4. Miscellaneous: network virtualization

Size: px
Start display at page:

Download "4. Miscellaneous: network virtualization"

Transcription

1 4. Miscellaneous: network virtualization Protocols for Data Networks (aka Advanced Computer Networks)

2 Lecture plan 1. B. Pfaff et al., Design and implementation of Open vswitch, NSDI 15 and B. Pfaff et al., Extending Networking into the Virtualization Layer, HotNets T. Koponen et al., Network Virtualization in Multi-tenant Datacenters, NSDI 14 2

3 Lecture plan 1. B. Pfaff et al., Design and implementation of Open vswitch, NSDI 15 and B. Pfaff et al., Extending Networking into the Virtualization Layer, HotNets T. Koponen et al., Network Virtualization in Multi-tenant Datacenters, NSDI 14 3

4 Context Virtualization has changed the way we do computing The goal of most data centers is to have all hosts virtualized The number of virtual machines has already exceeded the number of servers With the proliferation of virtualization, a new network layer is emerging Within the hypervisor 4

5 Motivation Virtualization imposes new requirements Network mobility, as VMs can migrate between hosts Scaling limits with datacenters with hundreds of thousands of VMs Isolation is required for joint-tenant environments But also provides features that make networking easier Virtualization layer can provide information about host arrivals and movements Topology becomes more tractable Networking is composed entirely of leaf nodes However, this placement complicates scaling It is very flexible, as it is in software 5

6 Contribution Typical model of internetworking in virtualized environments is L2 switching Primary concern is providing basic network connectivity Hard to address the challenges that exist in virtualized environments The authors present the design and implementation of Open vswitch (OvS), a capable virtual switch for virtualized environments A software switch that resides within the hypervisor or management domain Exports interface for fine grained control of the forwarding (via OpenFlow) and of configuration (via OVSDB: to configure queues, create/destroy switches, add/remove ports, etc.) Open-source Multi-platform 6

7 Where is Open vswitch Used? Broad support: Linux, FreeBSD, NetBSD, Windows, ESX KVM, Xen, Docker, VirtualBox, Hyper-V, OpenStack, CloudStack, OpenNebula, Widely used: Most popular OpenStack networking backend Default network stack in XenServer 1,440 hits in Google Scholar Thousands of subscribers to OVS mailing lists source: 7

8 Challenge Performance......without the luxury of specialization Design goals flexibility and general-purpose use and high-performance the primary function of a hypervisor: running user workloads The paper basically shows how OvS obtains high performance without sacrificing generality Most of it details their design optimizations through flow caching and other types of caching to reduce CPU usage and increase forwarding rates 8

9 OVS architecture Largest component is ovs-vswitchd, a userspace daemon Essentially the same across operating systems The data path kernel module is usually written specially for the host OS for performance Remains unaware of OpenFlow, simplifying the module This separation is invisible to the controller 9

10 Use case: network virtualization Implication for performance: 100+ hash lookups per packet for tuple space search! (Note: for packet classification tuple space search is used, with one hash table per type of match; the tuple is the key, with the set of fields for the type of match) based on: 10

11 Non-solutions These helped: Multithreading Flow setup distributed to multiple threads/cores Optimistic concurrent techniques Such as userspace RCU (Read-Copy Update) Batching packet processing Increasing performance for flow setup Classifier optimisations Microoptimisations But none really enough Classification is expensive on general-purpose CPUs! based on: 11

12 OVS Cache v1: microflow cache source: 12

13 Speed up with microflow cache From 100+ hash lookups per packet, to just 1! In practice: Tremendous speedup for most workloads Problematic for traffic patterns with short-lived microflows Fundamental caching problem: low hit rate source: 13

14 Solution: more expensive cache If k c << k 0 +k k 24 : benefit! source: 14

15 Naive approach to populating cache Combine all tables into 1! Result: up to n 1 n 2 n 24 flows Crossproduct problem source: 15

16 Lazy approach to populating cache Solution: Build cache of combined megaflows lazily as packets arrive Same (or better!) table lookups as naive approach. Traffic locality yields practical cache size source: 16

17 OVS Cache v2: Megaflow Cache Megaflows are more effective when they match fewer fields Megaflows that match TCP ports are almost like microflows! Contribution: megaflow generation improvements Tuple priority sorting: when a match occurs, no need to search lower priorities Staged lookup: 4 hash tables instead of 1, with matching in multiple stages (metadata only; metadata + L2; metadata + L2 + L3; metadata + L2 + L3 + L4) Prefix tracking: optimization for IP prefixes using a trie data structure that allows matching of only the higher order bits 17 source:

18 Megaflow vs. Microflow Microflow cache: k 0 + k k 24 lookups for first packet in microflow 1 lookup for later packets in microflow Megaflow cache: k c lookups for (almost) every packet k c > 1 is normal, so megaflows perform worse in common case! Best of both worlds would be: k c lookups for first packet in microflow 1 lookup for later packets in microflow source: 18

