Compressed Sampling CMOS Imager based on Asynchronous Random Pixel Contributions

Size: px
Start display at page:

Download "Compressed Sampling CMOS Imager based on Asynchronous Random Pixel Contributions"

Transcription

1 Compressed Sampling CMOS Imager based on Asynchronous Random Pixel Contributions Marco Trevisi 1, H.C. Bandala-Hernandez 2, Ricardo Carmona-Galán 1, and Ángel Rodríguez-Vázquez 1 1 Institute of Microelectronics of Seville (IMSE-CNM), CSIC-Universidad de Sevilla, Spain 2 National Institute of Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico trevisi@imse-cnm.csic.es bandala@inaoep.mx ANAFOCUS 2007

2 Introduction Bio inspired approach and Compressive Sensing 2

3 Introduction Bio inspired approach and Compressive Sensing 3

4 Introduction Bio inspired approach and Compressive Sensing 4

5 Introduction Bio inspired approach and Compressive Sensing 5

6 Outlines Compressive Sensing, an Overview State of the Art VLSI implementations: Limitations and Solutions Proposed CMOS Imager Architecture: Advantages and Improvements MATLAB Analysis of the Performance of our Solution Conclusions ANAFOCUS 2007

7 Compressive Sensing, An Overview Sensing Problem being: Φ Ill-posed: if there are more variables than equations [Candès 2006] Restricted Isometry Property N R M <N M R Φ Φ: can be seen as a projection that maps a higher dimensional space into a lower dimensional space preserving proportions among Euclidean distances of the represented elements. 7

8 Compressive Sensing, An Overview Measurement Matrix Φ The measurement matrix for Image Sensing should be universal, physically realizable and easily implementable. No algorithms to create ad hoc matrices. Universal Strategies: Random Matrices: Incoherent Orthobasis Matrices: Ck M 2 ε ( N / k) 5 log ( ) ( 1) δ ε δ k ε Ck log N M 2 ε log ε k Gaussian Sub-Gaussian Poisson Fourier Cosine Hadamard Ensemble 8

9 Compressive Sensing, An Overview The Importance of Sparseness for the Reconstruction Implemented Reconstruction Method: NESTA [Becker 2009] Sparse Full 9

10 Compressive Sensing, An Overview The Importance of Sparseness for the Reconstruction Implemented Reconstruction Method: NESTA [Becker 2009] Sparse Full 10

11 State of the Art VLSI implementations: Limitations and Solutions Single Pixel Camera, Rice University In a streaming setting each measurement will act on a different snapshot however it can be assumed that through M fast snapshots the image changes very slowly allowing the reconstruction of an almost static image that takes the place of a frame in a video sequence. [Duarte 2009] 11

12 State of the Art VLSI implementations: Limitations and Solutions Single Pixel Camera, Rice University Measurement Matrix must be transmitted 12

13 State of the Art VLSI implementations: Limitations and Solutions Single Pixel Camera, Rice University Measurement Matrix must be transmitted 1 bit per Micromirror per Compressed Sample 13

14 State of the Art VLSI implementations: Limitations and Solutions Single Pixel Camera, Rice University Each Compressed Sample is the sum of M Pixels 14

15 State of the Art VLSI implementations: Limitations and Solutions Single Pixel Camera, Rice University Each Compressed Sample is the sum of M Pixels To maintain the Resolution the ADC needs: 8log 15

16 State of the Art VLSI implementations: Limitations and Solutions Ecole Polytechnique Fédérale de Lausanne CMOS Imager [Majidzadeh 2010] 16

17 State of the Art VLSI implementations: Limitations and Solutions Ecole Polytechnique Fédérale de Lausanne CMOS Imager 8log [Majidzadeh 2010] 17

18 State of the Art VLSI implementations: Limitations and Solutions Center for VLSI and Embedded Systems Technology of Hyderabad Block- Based CMOS Imager Segmentation of an image into a set of sub-images [Kaliannan 2014] 18

19 State of the Art VLSI implementations: Limitations and Solutions Center for VLSI and Embedded Systems Technology of Hyderabad Block- Based CMOS Imager Segmentation of an image into a set of sub-images Diminishes the sparseness of each sub-image [Kaliannan 2014] 19

20 Proposed CMOS Imager Architecture: Advantages and Improvements Measurement Matrix To achieve a bit transmission rate inferior to that of an uncompressed image one must remove the necessity to send the Measurement Matrix along with the samples. 20

21 Proposed CMOS Imager Architecture: Advantages and Improvements Measurement Matrix To achieve a bit transmission rate inferior to that of an uncompressed image one must remove the necessity to send the Measurement Matrix along with the samples. Store the patterns in an on-chip memory Generate the patterns on chip 21

22 Proposed CMOS Imager Architecture: Advantages and Improvements Measurement Matrix To achieve a bit transmission rate inferior to that of an uncompressed image one must remove the necessity to send the Measurement Matrix along with the samples. Store the patterns in an on-chip memory Generate the patterns on chip 22

23 Proposed CMOS Imager Architecture: Advantages and Improvements 1D Cellular Automaton Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. 23

24 Proposed CMOS Imager Architecture: Advantages and Improvements 1D Cellular Automaton Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. 24

25 Proposed CMOS Imager Architecture: Advantages and Improvements 1D Cellular Automaton Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. 25

26 Proposed CMOS Imager Architecture: Advantages and Improvements 1D Cellular Automaton Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Class 4: Nearly all initial patterns evolve into structures that interact in complex and interesting ways 26

27 Proposed CMOS Imager Architecture: Advantages and Improvements 1D Cellular Automaton Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Class 4: Nearly all initial patterns evolve into structures that interact in complex and interesting ways 27

