Generics and Polymorphism, Exceptions

Lecture 9: Parameter Passing, Generics and Polymorphism, Exceptions Lecture 9: Parameter Passing, Generics and Polymorphism, Exceptions COMP 524 Programming Language Concepts Stephen Olivier February 12, 2008 Based on notes by A. Block, N. Fisher, F. Hernandez-Campos,

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

Need for synchronization: If threads comprise parts of our software systems, then they must communicate.

Need for synchronization: If threads comprise parts of our software systems, then they must communicate. Thread communication and synchronization There are two main aspects to Outline for Lecture 19 multithreaded programming in Java: I. Thread synchronization. thread lifecycle, and thread synchronization.

More information

Concurrency: a crash course

Concurrency: a crash course Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Concurrency: a crash course Concurrent computing Applications designed as a collection of computational units that may execute

More information

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS PAUL L. BAILEY Abstract. This documents amalgamates various descriptions found on the internet, mostly from Oracle or Wikipedia. Very little of this

More information

CS-537: Midterm Exam (Spring 2001)

CS-537: Midterm Exam (Spring 2001) CS-537: Midterm Exam (Spring 2001) Please Read All Questions Carefully! There are seven (7) total numbered pages Name: 1 Grading Page Points Total Possible Part I: Short Answers (12 5) 60 Part II: Long

More information

POSIX / System Programming

POSIX / System Programming POSIX / System Programming ECE 650 Methods and Tools for Software Eng. Guest lecture 2017 10 06 Carlos Moreno cmoreno@uwaterloo.ca E5-4111 2 Outline During today's lecture, we'll look at: Some of POSIX

More information

Lecture 2: Architectural Support for OSes

Lecture 2: Architectural Support for OSes Lecture 2: Architectural Support for OSes CSE 120: Principles of Operating Systems Alex C. Snoeren HW 1 Due Tuesday 10/03 Why Architecture? Operating systems mediate between applications and the physical

More information

Last Class: Synchronization

Last Class: Synchronization Last Class: Synchronization Synchronization primitives are required to ensure that only one thread executes in a critical section at a time. Concurrent programs Low-level atomic operations (hardware) load/store

More information

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018 Deadlock and Monitors CS439: Principles of Computer Systems September 24, 2018 Bringing It All Together Processes Abstraction for protection Define address space Threads Share (and communicate) through

More information