19 OVS Cache v3: Dual Caches source: 19

20 Evaluation: in production Cache size 99 th percentile = 7k flows OvS limit = 200k entries So it s fine Cache hit rate 97.7% overall Cache is effective CPU usage 80% hypervisors average 5% or less Their traditional target They individually examined the outliers and realised they had a previously unknown bug, which (they believe) was corrected in OvS

21 Evaluation: microbenchmarks For the tests they ran Netperf s TCP_CRR test It repeatedly establishes a TCP connection, sends and receives one byte of traffic, and disconnects Results from a simple flow table design to illustrate benefits of optimizations, in transactions per second (tps) Each optimization reduces the number of kernel flows needed to run the test (representing trips kernel-userspace), so reduces userspace CPU usage While it increases number of masks/tuples (which increase packet classification cost) However, the tradeoff is overall positive 21

22 Lecture plan 1. B. Pfaff et al., Design and implementation of Open vswitch, NSDI 15 and B. Pfaff et al., Extending Networking into the Virtualization Layer, HotNets T. Koponen et al., Network Virtualization in Multi-tenant Datacenters, NSDI 14 22

23 Context and motivation Server virtualization has become the dominant approach for managing computational infrastructures What is lacking to achieve full virtualization? Virtualizing the network What network aspects are important to virtualize? Network topology Different workloads require different topologies How has this problem been solve traditionally? Simple, build multiple physical networks Address space Virtualized workloads operate in the same address space as the physical network Problems? Cannot move VMs to arbitrary locations Cannot change addressing type (if physical is IPv4, VMs are IPv4) 23

24 Alternatives Wait, but we ve had network virtualization for ages! VLANs Virtualize L2 (Ethernet) networks 24

25 Opening parentheses: VLAN 25

26 Motivation Problem 1: what if a CS user moves office to Chemistry, but wants connect to the CS switch? Need to move all cabling Problem 2: one LAN = a single broadcast domain all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN; no isolation security/privacy issues, efficiency issues (hard to scale) One possibility to solve this problem would be to replace center switch with router Problem 3: inefficient use of switches If you have many groups with a small number of users each, then you will have many ports unused Computer Science Chemistry Physics Fonte: [Kurose2009] 26

27 VLANs port-based VLAN: switch ports grouped (by switch management software) so that single physical switch 1 2 Chemistry (VLAN ports 1-8) CS (VLAN ports 9-15) operates as multiple virtual switches Chemistry (VLAN ports 1-8) CS (VLAN ports 9-16) Fonte: [Kurose2009] 27

28 traffic isolation: frames to/from ports 1-8 can only reach ports 1-8 can also define VLAN based on MAC addresses of endpoints, rather than switch port dynamic membership ports can be dynamically assigned among VLANs How is forwarding done between VLANS? via routing (just as with separate switches) in practice vendors sell combined switches plus routers Port-based VLAN 1 2 Chemistry 7 8 router CS Fonte: [Kurose2009] 28

29 VLANS spanning multiple switches trunk port carries frames between VLANS defined over multiple physical switches Frames forwarded within VLAN between switches can t be vanilla frames (must carry VLAN ID info) 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports Electrical Engineering (VLAN ports 1-8) Computer Science (VLAN ports 9-15) Ports 2,3,5 belong to EE VLAN Ports 4,6,7,8 belong to CS VLAN Fonte: [Kurose2009] 29

30 802.1Q VLAN frame format Type frame 802.1Q frame 2-byte Tag Protocol Identifier (value: 81-00) Recomputed CRC Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS) Fonte: [Kurose2009] 30

31 Closing parentheses 31

32 Alternatives Wait, but we ve had network virtualization for ages! VLANs NAT MPLS Virtualize L2 (Ethernet) networks Virtualize IP address space Virtualize physical paths 32

33 Opening parentheses: MPLS 33

34 Multiprotocol label switching (MPLS) Initial goal: high-speed IP forwarding using fixed length label (instead of IP address) fast lookup using fixed length identifier (rather than shortest prefix matching) borrowing ideas from Virtual Circuit (VC) approach but IP datagram still keeps IP address! PPP or Ethernet header MPLS header IP header remainder of link-layer frame label Exp S TTL Fonte: [Kurose2009] 34

35 MPLS capable routers a.k.a. label-switched router forward packets to outgoing interface based only on label value (don t inspect IP address) MPLS forwarding table distinct from IP forwarding tables flexibility: MPLS forwarding decisions can differ from those of IP e.g, use destination and source addresses to route flows to same destination differently (traffic engineering) re-route flows quickly if link fails: pre-computed backup paths Fonte: [Kurose2009] 35

36 MPLS versus IP paths IP routing: path to destination determined by destination address alone R6 R5 R4 R3 D A R2 IP router Fonte: [Kurose2009] 36

37 MPLS versus IP paths MPLS routing: path to destination can be based on source and destination address R6 R5 R4 entry router (R4) can use different MPLS routes to A based, e.g., on source address R2 R3 D A IP-only router MPLS and IP router Fonte: [Kurose2009] 37

38 MPLS signaling Need to modify OSPF, IS-IS link-state flooding protocols to carry info used by MPLS routing e.g., link bandwidth, amount of reserved link bandwidth Entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers R6 R5 R4 modified link state flooding RSVP-TE D A Fonte: [Kurose2009] 38