28 Proposed CMOS Imager Architecture: Advantages and Improvements 1D Cellular Automaton implementing Rule 30 Class 3 Cellular Automaton: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. 28

29 Proposed CMOS Imager Architecture: Advantages and Improvements 1D Cellular Automaton implementing Rule 30 Class 3 Cellular Automaton: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. 29

30 Proposed CMOS Imager Architecture: Advantages and Improvements Bit Resolution To achieve a suitable bit resolution. 30

31 Proposed CMOS Imager Architecture: Advantages and Improvements Bit Resolution To achieve a suitable bit resolution. Classic AD conversion Digital representation of time 31

32 Proposed CMOS Imager Architecture: Advantages and Improvements Bit Resolution To achieve a suitable bit resolution. Classic AD conversion Digital representation of time 32

33 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic 33

34 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic 34

35 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic Pixels, 8 bits each 35

36 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic Pixels, 8 bits each 1 Compressed sample of 20 bits 36

37 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic Pixels, 8 bits each 1 Compressed sample of 20 bits 30 fps 37

38 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic Pixels, 8 bits each 1 Compressed sample of 20 bits 30 fps T !" 38

39 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic Pixels, 8 bits each 1 Compressed sample of 20 bits 30 fps T !" 8 bits counter 39

40 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic Pixels, 8 bits each 1 Compressed sample of 20 bits 30 fps T !" 8 bits counter T #$%& T 2 ' 40

41 Proposed CMOS Imager Architecture: Advantages and Improvements Readout Logic Pixels, 8 bits each 1 Compressed sample of 20 bits 30 fps T !" 8 bits counter T #$%& T 2 ' F )%* 1 2T #$%& + 24,- 41

42 MATLAB Analysis of the Performance of our Solution Average RMSE of Reconstruction RMSE of reconstruction (%) Number of Samples full frame block based We compare the results achieved with the RMSE of reconstruction of pixels images 1 compressed performing a block based compressive sampling strategy (red bars) and a full frame compressive strategy (blue bars). We devised the block based strategy by dividing each image in 64 sub-images of 8 8 pixels to be treated separately. 1 These images can be found at: 42

43 MATLAB Analysis of the Performance of our Solution Average Time of Reconstruction Time of reconstruction (s) full frame block based Number of Samples The resources needed to retrieve the images on lower compression ratios favour the block based sampling strategy. However, as we diminish the amount of samples, the time of reconstruction reverses its tendency allowing the full frame compressive strategy to outperform its block based counterpart. 43

44 Conclusions Final Remarks We have introduced a new architecture able to collect compressed samples using pseudo-random distributions generated on-chip. The pattern generated by the cellular automaton does not need to be transmitted and can be easily recovered by simply knowing the initial seed. We avoid splitting the sensor array in smaller portions worsening the quality of the samples or introducing asymmetries in the design of the sensor array. The solution applied to digitize the compressed samples improves their dynamic range thus optimizing reconstruction. 44

45 References E. Candès. Compressive sampling. Int. Congress of Mathematics, pp Madrid, Spain, S. Becker, J. Bobin, and E. J. Candès. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery. SIAM Journal on Imaging Sciences, Vol. 4, No. 1, pp. 1-39, Jan M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE signal processing magazine, Vol. 25, No. 2, pp , Mar V. Majidzadeh, L. Jacques, A. Schmid, P. Vandergheynst and Y. Leblebici. A (256x256) Pixel 76.7mW CMOS Imager/Compressor Based on Real-Time In-Pixel Compressive Sensing. Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp Paris, France. May, 2010 B. Kaliannan, V S. Rao Pasupureddi. A Low Power CMOS Imager Based on Distributed Compressed Sensing. 27th International Conference on VLSI Design and 13th International Conference on Embedded Systems, pp Mumbai, India. Jan ANAFOCUS 2007

46 Acknowledgements This work has been funded by the Spanish Government through project TEC C3-1-R MINECO (ERDF/FEDER), Junta de Andalucía through project TIC CEICE, the Office of Naval Research (USA) through grant N and CONACYT (Mexico) through grant 2016-MZO ANAFOCUS 2007

Compressive Single Pixel Imaging Andrew Thompson University of Edinburgh. 2 nd IMA Conference on Mathematics in Defence

Compressive Single Pixel Imaging Andrew Thompson University of Edinburgh. 2 nd IMA Conference on Mathematics in Defence Compressive Single Piel Imaging Andrew Thompson University of Edinburgh 2 nd IMA Conference on Mathematics in Defence About the project Collaboration between the University of Edinburgh and SELEX Galileo

More information

Compressive Sensing: Theory and Practice

Compressive Sensing: Theory and Practice Compressive Sensing: Theory and Practice Mark Davenport Rice University ECE Department Sensor Explosion Digital Revolution If we sample a signal at twice its highest frequency, then we can recover it exactly.

More information

Methodology and Implementation of Early Vision Tasks for the Viola Jones Processing Framework

Methodology and Implementation of Early Vision Tasks for the Viola Jones Processing Framework Methodology and Implementation of Early Vision Tasks for the Viola Jones Processing Framework Jorge Fernández-Berni, Ricardo Carmona-Galán, Ángel Rodríguez-Vázquez University of Seville - SPAIN Institute

More information

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks

Compressive Sensing for Multimedia. Communications in Wireless Sensor Networks Compressive Sensing for Multimedia 1 Communications in Wireless Sensor Networks Wael Barakat & Rabih Saliba MDDSP Project Final Report Prof. Brian L. Evans May 9, 2008 Abstract Compressive Sensing is an

More information

Compressive Sensing Based Image Reconstruction using Wavelet Transform

Compressive Sensing Based Image Reconstruction using Wavelet Transform Compressive Sensing Based Image Reconstruction using Wavelet Transform Sherin C Abraham #1, Ketki Pathak *2, Jigna J Patel #3 # Electronics & Communication department, Gujarat Technological University

More information

Structurally Random Matrices

Structurally Random Matrices Fast Compressive Sampling Using Structurally Random Matrices Presented by: Thong Do (thongdo@jhu.edu) The Johns Hopkins University A joint work with Prof. Trac Tran, The Johns Hopkins University it Dr.

More information

Adaptive compressed image sensing based on wavelet-trees

Adaptive compressed image sensing based on wavelet-trees Adaptive compressed image sensing based on wavelet-trees S. Dekel GE Healthcare, 27 Hamaskit St., Herzelia 46733, Israel Abstract: We present an architecture for an image acquisition process that enables

More information

Sparse Component Analysis (SCA) in Random-valued and Salt and Pepper Noise Removal

Sparse Component Analysis (SCA) in Random-valued and Salt and Pepper Noise Removal Sparse Component Analysis (SCA) in Random-valued and Salt and Pepper Noise Removal Hadi. Zayyani, Seyyedmajid. Valliollahzadeh Sharif University of Technology zayyani000@yahoo.com, valliollahzadeh@yahoo.com

More information

SEQUENTIAL IMAGE COMPLETION FOR HIGH-SPEED LARGE-PIXEL NUMBER SENSING

SEQUENTIAL IMAGE COMPLETION FOR HIGH-SPEED LARGE-PIXEL NUMBER SENSING SEQUENTIAL IMAGE COMPLETION FOR HIGH-SPEED LARGE-PIXEL NUMBER SENSING Akira Hirabayashi Naoki Nogami Takashi Ijiri Laurent Condat Ritsumeikan University College Info. Science & Eng. Kusatsu, Shiga 525-8577,

More information

COMPRESSIVE VIDEO SAMPLING

COMPRESSIVE VIDEO SAMPLING COMPRESSIVE VIDEO SAMPLING Vladimir Stanković and Lina Stanković Dept of Electronic and Electrical Engineering University of Strathclyde, Glasgow, UK phone: +44-141-548-2679 email: {vladimir,lina}.stankovic@eee.strath.ac.uk

More information

Haar Wavelet Image Compression

Haar Wavelet Image Compression Math 57 Haar Wavelet Image Compression. Preliminaries Haar wavelet compression is an efficient way to perform both lossless and lossy image compression. It relies on averaging and differencing the values

More information

Color encoding of phase: a new step in imaging by structured light and single pixel detection

Color encoding of phase: a new step in imaging by structured light and single pixel detection Color encoding of phase: a new step in imaging by structured light and single pixel detection Edoardo De Tommasi, Luigi Lavanga Institute for Microelectronics and Microsystems, Department of Naples National

More information

ANALYSIS OF RECONSTRUCTED IMAGES USING COMPRESSIVE SENSING

ANALYSIS OF RECONSTRUCTED IMAGES USING COMPRESSIVE SENSING International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-01 1 ANALYSIS OF RECONSTRUCTED IMAGES USING COMPRESSIVE SENSING Ms.Ambily Joseph, Ms.Jaini Sara Babu, Dr. K.P Soman

More information

The Fundamentals of Compressive Sensing

The Fundamentals of Compressive Sensing The Fundamentals of Compressive Sensing Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Sensor explosion Data deluge Digital revolution If we sample a signal

More information

Compressive Sensing. A New Framework for Sparse Signal Acquisition and Processing. Richard Baraniuk. Rice University

Compressive Sensing. A New Framework for Sparse Signal Acquisition and Processing. Richard Baraniuk. Rice University Compressive Sensing A New Framework for Sparse Signal Acquisition and Processing Richard Baraniuk Rice University Better, Stronger, Faster Accelerating Data Deluge 1250 billion gigabytes generated in 2010

More information

Sparse Watermark Embedding and Recovery using Compressed Sensing Framework for Audio Signals

Sparse Watermark Embedding and Recovery using Compressed Sensing Framework for Audio Signals Sparse Watermark Embedding and Recovery using Compressed Sensing Framework for Audio Signals Mohamed Waleed Fakhr Electrical and Electronics Department, University of Bahrain Isa Town, Manama, Bahrain

More information

Ultra-low power wireless sensor networks: distributed signal processing and dynamic resources management

Ultra-low power wireless sensor networks: distributed signal processing and dynamic resources management Ultra-low power wireless sensor networks: distributed signal processing and dynamic resources management Candidate: Carlo Caione Tutor: Prof. Luca Benini Compressive Sensing The issue of data gathering

More information

Non-Differentiable Image Manifolds

Non-Differentiable Image Manifolds The Multiscale Structure of Non-Differentiable Image Manifolds Michael Wakin Electrical l Engineering i Colorado School of Mines Joint work with Richard Baraniuk, Hyeokho Choi, David Donoho Models for

More information

Massively Parallel Computing on Silicon: SIMD Implementations. V.M.. Brea Univ. of Santiago de Compostela Spain

Massively Parallel Computing on Silicon: SIMD Implementations. V.M.. Brea Univ. of Santiago de Compostela Spain Massively Parallel Computing on Silicon: SIMD Implementations V.M.. Brea Univ. of Santiago de Compostela Spain GOAL Give an overview on the state-of of-the- art of Digital on-chip CMOS SIMD Solutions,