39 MPLS forwarding tables in out out label label dest interface 10 A 0 12 D 0 8 A 1 in out out label label dest interface 10 6 A D 0 R6 R5 R4 0 R2 in out out label label dest interface A 0 R D 0 A in out R1 out label label dest interface 6 - A 0 Fonte: [Kurose2009] 39

40 Closing parentheses 40

41 Alternatives Wait, but we ve had network virtualization for ages! VLANs NAT MPLS Virtualize L2 (Ethernet) networks Virtualize IP address space Virtualize physical paths What is the problem with these solutions? VLANs don t scale Point solutions, requiring box-by-box configuration No global, unifying abstractions 41

42 Contribution NVP, a Network Virtualization Platform A complete network virtualization solution Allows the creation of virtual networks, each with independent Service models Topologies Addressing architectures over the same physical network 42

43 Network hypervisor abstractions Control abstraction Tenants define logical datapaths that are configured with their control planes Logical datapath = set of logical network elements How are logical datapaths defined? A packet forwarding pipeline (similar to forwarding ASICs) that contains a sequence of lookup tables The pipeline results in a forwarding decision How are logical datapaths implemented? In the software virtual switches Forwarding decisions are done solely on the end hosts! Advantages over ASIC implementations? More flexibility Can match over arbitrary packet header fields 43

44 Network hypervisor abstractions Packet abstraction Packets sent by endpoints are given the same treatment (switching, routing, filtering) as in the tenant s home network 44

45 Network hypervisor architecture What happens when the logical datapaths reaches a forwarding decision? The packet is tunneled over the physical network to the receiving host hypervisor Using several encapsulation mechanisms, such as GRE or STT Allowing the encapsulation of Ethernet frames inside IP packets, for example Host hypervisor decapsulates the packet and sends it to destination VM The physical network sees nothing but ordinary IP traffic 45

46 Opening parentheses: tunneling 46

47 Generic Routing Encapsulation Tunneling Encapsulation with delivery header The addresses in the delivery header are the addresses of the head-end and the tail-end of the tunnel Delivery header / GRE / Private network site / tunnel /16 Public Network /16 Private network site

48 Closing parentheses 48

49 Discussion What network entity configures the software switches? An SDN controller Tunnels work for point-to-point communication. How about multicast and broadcast? A simple multicast overlay is used, adding physical forwarding elements for that purpose (service nodes) Service nodes replicate the packets received How are logical networks interconnected with physical networks? A gateway is used for this purpose 49

50 Design challenges How to accelerate software switching? How to compute all that forwarding state and disseminate it to the switches, avoiding inconsistencies? How to scale the controller cluster? 50

51 Logical datapath implementation NVP uses Open vswitch (OVS) to forward packets The NVP controller cluster configures the OVS remotely using two protocols OpenFlow to inspect and modify the flow tables OVSDB to create and manage overlay tunnels and to discover which VMs are hosted at a hypervisor How is the logical pipeline created? NVP augments the logical flow table in OVS to include a match over the packet s metadata for the logical table identifier NVP modifies each action of a flow entry to write the ID of the next logical flow table and to resubmit the packet back to the OVS flow table This creates the logical pipeline 51

52 Forwarding performance Traditional physical switches classify packets using TCAMs How can we classify packets quickly with software switches, such as OVS? What techniques are explored in NVP? Flow caching Exploits traffic locality All packets belonging to same flow (say, one VM TCP connection) traverse exactly the same set of flow entries The first packet of the flow is sent from the kernel module to userspace But userspace program installs exact-match flows into the flow table in the kernel, so future packets don t leave the kernel Use of hardware offloading techniques TCP segment offloading (TSO) allows the OS to send TCP packets larger than the physical MTU, and then the NIC takes care of the rest Large Received Offload (LRO) does the opposite (again, work offloaded to the NIC) Problem: current Ethernet NICs do not support offloading in the presence of IP encapsulation Solution: use TSS as encapsulation method Add fake TCP header, and then the NIC is capable of performing the standard offloading mechanisms 52

53 Forwarding state computation Forwarding state is computed based on vnics location info and system configuration, and is pushed to transport nodes via OpenFlow Computational model is entirely proactive Is this different from the traditional SDN model? Different, here controllers push all forwarding state down and do not process any packets Is it good or bad? Simplifies scaling of the controller cluster Failure isolation less problems if connectivity to the controller cluster is lost Full computation after every change is computationally inefficient, so incremental computation necessary Problem: very hard to code and to test Solution: they implemented nlog, a domain-specific, declarative language that allows the separation of logic specification from its implementation 53

54 Controller cluster What techniques are used to scale computation? Controllers are arranged in a two-layer hierarchy Separation of concerns eases computation and allows more parallelization What techniques are used to guarantee high availability? There are hot-standbys at both layers 54

55 Evaluation: cold start Simulates bringing the entire system back online after major datacenter disaster Takes around one hour Comments? 55

56 Evaluation: tunnel performance Why is GRE throughput so low? It is incapable of using hardware offloading STT, on the other hand, is capable of having a throughput equivalent to having no encapsulation 56

57 Discussion What were, in your opinion, the seeds of NVP s success? Make logical networks look exactly like current network configurations despite current networks many flaws, they represent a large installed base, and can be used without modification The purpose-built programming language (nlog) easing development while assuring correctness Leveraging the flexibility of software switching Software enabling much faster innovation SDN control centralization Important to have a centralized global view 57

58 Next lecture: fast networking Mandatory L. Rizzo, netmap: A Novel Framework for Fast Packet I/O, USENIX ATC 12 [Optional] S. Garzarella et al., Virtual device passthrough for high speed VM networking, IEEE/ACM ANCS 2015

lecture 18: network virtualization platform (NVP) 5590: software defined networking anduo wang, Temple University TTLMAN 401B, R 17:30-20:00

lecture 18: network virtualization platform (NVP) 5590: software defined networking anduo wang, Temple University TTLMAN 401B, R 17:30-20:00 lecture 18: network virtualization platform (NVP) 5590: software defined networking anduo wang, Temple University TTLMAN 401B, R 17:30-20:00 Network Virtualization in multi-tenant Datacenters Teemu Koponen.,

More information

Managing and Securing Computer Networks. Guy Leduc. Chapter 2: Software-Defined Networks (SDN) Chapter 2. Chapter goals:

Managing and Securing Computer Networks. Guy Leduc. Chapter 2: Software-Defined Networks (SDN) Chapter 2. Chapter goals: Managing and Securing Computer Networks Guy Leduc Chapter 2: Software-Defined Networks (SDN) Mainly based on: Computer Networks and Internets, 6 th Edition Douglas E. Comer Pearson Education, 2015 (Chapter

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Link Layer, Switches, VLANS, MPLS, Data Centers Sec 6.4 to 6.7 Prof. Lina Battestilli Fall 2017 Chapter 6 Outline Link layer and LANs: 6.1 introduction,

More information

Programmable Software Switches. Lecture 11, Computer Networks (198:552)

Programmable Software Switches. Lecture 11, Computer Networks (198:552) Programmable Software Switches Lecture 11, Computer Networks (198:552) Software-Defined Network (SDN) Centralized control plane Data plane Data plane Data plane Data plane Why software switching? Early

More information

Network Virtualization in Multi-tenant Datacenters

Network Virtualization in Multi-tenant Datacenters Network Virtualization in Multi-tenant Datacenters Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, Ethan Jackson,

More information

Networking in virtual environments

Networking in virtual environments Networking in virtual environments Guillaume Urvoy-Keller January 7, 2018 1 / 36 Source documents Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev,

More information

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

Lecture 9 Ethernet and other Link Layer protocols

Lecture 9 Ethernet and other Link Layer protocols Lecture 9 Ethernet and other Link Layer protocols From Kurose & Ross Book slightly modified by Romaric Duvignau duvignau@chalmers.se Thanks and enjoy! JFK/KWR All material copyright 1996-2016 J.F Kurose

More information

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs Chapter 6 The Link Layer and LANs A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the

More information

Cloud e Datacenter Networking

Cloud e Datacenter Networking Cloud e Datacenter Networking Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione DIETI Laurea Magistrale in Ingegneria Informatica Prof.

More information

Cloud e Datacenter Networking

Cloud e Datacenter Networking Cloud e Datacenter Networking Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione DIETI Laurea Magistrale in Ingegneria Informatica Prof.

More information

VXLAN Overview: Cisco Nexus 9000 Series Switches

VXLAN Overview: Cisco Nexus 9000 Series Switches White Paper VXLAN Overview: Cisco Nexus 9000 Series Switches What You Will Learn Traditional network segmentation has been provided by VLANs that are standardized under the IEEE 802.1Q group. VLANs provide

More information

Lecture 7 Advanced Networking Virtual LAN. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 7 Advanced Networking Virtual LAN. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 7 Advanced Networking Virtual LAN Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Advanced Networking Scenario: Data Center Network Single Multiple, interconnected via Internet

More information

Data Center Configuration. 1. Configuring VXLAN

Data Center Configuration. 1. Configuring VXLAN Data Center Configuration 1. 1 1.1 Overview Virtual Extensible Local Area Network (VXLAN) is a virtual Ethernet based on the physical IP (overlay) network. It is a technology that encapsulates layer 2

More information

Agilio OVS Software Architecture

Agilio OVS Software Architecture WHITE PAPER Agilio OVS Software Architecture FOR SERVER-BASED NETWORKING THERE IS CONSTANT PRESSURE TO IMPROVE SERVER- BASED NETWORKING PERFORMANCE DUE TO THE INCREASED USE OF SERVER AND NETWORK VIRTUALIZATION

More information

Network+ Guide to Networks 7 th Edition

Network+ Guide to Networks 7 th Edition Network+ Guide to Networks 7 th Edition Chapter 10 Network Segmentation and Virtualization 2016 Cengage Learning. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in

More information

CSC 4900 Computer Networks: Link Layer (3)