More information

The Smashed Filter for Compressive Classification and Target Recognition

The Smashed Filter for Compressive Classification and Target Recognition The Smashed Filter for Compressive Classification and Target Recognition Mark A. Davenport Joint work with Marco Duarte, Michael Wakin, Jason Laska, Dharmpal Takhar, Kevin Kelly and Rich Baraniuk dsp.rice.edu/cs

More information

Compressive Imaging for Video Representation and Coding

Compressive Imaging for Video Representation and Coding Compressive Imaging for Video Representation and Coding Michael B. Wakin, Jason N. Laska, Marco F. Duarte, Dror Baron, Shriram Sarvotham Dharmpal Takhar, Kevin F. Kelly, and Richard G. Baraniuk Dept. of

More information

Efficient Algorithm for Test Vector Decompression Using an Embedded Processor

Efficient Algorithm for Test Vector Decompression Using an Embedded Processor Efficient Algorithm for Test Vector Decompression Using an Embedded Processor Kamran Saleem and Nur A. Touba Computer Engineering Research Center Department of Electrical and Computer Engineering University

More information

Overcompressing JPEG images with Evolution Algorithms

Overcompressing JPEG images with Evolution Algorithms Author manuscript, published in "EvoIASP2007, Valencia : Spain (2007)" Overcompressing JPEG images with Evolution Algorithms Jacques Lévy Véhel 1, Franklin Mendivil 2 and Evelyne Lutton 1 1 Inria, Complex

More information

Robust Principal Component Analysis (RPCA)

Robust Principal Component Analysis (RPCA) Robust Principal Component Analysis (RPCA) & Matrix decomposition: into low-rank and sparse components Zhenfang Hu 2010.4.1 reference [1] Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Ranksparsity

More information

ADAPTIVE LOW RANK AND SPARSE DECOMPOSITION OF VIDEO USING COMPRESSIVE SENSING

ADAPTIVE LOW RANK AND SPARSE DECOMPOSITION OF VIDEO USING COMPRESSIVE SENSING ADAPTIVE LOW RANK AND SPARSE DECOMPOSITION OF VIDEO USING COMPRESSIVE SENSING Fei Yang 1 Hong Jiang 2 Zuowei Shen 3 Wei Deng 4 Dimitris Metaxas 1 1 Rutgers University 2 Bell Labs 3 National University

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

ADAPTIVE ACQUISITIONS IN BIOMEDICAL OPTICAL IMAGING BASED ON SINGLE PIXEL CAMERA: COMPARISON WITH COMPRESSIVE SENSING

ADAPTIVE ACQUISITIONS IN BIOMEDICAL OPTICAL IMAGING BASED ON SINGLE PIXEL CAMERA: COMPARISON WITH COMPRESSIVE SENSING IEEE International Symposium on Biomedical Imaging Prague April 14, 2016 ADAPTIVE ACQUISITIONS IN BIOMEDICAL OPTICAL IMAGING BASED ON SINGLE PIXEL CAMERA: COMPARISON WITH COMPRESSIVE SENSING Florian Rousset

More information

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs Measurements and Bits: Compressed Sensing meets Information Theory Dror Baron ECE Department Rice University dsp.rice.edu/cs Sensing by Sampling Sample data at Nyquist rate Compress data using model (e.g.,

More information

A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors

A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors Brent Bohnenstiehl and Bevan Baas Department of Electrical and Computer Engineering University of California, Davis {bvbohnen,

More information

A Parallel Reconfigurable Architecture for DCT of Lengths N=32/16/8

A Parallel Reconfigurable Architecture for DCT of Lengths N=32/16/8 Page20 A Parallel Reconfigurable Architecture for DCT of Lengths N=32/16/8 ABSTRACT: Parthiban K G* & Sabin.A.B ** * Professor, M.P. Nachimuthu M. Jaganathan Engineering College, Erode, India ** PG Scholar,

More information

Redundant Data Elimination for Image Compression and Internet Transmission using MATLAB

Redundant Data Elimination for Image Compression and Internet Transmission using MATLAB Redundant Data Elimination for Image Compression and Internet Transmission using MATLAB R. Challoo, I.P. Thota, and L. Challoo Texas A&M University-Kingsville Kingsville, Texas 78363-8202, U.S.A. ABSTRACT

More information

1-bit Compressive Data Gathering for Wireless Sensor Networks

1-bit Compressive Data Gathering for Wireless Sensor Networks 1-bit Compressive Data Gathering for Wireless Sensor Networks Jiping Xiong, Member, IEEE, Qinghua Tang, and Jian Zhao Abstract Compressive sensing (CS) has been widely used for the data gathering in wireless

More information

Image Compression with Competitive Networks and Pre-fixed Prototypes*

Image Compression with Competitive Networks and Pre-fixed Prototypes* Image Compression with Competitive Networks and Pre-fixed Prototypes* Enrique Merida-Casermeiro^, Domingo Lopez-Rodriguez^, and Juan M. Ortiz-de-Lazcano-Lobato^ ^ Department of Applied Mathematics, University

More information

Image reconstruction based on back propagation learning in Compressed Sensing theory

Image reconstruction based on back propagation learning in Compressed Sensing theory Image reconstruction based on back propagation learning in Compressed Sensing theory Gaoang Wang Project for ECE 539 Fall 2013 Abstract Over the past few years, a new framework known as compressive sampling

More information

Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System Data

Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System Data 6th European Workshop on Structural Health Monitoring - Th.2.D.3 More info about this article: http://www.ndt.net/?id=14079 Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System

More information

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION A. Abrardo, M. Barni, C.M. Carretti, S. Kuiteing Kamdem Università di Siena Dipartimento di Ingegneria dell Informazione {surname}@dii.unisi.it