CSC 4900 Computer Networks: Link Layer (3) CSC 4900 Computer Networks: Link Layer (3) Professor Henry Carter Fall 2017 Link Layer 6.1 Introduction and services 6.2 Error detection and correction 6.3 Multiple access protocols 6.4 LANs addressing,

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Chapter 5 Link Layer. Down Approach. Computer Networking: A Top. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5 Link Layer. Down Approach. Computer Networking: A Top. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Link layer,

More information

Network Virtualization in Multi-tenant Datacenters

Network Virtualization in Multi-tenant Datacenters TECHNICAL REPORT Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain Lenglet,

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

VXLAN Design with Cisco Nexus 9300 Platform Switches

VXLAN Design with Cisco Nexus 9300 Platform Switches Guide VXLAN Design with Cisco Nexus 9300 Platform Switches Guide October 2014 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 39 Contents What

More information

Lecture 8 Advanced Networking Virtual LAN. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 8 Advanced Networking Virtual LAN. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 8 Advanced Networking Virtual LAN Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Advanced Networking Scenario: Data Center Network Single Multiple, interconnected via Internet

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 4. Internetworking The Internet Protocol IP Address ARP and DHCP ICMP IPv6 Mobile IP Internet Routing BGP and OSPF IP Multicasting Multiprotocol

More information

Lecture 16: Network Layer Overview, Internet Protocol

Lecture 16: Network Layer Overview, Internet Protocol Lecture 16: Network Layer Overview, Internet Protocol COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Open vswitch is the most widely used virtual switch in cloud environments.

Open vswitch is the most widely used virtual switch in cloud environments. BEN PFAFF, JUSTIN PETTIT, TEEMU KOPONEN, ETHAN J. JACKSON, ANDY ZHOU, JARNO RAJAHALME, JESSE GROSS, ALEX WANG, JONATHAN STRINGER, PRAVIN SHELAR, KEITH AMIDON, AND MARTIN CASADO Ben Pfaff is a Lead Developer

More information

Open vswitch: A Whirlwind Tour. Jus8n Pe:t March 3, 2011

Open vswitch: A Whirlwind Tour. Jus8n Pe:t March 3, 2011 Open vswitch: A Whirlwind Tour Jus8n Pe:t March 3, 2011 Overview Visibility (NetFlow, sflow, SPAN/RSPAN) Fine- grained ACLs and QoS policies Centralized control through OpenFlow Port bonding, LACP, tunneling

More information

Internet Technology. 15. Things we didn t get to talk about. Paul Krzyzanowski. Rutgers University. Spring Paul Krzyzanowski

Internet Technology. 15. Things we didn t get to talk about. Paul Krzyzanowski. Rutgers University. Spring Paul Krzyzanowski Internet Technology 15. Things we didn t get to talk about Paul Krzyzanowski Rutgers University Spring 2016 May 6, 2016 352 2013-2016 Paul Krzyzanowski 1 Load Balancers Load Balancer External network NAT

More information

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1 Chapter 3 Part 2 Switching and Bridging Networking CS 3470, Section 1 Refresher We can use switching technologies to interconnect links to form a large network What is a hub? What is a switch? What is

More information

BIG-IP TMOS : Tunneling and IPsec. Version 13.0

BIG-IP TMOS : Tunneling and IPsec. Version 13.0 BIG-IP TMOS : Tunneling and IPsec Version 13.0 Table of Contents Table of Contents Creating IP Tunnels... 7 About IP tunnels...7 About point-to-point tunnels... 7 Creating a point-to-point IP tunnel...8

More information

A Brief Guide to Virtual Switching Franck Baudin (Red Hat) Billy O Mahony (Intel)

A Brief Guide to Virtual Switching Franck Baudin (Red Hat) Billy O Mahony (Intel) A Brief Guide to Virtual Switching Franck Baudin (Red Hat) Billy O Mahony (Intel) vswitching: Different Use Cases Enterprise Data Center Manageability Console Telco Network Infrastructure Larger Packet

More information

ovn-architecture(7) Open vswitch Manual ovn-architecture(7)

ovn-architecture(7) Open vswitch Manual ovn-architecture(7) NAME ovn-architecture Open Virtual Network architecture DESCRIPTION OVN, the Open Virtual Network, is a system to support virtual network abstraction. OVN complements the existing capabilities of OVS to

More information

OVS Acceleration using Network Flow Processors

OVS Acceleration using Network Flow Processors Acceleration using Network Processors Johann Tönsing 2014-11-18 1 Agenda Background: on Network Processors Network device types => features required => acceleration concerns Acceleration Options (or )

More information

HY436: Network Virtualization

HY436: Network Virtualization HY436: Network Virtualization 20/10/2014 Xenofontas Dimitropoulos Credits: Bing Wang, Rob Sherwood, Ben Pfaff, Nick Feamster Agenda Network virtualization basics Early Forms of Vnets Overlay networks VPNs

More information

Software Defined Networks and OpenFlow. Courtesy of: AT&T Tech Talks.

Software Defined Networks and OpenFlow. Courtesy of: AT&T Tech Talks. MOBILE COMMUNICATION AND INTERNET TECHNOLOGIES Software Defined Networks and Courtesy of: AT&T Tech Talks http://web.uettaxila.edu.pk/cms/2017/spr2017/temcitms/ MODULE OVERVIEW Motivation behind Software

More information

Next Gen Virtual Switch. CloudNetEngine Founder & CTO Jun Xiao

Next Gen Virtual Switch. CloudNetEngine Founder & CTO Jun Xiao Next Gen Virtual Switch CloudNetEngine Founder & CTO Jun Xiao Agenda Thoughts on next generation virtual switch Technical deep dive on CloudNetEngine virtual switch Q & A 2 Major vswitches categorized

More information

Cloud Networking (VITMMA02) Server Virtualization Data Center Gear

Cloud Networking (VITMMA02) Server Virtualization Data Center Gear Cloud Networking (VITMMA02) Server Virtualization Data Center Gear Markosz Maliosz PhD Department of Telecommunications and Media Informatics Faculty of Electrical Engineering and Informatics Budapest

More information

CSC 4900 Computer Networks: Link Layer (2)

CSC 4900 Computer Networks: Link Layer (2) CSC 4900 Computer Networks: Link Layer (2) Professor Henry Carter Fall 2017 Link Layer 6.1 Introduction and services 6.2 Error detection and correction 6.3 Multiple access protocols 6.4 LANs addressing,

More information

IPv6. IPv6, MPLS. IPv6. IPv6 Addresses. IPv4 Packet Format. IPv6. History

IPv6. IPv6, MPLS. IPv6. IPv6 Addresses. IPv4 Packet Format. IPv6. History , MPLS History Next generation IP (AKA IPng) Intended to extend address space and routing limitations of IPv4 Requires header change Attempted to include everything new in one change IETF moderated Based

More information

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013 CS 5 Network Programming Languages Control Plane http://www.flickr.com/photos/rofi/0979/ Nate Foster Cornell University Spring 0 Based on lecture notes by Jennifer Rexford and Michael Freedman Announcements

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

Contents. Configuring EVI 1

Contents. Configuring EVI 1 Contents Configuring EVI 1 Overview 1 Layer 2 connectivity extension issues 1 Network topologies 2 Terminology 3 Working mechanism 4 Placement of Layer 3 gateways 6 ARP flood suppression 7 Selective flood

More information

Cloud Networking (VITMMA02) Network Virtualization: Overlay Networks OpenStack Neutron Networking

Cloud Networking (VITMMA02) Network Virtualization: Overlay Networks OpenStack Neutron Networking Cloud Networking (VITMMA02) Network Virtualization: Overlay Networks OpenStack Neutron Networking Markosz Maliosz PhD Department of Telecommunications and Media Informatics Faculty of Electrical Engineering

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2016 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Presentation 2 Security/Privacy Presentations Nov 3 rd, Nov 10 th, Nov 15 th Upload slides to Canvas by midnight

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Switching and Forwarding Reading: Chapter 3 1/30/14 1

Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Next Problem: Enable communication between hosts that are not directly connected Fundamental Problem of the Internet or any

More information

INTRODUCTION, SERVICES. Data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

INTRODUCTION, SERVICES. Data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link LINK LAYER 1 GOALS Understand principles behind link layer services: error detection, correction link layer addressing local area networks: Ethernet, VLANs, and data center networks 2 INTRODUCTION, SERVICES

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

Virtual Security Gateway Overview

Virtual Security Gateway Overview This chapter contains the following sections: Information About the Cisco Virtual Security Gateway, page 1 Cisco Virtual Security Gateway Configuration for the Network, page 10 Feature History for Overview,

More information

Software-Defined Networking (SDN) Overview

Software-Defined Networking (SDN) Overview Reti di Telecomunicazione a.y. 2015-2016 Software-Defined Networking (SDN) Overview Ing. Luca Davoli Ph.D. Student Network Security (NetSec) Laboratory davoli@ce.unipr.it Luca Davoli davoli@ce.unipr.it

More information

Programmable NICs. Lecture 14, Computer Networks (198:552)

Programmable NICs. Lecture 14, Computer Networks (198:552) Programmable NICs Lecture 14, Computer Networks (198:552) Network Interface Cards (NICs) The physical interface between a machine and the wire Life of a transmitted packet Userspace application NIC Transport

More information

CS-580K/480K Advanced Topics in Cloud Computing. Network Virtualization

CS-580K/480K Advanced Topics in Cloud Computing. Network Virtualization CS-580K/480K Advanced Topics in Cloud Computing Network Virtualization 1 Network Diagram of A Company 2 University Network Topology https://www.researchgate.net/figure/234782590_fig1_fig-5-see-university-network-infrastructure

More information

LINK LAYER AND LANS 1

LINK LAYER AND LANS 1 LINK LAYER AND LANS 1 GOALS Understand principles behind link layer services: error detection, correction link layer addressing local area networks: Ethernet, VLANs, and data center networks Instantiation,