More information

Fuzzy Center Weighted Hybrid Filtering Techniques for Denoising of Medical Images

Fuzzy Center Weighted Hybrid Filtering Techniques for Denoising of Medical Images International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 2, Number 4 (2012), pp. 383-390 Research India Publications http://www.ripublication.com Fuzzy Center Weighted Hybrid Filtering

More information

Weighted-CS for reconstruction of highly under-sampled dynamic MRI sequences

Weighted-CS for reconstruction of highly under-sampled dynamic MRI sequences Weighted- for reconstruction of highly under-sampled dynamic MRI sequences Dornoosh Zonoobi and Ashraf A. Kassim Dept. Electrical and Computer Engineering National University of Singapore, Singapore E-mail:

More information

VARIABLE DENSITY COMPRESSED IMAGE SAMPLING

VARIABLE DENSITY COMPRESSED IMAGE SAMPLING VARIABLE DENSITY COMPRESSED IMAGE SAMPLING Zhongmin Wang, Gonzalo R. Arce and Jose L. Paredes Dep. of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716 USA. e-mail:{zhongmin,arce}@ee.udel.edu

More information

2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing

2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing Progress In Electromagnetics Research M, Vol. 46, 47 56, 206 2D and 3D Far-Field Radiation Patterns Reconstruction Based on Compressive Sensing Berenice Verdin * and Patrick Debroux Abstract The measurement

More information

Compressive Sensing for High-Dimensional Data

Compressive Sensing for High-Dimensional Data Compressive Sensing for High-Dimensional Data Richard Baraniuk Rice University dsp.rice.edu/cs DIMACS Workshop on Recent Advances in Mathematics and Information Sciences for Analysis and Understanding

More information

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION

A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION 19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011 A COMPRESSIVE SAMPLING SCHEME FOR ITERATIVE HYPERSPECTRAL IMAGE RECONSTRUCTION A. Abrardo, M. Barni,

More information

FPGA IMPLEMENTATION OF HIGH SPEED DCT COMPUTATION OF JPEG USING VEDIC MULTIPLIER

FPGA IMPLEMENTATION OF HIGH SPEED DCT COMPUTATION OF JPEG USING VEDIC MULTIPLIER FPGA IMPLEMENTATION OF HIGH SPEED DCT COMPUTATION OF JPEG USING VEDIC MULTIPLIER Prasannkumar Sohani Department of Electronics Shivaji University, Kolhapur, Maharashtra, India P.C.Bhaskar Department of

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Yuejie Chi Departments of ECE and BMI The Ohio State University September 24, 2015 Time, location, and office hours Time: Tue/Thu

More information

Subpixel Corner Detection for Tracking Applications using CMOS Camera Technology

Subpixel Corner Detection for Tracking Applications using CMOS Camera Technology Subpixel Corner Detection for Tracking Applications using CMOS Camera Technology Christoph Stock, Ulrich Mühlmann, Manmohan Krishna Chandraker, Axel Pinz Institute of Electrical Measurement and Measurement

More information

arxiv: v1 [stat.ml] 14 Jan 2017

arxiv: v1 [stat.ml] 14 Jan 2017 LEARNING TO INVERT: SIGNAL RECOVERY VIA DEEP CONVOLUTIONAL NETWORKS Ali Mousavi and Richard G. Baraniuk arxiv:171.3891v1 [stat.ml] 14 Jan 17 ABSTRACT The promise of compressive sensing (CS) has been offset

More information

Statistical Image Compression using Fast Fourier Coefficients

Statistical Image Compression using Fast Fourier Coefficients Statistical Image Compression using Fast Fourier Coefficients M. Kanaka Reddy Research Scholar Dept.of Statistics Osmania University Hyderabad-500007 V. V. Haragopal Professor Dept.of Statistics Osmania

More information

A CMOS Imager for Time-of-Flight and Photon Counting Based on Single Photon Avalanche Diodes and In-Pixel Time-to-Digital Converters

A CMOS Imager for Time-of-Flight and Photon Counting Based on Single Photon Avalanche Diodes and In-Pixel Time-to-Digital Converters ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 17, Number 4, 2014, 353 371 A CMOS Imager for Time-of-Flight and Photon Counting Based on Single Photon Avalanche Diodes and In-Pixel Time-to-Digital

More information

Randomized Dimensionality Reduction

Randomized Dimensionality Reduction Randomized Dimensionality Reduction with Applications to Signal Processing and Communications Richard Baraniuk Rice University The Digital Universe Size: 281 billion gigabytes generated in 2007 digital

More information

A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor Networks

A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor Networks A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor Networks Serhan Coşar a,b a INRIA Sophia Antipolis, STARS team 2004 R. des Lucioles, 06902 S. Antipolis, France serhan.cosar@inria.fr

More information

Introduction. Wavelets, Curvelets [4], Surfacelets [5].