More information

NETWORK OVERLAYS: AN INTRODUCTION

NETWORK OVERLAYS: AN INTRODUCTION NETWORK OVERLAYS: AN INTRODUCTION Network overlays dramatically increase the number of virtual subnets that can be created on a physical network, which in turn supports multitenancy and virtualization

More information

HPE FlexFabric 7900 Switch Series

HPE FlexFabric 7900 Switch Series HPE FlexFabric 7900 Switch Series VXLAN Configuration Guide Part number: 5998-8254R Software version: Release 213x Document version: 6W101-20151113 Copyright 2015 Hewlett Packard Enterprise Development

More information

MPLS MULTI PROTOCOL LABEL SWITCHING OVERVIEW OF MPLS, A TECHNOLOGY THAT COMBINES LAYER 3 ROUTING WITH LAYER 2 SWITCHING FOR OPTIMIZED NETWORK USAGE

MPLS MULTI PROTOCOL LABEL SWITCHING OVERVIEW OF MPLS, A TECHNOLOGY THAT COMBINES LAYER 3 ROUTING WITH LAYER 2 SWITCHING FOR OPTIMIZED NETWORK USAGE MPLS Multiprotocol MPLS Label Switching MULTI PROTOCOL LABEL SWITCHING OVERVIEW OF MPLS, A TECHNOLOGY THAT COMBINES LAYER 3 ROUTING WITH LAYER 2 SWITCHING FOR OPTIMIZED NETWORK USAGE Peter R. Egli 1/21

More information

MPLS VPN. 5 ian 2010

MPLS VPN. 5 ian 2010 MPLS VPN 5 ian 2010 What this lecture is about: IP CEF MPLS architecture What is MPLS? MPLS labels Packet forwarding in MPLS MPLS VPNs 3 IP CEF & MPLS Overview How does a router forward packets? Process

More information

Multi-site Datacenter Network Infrastructures

Multi-site Datacenter Network Infrastructures Multi-site Datacenter Network Infrastructures Petr Grygárek rek 2009 Petr Grygarek, Advanced Computer Networks Technologies 1 Why Multisite Datacenters? Resiliency against large-scale site failures (geodiversity)

More information

HP Routing Switch Series

HP Routing Switch Series HP 12500 Routing Switch Series EVI Configuration Guide Part number: 5998-3419 Software version: 12500-CMW710-R7128 Document version: 6W710-20121130 Legal and notice information Copyright 2012 Hewlett-Packard

More information

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request CS 455/555 Intro to Networks and Communications Link Layer Addressing, ernet, and a Day in the Life of a Web Request Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace Virtual Link Layer 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia 3 Lectures left HW #2

More information

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies Data Link Layer Our goals: understand principles behind data link layer services: link layer addressing instantiation and implementation of various link layer technologies 1 Outline Introduction and services

More information

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace

Virtual Link Layer : Fundamentals of Computer Networks Bill Nace Virtual Link Layer 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia 3 Lectures left HW #2

More information

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013 CS 5114 Network Programming Languages Data Plane http://www.flickr.com/photos/rofi/2097239111/ Nate Foster Cornell University Spring 2013 Based on lecture notes by Jennifer Rexford and Michael Freedman

More information

Contents. EVPN overview 1

Contents. EVPN overview 1 Contents EVPN overview 1 EVPN network model 1 MP-BGP extension for EVPN 2 Configuration automation 3 Assignment of traffic to VXLANs 3 Traffic from the local site to a remote site 3 Traffic from a remote

More information

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network Question No: 1( M a r k s: 1 ) A ---------- Relies on the hardware manufacturer to assign a unique physical

More information

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme NET1343BU NSX Performance Samuel Kommu #VMworld #NET1343BU Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no

More information

Enabling Efficient and Scalable Zero-Trust Security

Enabling Efficient and Scalable Zero-Trust Security WHITE PAPER Enabling Efficient and Scalable Zero-Trust Security FOR CLOUD DATA CENTERS WITH AGILIO SMARTNICS THE NEED FOR ZERO-TRUST SECURITY The rapid evolution of cloud-based data centers to support

More information

Switching & ARP Week 3

Switching & ARP Week 3 Switching & ARP Week 3 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 Many Slides courtesy of Tony Chen 1 Ethernet Using Switches In the last few years, switches have quickly

More information

vsphere Networking Update 2 VMware vsphere 5.5 VMware ESXi 5.5 vcenter Server 5.5 EN

vsphere Networking Update 2 VMware vsphere 5.5 VMware ESXi 5.5 vcenter Server 5.5 EN Update 2 VMware vsphere 5.5 VMware ESXi 5.5 vcenter Server 5.5 This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition.

More information

Multiprotocol Label Switching (MPLS) on Cisco Routers

Multiprotocol Label Switching (MPLS) on Cisco Routers Multiprotocol Label Switching (MPLS) on Cisco Routers This document describes commands for configuring and monitoring Multiprotocol Label Switching (MPLS) functionality on Cisco routers and switches. This

More information

Medium Access Protocols

Medium Access Protocols Medium Access Protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division,Code Division, Frequency Division Random partitioning

More information

Taxonomy of SDN. Vara Varavithya 17 January 2018

Taxonomy of SDN. Vara Varavithya 17 January 2018 Taxonomy of SDN Vara Varavithya 17 January 2018 Modern Data Center Environmentally protected warehouses Large number of computers for compute and storage Blades Computer- Top-of-Rack (TOR) Switches Full

More information

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4 CSCD 330 Network Superhighway Network Programming Winter 2015 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

Higher scalability to address more Layer 2 segments: up to 16 million VXLAN segments.