Introduction. Wavelets, Curvelets [4], Surfacelets [5]. Introduction Signal reconstruction from the smallest possible Fourier measurements has been a key motivation in the compressed sensing (CS) research [1]. Accurate reconstruction from partial Fourier data

More information

RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT

RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT RECONSTRUCTION ALGORITHMS FOR COMPRESSIVE VIDEO SENSING USING BASIS PURSUIT Ida Wahidah 1, Andriyan Bayu Suksmono 1 1 School of Electrical Engineering and Informatics, Institut Teknologi Bandung Jl. Ganesa

More information

Binary Graphs and Message Passing Strategies for Compressed Sensing in the Noiseless Setting

Binary Graphs and Message Passing Strategies for Compressed Sensing in the Noiseless Setting 2012 IEEE International Symposium on Information Theory Proceedings Binary Graphs and Message Passing Strategies for Compressed Sensing in the Noiseless Setting Francisco Ramirez-Javega, Meritxell Lamarca,

More information

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6)

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6) International Journals of Advanced Research in Computer Science and Software Engineering ISS: 2277-128X (Volume-7, Issue-6) Research Article June 2017 Image Encryption Based on 2D Baker Map and 1D Logistic

More information

COMPUTATIONAL AGILE BEAM LADAR IMAGING

COMPUTATIONAL AGILE BEAM LADAR IMAGING COMPUTATIONAL AGILE BEAM LADAR IMAGING Arthita Ghosh 1, Vishal M. Patel 2 and Michael A. Powers 3 1 Center for Automation Research, University of Maryland, College Park, MD 20742 2 Rutgers, The State University

More information

Intensification Of Dark Mode Images Using FFT And Bilog Transformation

Intensification Of Dark Mode Images Using FFT And Bilog Transformation Intensification Of Dark Mode Images Using FFT And Bilog Transformation Yeleshetty Dhruthi 1, Shilpa A 2, Sherine Mary R 3 Final year Students 1, 2, Assistant Professor 3 Department of CSE, Dhanalakshmi

More information

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies. azemi* (University of Alberta) & H.R. Siahkoohi (University of Tehran) SUMMARY Petrophysical reservoir properties,

More information

Spatial, Transform and Fractional Domain Digital Image Watermarking Techniques

Spatial, Transform and Fractional Domain Digital Image Watermarking Techniques Spatial, Transform and Fractional Domain Digital Image Watermarking Techniques Dr.Harpal Singh Professor, Chandigarh Engineering College, Landran, Mohali, Punjab, Pin code 140307, India Puneet Mehta Faculty,

More information

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 15 ISSN 91-2730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

More information

A Robust Compressed Sensing IC for Bio-Signals

A Robust Compressed Sensing IC for Bio-Signals A Robust Compressed Sensing IC for Bio-Signals Jun Kwang Oh Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-114 http://www.eecs.berkeley.edu/pubs/techrpts/2014/eecs-2014-114.html

More information

Fault Tolerant Parallel Filters Based On Bch Codes

Fault Tolerant Parallel Filters Based On Bch Codes RESEARCH ARTICLE OPEN ACCESS Fault Tolerant Parallel Filters Based On Bch Codes K.Mohana Krishna 1, Mrs.A.Maria Jossy 2 1 Student, M-TECH(VLSI Design) SRM UniversityChennai, India 2 Assistant Professor

More information

STEREO EVALUATION OF ALOS/PRISM DATA ON ESA-AO TEST SITES FIRST DLR RESULTS

STEREO EVALUATION OF ALOS/PRISM DATA ON ESA-AO TEST SITES FIRST DLR RESULTS STEREO EVALUATION OF ALOS/PRISM DATA ON ESA-AO TEST SITES FIRST DLR RESULTS Authors: Mathias Schneider, Manfred Lehner, Rupert Müller, Peter Reinartz Remote Sensing Technology Institute German Aerospace

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 24 Compressed Sensing III M. Lustig, EECS UC Berkeley RADIOS https://inst.eecs.berkeley.edu/~ee123/ sp15/radio.html Interfaces and radios on Wednesday -- please

More information

Detection Performance of Radar Compressive Sensing in Noisy Environments

Detection Performance of Radar Compressive Sensing in Noisy Environments Detection Performance of Radar Compressive Sensing in Noisy Environments Asmita Korde a,damon Bradley b and Tinoosh Mohsenin a a Department of Computer Science and Electrical Engineering, University of

More information

MRT based Fixed Block size Transform Coding

MRT based Fixed Block size Transform Coding 3 MRT based Fixed Block size Transform Coding Contents 3.1 Transform Coding..64 3.1.1 Transform Selection...65 3.1.2 Sub-image size selection... 66 3.1.3 Bit Allocation.....67 3.2 Transform coding using

More information

Implementation of Lifting-Based Two Dimensional Discrete Wavelet Transform on FPGA Using Pipeline Architecture

Implementation of Lifting-Based Two Dimensional Discrete Wavelet Transform on FPGA Using Pipeline Architecture International Journal of Computer Trends and Technology (IJCTT) volume 5 number 5 Nov 2013 Implementation of Lifting-Based Two Dimensional Discrete Wavelet Transform on FPGA Using Pipeline Architecture

More information

PROJECTION MODELING SIMPLIFICATION MARKER EXTRACTION DECISION. Image #k Partition #k

PROJECTION MODELING SIMPLIFICATION MARKER EXTRACTION DECISION. Image #k Partition #k TEMPORAL STABILITY IN SEQUENCE SEGMENTATION USING THE WATERSHED ALGORITHM FERRAN MARQU ES Dept. of Signal Theory and Communications Universitat Politecnica de Catalunya Campus Nord - Modulo D5 C/ Gran

More information

Factorization with Missing and Noisy Data

Factorization with Missing and Noisy Data Factorization with Missing and Noisy Data Carme Julià, Angel Sappa, Felipe Lumbreras, Joan Serrat, and Antonio López Computer Vision Center and Computer Science Department, Universitat Autònoma de Barcelona,

More information

Lecture 17 Sparse Convex Optimization

Lecture 17 Sparse Convex Optimization Lecture 17 Sparse Convex Optimization Compressed sensing A short introduction to Compressed Sensing An imaging perspective 10 Mega Pixels Scene Image compression Picture Why do we compress images? Introduction

More information

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N.

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. Dartmouth, MA USA Abstract: The significant progress in ultrasonic NDE systems has now

More information

Available online at ScienceDirect. Procedia Computer Science 89 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 89 (2016 ) 778 784 Twelfth International Multi-Conference on Information Processing-2016 (IMCIP-2016) Color Image Compression

More information

arxiv: v2 [eess.iv] 5 Oct 2017

arxiv: v2 [eess.iv] 5 Oct 2017 Single-pixel imaging with Morlet wavelet correlated random patterns Krzysztof M. Czajkowski 1,*, Anna Pastuszczak 1, and Rafał Kotyński 1 1 University of Warsaw, Faculty of Physics, Warsaw, 02-093, Poland

More information

FREQUENCY SELECTIVE EXTRAPOLATION WITH RESIDUAL FILTERING FOR IMAGE ERROR CONCEALMENT

FREQUENCY SELECTIVE EXTRAPOLATION WITH RESIDUAL FILTERING FOR IMAGE ERROR CONCEALMENT 2014 IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP) FREQUENCY SELECTIVE EXTRAPOLATION WITH RESIDUAL FILTERING FOR IMAGE ERROR CONCEALMENT Ján Koloda, Jürgen Seiler, André

More information

Sparse Reconstruction / Compressive Sensing

Sparse Reconstruction / Compressive Sensing Sparse Reconstruction / Compressive Sensing Namrata Vaswani Department of Electrical and Computer Engineering Iowa State University Namrata Vaswani Sparse Reconstruction / Compressive Sensing 1/ 20 The

More information

SUMMARY. In combination with compressive sensing, a successful reconstruction

SUMMARY. In combination with compressive sensing, a successful reconstruction Higher dimensional blue-noise sampling schemes for curvelet-based seismic data recovery Gang Tang, Tsinghua University & UBC-Seismic Laboratory for Imaging and Modeling (UBC-SLIM), Reza Shahidi, UBC-SLIM,

More information

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction Mathematical Modelling and Applications 2017; 2(6): 75-80 http://www.sciencepublishinggroup.com/j/mma doi: 10.11648/j.mma.20170206.14 ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online) Compressed Sensing

More information

Optimal Sampling in Compressed Sensing

Optimal Sampling in Compressed Sensing Optimal Sampling in Compressed Sensing Joyita Dtta Introdction Compressed sensing allows s to recover objects reasonably well from highly ndersampled data, in spite of violating the Nyqist criterion. In

More information

Reconstructing Images of Bar Codes for Construction Site Object Recognition 1

Reconstructing Images of Bar Codes for Construction Site Object Recognition 1 Reconstructing Images of Bar Codes for Construction Site Object Recognition 1 by David E. Gilsinn 2, Geraldine S. Cheok 3, Dianne P. O Leary 4 ABSTRACT: This paper discusses a general approach to reconstructing

More information

IMAGE DE-NOISING IN WAVELET DOMAIN

IMAGE DE-NOISING IN WAVELET DOMAIN IMAGE DE-NOISING IN WAVELET DOMAIN Aaditya Verma a, Shrey Agarwal a a Department of Civil Engineering, Indian Institute of Technology, Kanpur, India - (aaditya, ashrey)@iitk.ac.in KEY WORDS: Wavelets,

More information

SPARSE SIGNAL RECONSTRUCTION FROM NOISY COMPRESSIVE MEASUREMENTS USING CROSS VALIDATION. Petros Boufounos, Marco F. Duarte, Richard G.

SPARSE SIGNAL RECONSTRUCTION FROM NOISY COMPRESSIVE MEASUREMENTS USING CROSS VALIDATION. Petros Boufounos, Marco F. Duarte, Richard G. SPARSE SIGNAL RECONSTRUCTION FROM NOISY COMPRESSIVE MEASUREMENTS USING CROSS VALIDATION Petros Boufounos, Marco F. Duarte, Richard G. Baraniuk Rice University, Electrical and Computer Engineering, Houston,

More information

The Sources of Randomness in Smartphones with Symbian OS

The Sources of Randomness in Smartphones with Symbian OS The Sources of Randomness in Smartphones with Symbian OS Jan Krhovják, Petr Švenda, Vašek Matyáš, Luděk Smolík Faculty of Informatics Masaryk University, Brno Outline Basics on random number generation

More information

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis Submitted By: Amrita Mishra 11104163 Manoj C 11104059 Under the Guidance of Dr. Sumana Gupta Professor Department of Electrical

More information

LOW BIT-RATE COMPRESSION OF VIDEO AND LIGHT-FIELD DATA USING CODED SNAPSHOTS AND LEARNED DICTIONARIES

LOW BIT-RATE COMPRESSION OF VIDEO AND LIGHT-FIELD DATA USING CODED SNAPSHOTS AND LEARNED DICTIONARIES LOW BIT-RATE COMPRESSION OF VIDEO AND LIGHT-FIELD DATA USING CODED SNAPSHOTS AND LEARNED DICTIONARIES Chandrajit Choudhury, Yellamraju Tarun, Ajit Rajwade, and Subhasis Chaudhuri Dept. of Electrical Engineering

More information

Use of Local Minimization for Lossless Gray Image Compression

Use of Local Minimization for Lossless Gray Image Compression Narendra Kumar et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 Use of Local Minimization for Lossless Gray Image Compression Narendra Kumar 1, Dr. Sachin

More information

Automated Aperture GenerationQuantitative Evaluation of Ape

Automated Aperture GenerationQuantitative Evaluation of Ape . Objectives Approaches Randomness Reconstructing Images from K-space References Automated Aperture Generation Quantitative Evaluation of Aperture April 5, 011 . Objectives Approaches Randomness Reconstructing

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Summary of Raptor Codes

Summary of Raptor Codes Summary of Raptor Codes Tracey Ho October 29, 2003 1 Introduction This summary gives an overview of Raptor Codes, the latest class of codes proposed for reliable multicast in the Digital Fountain model.