Higher scalability to address more Layer 2 segments: up to 16 million VXLAN segments. This chapter tells how to configure Virtual extensible LAN (VXLAN) interfaces. VXLANs act as Layer 2 virtual networks over Layer 3 physical networks to stretch Layer 2 networks. About VXLAN Encapsulation

More information

Securizarea Calculatoarelor și a Rețelelor 32. Tehnologia MPLS VPN

Securizarea Calculatoarelor și a Rețelelor 32. Tehnologia MPLS VPN Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Securizarea Calculatoarelor și a Rețelelor 32. Tehnologia MPLS VPN MPLS VPN 5-ian-2010 What this lecture is about: IP

More information

Network Virtualization

Network Virtualization Network Virtualization Petr Grygárek 1 Traditional Virtualization Techniques Network Virtualization Implementation of separate logical network environments (Virtual Networks, VNs) for multiple groups on

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

Configuring MPLS and EoMPLS

Configuring MPLS and EoMPLS 37 CHAPTER This chapter describes how to configure multiprotocol label switching (MPLS) and Ethernet over MPLS (EoMPLS) on the Catalyst 3750 Metro switch. MPLS is a packet-switching technology that integrates

More information

Ahmed Benallegue RMDCN workshop on the migration to IP/VPN 1/54

Ahmed Benallegue RMDCN workshop on the migration to IP/VPN 1/54 MPLS Technology Overview Ahmed Benallegue A.Benallegue@ecmwf.int RMDCN workshop on the migration to IP/VPN 1/54 Plan 1. MPLS basics 2. The MPLS approach 3. Label distribution RSVP-TE 4. Traffic Engineering

More information

Flow Caching for High Entropy Packet Fields

Flow Caching for High Entropy Packet Fields Flow Caching for High Entropy Packet Fields Nick Shelly Nick McKeown! Ethan Jackson Teemu Koponen Jarno Rajahalme Outline Current flow classification in OVS Problems with high entropy packets Proposed

More information

Multiprotocol Label Switching (MPLS) on Cisco Routers

Multiprotocol Label Switching (MPLS) on Cisco Routers Multiprotocol Label Switching (MPLS) on Cisco Routers This document describes commands for configuring and monitoring Multiprotocol Label Switching (MPLS) functionality on Cisco routers and switches. This

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2.

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2. CS 356: Computer Network Architectures Lecture 14: Switching hardware, IP auxiliary functions, and midterm review [PD] chapter 3.4.1, 3.2.7 Xiaowei Yang xwy@cs.duke.edu Switching hardware Software switch

More information

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach Topic 4a Router Operation and Scheduling Ch4: Network Layer: The Data Plane Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 4-1 Chapter 4:

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review What is AIMD? When do we use it? What is the steady state profile

More information

Overview. Overview. OTV Fundamentals. OTV Terms. This chapter provides an overview for Overlay Transport Virtualization (OTV) on Cisco NX-OS devices.

Overview. Overview. OTV Fundamentals. OTV Terms. This chapter provides an overview for Overlay Transport Virtualization (OTV) on Cisco NX-OS devices. This chapter provides an overview for Overlay Transport Virtualization (OTV) on Cisco NX-OS devices., page 1 Sample Topologies, page 6 OTV is a MAC-in-IP method that extends Layer 2 connectivity across

More information

Lecture 3: Packet Forwarding

Lecture 3: Packet Forwarding Lecture 3: Packet Forwarding CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Mike Freedman & Amin Vahdat Lecture 3 Overview Paper reviews Packet Forwarding IP Addressing Subnetting/CIDR

More information

Data Center Virtualization: VirtualWire

Data Center Virtualization: VirtualWire Data Center Virtualization: VirtualWire Hakim Weatherspoon Assistant Professor, Dept of Computer Science CS 5413: High Performance Systems and Networking November 21, 2014 Slides from USENIX Workshop on

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Network Myths and Mysteries. Radia Perlman Intel Labs

Network Myths and Mysteries. Radia Perlman Intel Labs Network Myths and Mysteries Radia Perlman Intel Labs radia.perlman@intel.com radia@alum.mit.edu 1 All opinions expressed herein Are mine alone 2 All opinions expressed herein Are mine alone hough I m sure

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2011 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Topics This week: Network layer (IP, ARP, ICMP) Next week: More network layer (Routers and routing protocols)

More information

Unify Virtual and Physical Networking with Cisco Virtual Interface Card

Unify Virtual and Physical Networking with Cisco Virtual Interface Card White Paper Unify Virtual and Physical Networking with Cisco Virtual Interface Card Simplicity of Cisco VM-FEX technology and Power of VMware VMDirectPath What You Will Learn Server virtualization has

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information