More information

Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration

Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration Rigoberto Juarez-Salazar 1, Carlos Robledo-Sánchez 2, Fermín Guerrero-Sánchez 2, J. Jacobo Oliveros-Oliveros 2, C. Meneses-Fabian

More information

Approximate Compressed Sensing for Hardware-Efficient Image Compression

Approximate Compressed Sensing for Hardware-Efficient Image Compression Approximate Compressed Sensing for Hardware-Efficient Image Compression Sai Praveen Kadiyala, Vikram Kumar Pudi and Siew-Kei Lam School of Computer Science and Engineering, Nanyang Technological University,

More information

A LOW-COMPLEXITY AND LOSSLESS REFERENCE FRAME ENCODER ALGORITHM FOR VIDEO CODING

A LOW-COMPLEXITY AND LOSSLESS REFERENCE FRAME ENCODER ALGORITHM FOR VIDEO CODING 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) A LOW-COMPLEXITY AND LOSSLESS REFERENCE FRAME ENCODER ALGORITHM FOR VIDEO CODING Dieison Silveira, Guilherme Povala,

More information

A New Online Clustering Approach for Data in Arbitrary Shaped Clusters

A New Online Clustering Approach for Data in Arbitrary Shaped Clusters A New Online Clustering Approach for Data in Arbitrary Shaped Clusters Richard Hyde, Plamen Angelov Data Science Group, School of Computing and Communications Lancaster University Lancaster, LA1 4WA, UK

More information

Compressive Sensing. Part IV: Beyond Sparsity. Mark A. Davenport. Stanford University Department of Statistics

Compressive Sensing. Part IV: Beyond Sparsity. Mark A. Davenport. Stanford University Department of Statistics Compressive Sensing Part IV: Beyond Sparsity Mark A. Davenport Stanford University Department of Statistics Beyond Sparsity Not all signal models fit neatly into the sparse setting The concept of dimension

More information

An Enhanced Mixed-Scaling-Rotation CORDIC algorithm with Weighted Amplifying Factor

An Enhanced Mixed-Scaling-Rotation CORDIC algorithm with Weighted Amplifying Factor SEAS-WP-2016-10-001 An Enhanced Mixed-Scaling-Rotation CORDIC algorithm with Weighted Amplifying Factor Jaina Mehta jaina.mehta@ahduni.edu.in Pratik Trivedi pratik.trivedi@ahduni.edu.in Serial: SEAS-WP-2016-10-001

More information

Integrated three-dimensional reconstruction using reflectance fields

Integrated three-dimensional reconstruction using reflectance fields www.ijcsi.org 32 Integrated three-dimensional reconstruction using reflectance fields Maria-Luisa Rosas 1 and Miguel-Octavio Arias 2 1,2 Computer Science Department, National Institute of Astrophysics,

More information

PERFORMANCE OF THE DISTRIBUTED KLT AND ITS APPROXIMATE IMPLEMENTATION

PERFORMANCE OF THE DISTRIBUTED KLT AND ITS APPROXIMATE IMPLEMENTATION 20th European Signal Processing Conference EUSIPCO 2012) Bucharest, Romania, August 27-31, 2012 PERFORMANCE OF THE DISTRIBUTED KLT AND ITS APPROXIMATE IMPLEMENTATION Mauricio Lara 1 and Bernard Mulgrew

More information

5LSH0 Advanced Topics Video & Analysis

5LSH0 Advanced Topics Video & Analysis 1 Multiview 3D video / Outline 2 Advanced Topics Multimedia Video (5LSH0), Module 02 3D Geometry, 3D Multiview Video Coding & Rendering Peter H.N. de With, Sveta Zinger & Y. Morvan ( p.h.n.de.with@tue.nl

More information

Optical imaging using binary sensors

Optical imaging using binary sensors Optical imaging using binary sensors Aurélien Bourquard, 1, François Aguet, 2 and Michael Unser 1 1 Laboratoire d imagerie biomédicale, École polytechnique fédérale de Lausanne, Switzerland 2 Department

More information

An Iteratively Reweighted Least Square Implementation for Face Recognition

An Iteratively Reweighted Least Square Implementation for Face Recognition Vol. 6: 26-32 THE UNIVERSITY OF CENTRAL FLORIDA Published May 15, 2012 An Iteratively Reweighted Least Square Implementation for Face Recognition By: Jie Liang Faculty Mentor: Dr. Xin Li ABSTRACT: We propose,

More information

Implementation of Pipelined Architecture Based on the DCT and Quantization For JPEG Image Compression

Implementation of Pipelined Architecture Based on the DCT and Quantization For JPEG Image Compression Volume 01, No. 01 www.semargroups.org Jul-Dec 2012, P.P. 60-66 Implementation of Pipelined Architecture Based on the DCT and Quantization For JPEG Image Compression A.PAVANI 1,C.HEMASUNDARA RAO 2,A.BALAJI

More information

A Computationally Efficient packet wavelet coder using Cellular Neural Network

A Computationally Efficient packet wavelet coder using Cellular Neural Network A Computationally Efficient packet wavelet coder using Cellular Neural Network N.Venkateswaran, S. Santhosh Kumar, S.Rahul Sri Vengkateswara College of Engg, India. nvenkat@svce.ac.in, santa_cool23@yahoo.com,

More information