Scalable Application Layer Multicast

Size: px
Start display at page:

Download "Scalable Application Layer Multicast"

Transcription

1 Scalable Application Layer Multicast Suman Banerjee Bobby Bhattacharjee Christopher Kommareddy

2 Group Communication A C A C B D B D Network-layer Multicast Replication at routers Sequence of Direct Unicasts Replication only at source

3 Application-layer Multicast A C 1 2 B D Replication at end-hosts Examples: Narada, Yoid, Gossamer, HMTP, Scribe, Bayeux, CAN-multicast, DT, NICE

4 Application-layer Multicast A C 1 2 B D Replication at end-hosts Metrics Tree Quality State / Control Overheads Robustness

5 Talk Outline Introduction NICE Application-layer Multicast Protocol Results Conclusions

6 NICE Application-layer Multicast Scales to large group sizes Low average and worst case control overheads Does not compromise tree quality or robustness Even low-bandwidth applications are efficient Web tickers Uses a hierarchy

7 NICE Topologies Control topology Detects host failures and re-structure the overlay Data delivery topology Basic path: Implicitly defined by the hierarchy Can be independent of the control path

8 NICE Hierarchy A Set of Members

9 NICE Hierarchy Clusters Non-overlapping Proximity-based Size: k to 3k-1

10 NICE Hierarchy Clusters Non-overlapping Proximity-based Size: k to 3k-1 B1 Layer 0 C0 B0 B2 Graph-theoretic center is the cluster leader

11 NICE Hierarchy B1 Layer 1 A1 C0 B0 B2 Leaders form the higher layer and repeats

12 NICE Hierarchy B1 Layer 2 C0 B0 B2 log N layers

13 Control Topology Soft state about all cluster peers HeartBeats B1 A1 B0 A0 A2 B2

14 Control Topology Soft state about all cluster peers HeartBeats B1 A1 C0 B0 B2 A0 A2 State and Control message overheads: Average: Constant Worst case: O(k log N)

15 Basic Data Path A1 A0 B0 A2

16 Basic Data Path B1 C0 A1 A0 B0 A2 B2

17 Basic Data Path B1 C0 A1 A0 B0 A2 B2

18 Basic Data Path C0 A1 A0 B0 A2 B2

19 NICE Invariants Cluster sizes between k and 3k-1 Cluster leader is the central member Leaders for next higher layer NICE protocol maintains these invariants

20 NICE Protocol Operations Member Join Member Depart Cluster Split Cluster Merge Cluster Refine

21 Join Procedure B1 C0 B0 Assume a Rendezvous Point RP B2 A3

22 Join Procedure B1 C0 B0 RP Join L0 B2 A3

23 Join Procedure B1 C0 B0 RP B2 L2: {C0} A3

24 Join Procedure B1 C0 B0 RP Join L0 B2 A3

25 Join Procedure B1 A1 C0 B0 RP L1: {B0,B1,B2} B2 A3

26 Join Procedure B1 C0 B0 RP Join L0 B2 A3

27 Join Procedure RP B1 C0 L0: { } B0 L0: { } L0: { } A3 B2 L0: { }

28 Join Procedure RP B1 C0 B0 Attach A3 B2 Overhead: O(log N) RTTs and O(k log N) messages Optimizations possible

29 Cluster Split Cluster size: 4 to 11 B1 C0 B0 B2

30 Cluster Split B1 C0 B0 B2

31 Cluster Split B1 C0 B0 B2

32 Cluster Split Split into two new clusters Each new cluster has at least 3k/2 members B3 LeaderTransfer B0 B4 B1 C0 B2

33 Cluster Split B1 C0 B3 Join L1 B4 B2

34 Cluster Split B1 C0 B3 Leave L1 B0 B4 B2

35 Cluster Split B1 C0 B3 B4 B2

36 Results Simulations 10,000 node Transit-Stub graphs Group sizes upto 2048 Comparisons with Narada [CMU] Wide-area Experiments Members at 8 sites Group sizes upto 96 Dynamic joins and (ungraceful) leaves Constant rate data source

37 Evaluation Metrics Tree Quality: Stress Number of copies of the same data packet on a link/router Example: Stress on link [A-1] = 2 Tree Quality: Stretch Ratio of the overlay latency to the direct unicast latency Example: Stretch for receiver D = 5/3 State at end-hosts Control overheads Robustness Host failures Application-layer Multicast A C 1 2 B D

38 Example Scenario 128 members join 16 members leave within 10 seconds Time (in seconds)

39 Tree Quality: Stress Resource usage at links First 200 seconds

40 Tree Quality: Stretch End-to-end latency to receivers First 200 seconds

41 Failure Recovery After 1000 secs

42 Control Overheads

43 Control Overheads Group Size Narada-30 NICE Bandwidth overheads averaged over all network routers

44 35.5 Wide-area Testbed Source A: cs.ucsb.edu B: asu.edu C: cs.umd.edu D: glue.umd.edu E: wam.umd.edu F: umbc.edu G: poly.edu H: ecs.umass.edu

45 Failure Recovery Includes the effects of network losses

46 Failure Recovery Includes the effects of network losses

47 Related Work Mesh-first Narada, Gossamer Tree-first Yoid, HMTP Implicit Scribe, Bayeux, CAN-multicast, Delaunay-Triangulation A Comparative Study of Application Layer Multicast Protocols, S. Banerjee and B. Bhattacharjee - Available at:

48 Current Work Detailed analysis of tree quality Stress and stretch Implementing applications Video delivery

49 Conclusions NICE scales to large member groups Low control overhead Does not sacrifice tree quality or robustness Scalability using hierarchy

A Protocol for Scalable Application Layer Multicast. Suman Banerjee, Bobby Bhattacharjee, Srinivasan Parthasarathy

A Protocol for Scalable Application Layer Multicast. Suman Banerjee, Bobby Bhattacharjee, Srinivasan Parthasarathy A Protocol for Scalable Application Layer Multicast Suman Banerjee, Bobby Bhattacharjee, Srinivasan Parthasarathy Department of Computer Science, University of Maryland, College Park, MD 20742 fsuman,bobby,srig@cs.umd.edu

More information

An Evaluation of Three Application-Layer Multicast Protocols

An Evaluation of Three Application-Layer Multicast Protocols An Evaluation of Three Application-Layer Multicast Protocols Carl Livadas Laboratory for Computer Science, MIT clivadas@lcs.mit.edu September 25, 2002 Abstract In this paper, we present and evaluate three

More information

Survey of ALM, OM, Hybrid Technologies

Survey of ALM, OM, Hybrid Technologies Survey of ALM, OM, Hybrid Technologies John Buford Panasonic Princeton Laboratory July 13, 2006 1 Topics Problem statement Terminology ALM OM Hybrid Summary of ALM and OM Next steps 2 Problem Statement

More information

Delaunay Triangulation Overlays

Delaunay Triangulation Overlays HighPerf or mance Swi tchi ng and Routi ng Tele com Cent erw orksh op: Sept 4, 1 97. Delaunay Triangulation Overlays Jörg Liebeherr 2003 1 HyperCast Project HyperCast is a set of protocols for large-scale

More information

Many-to-Many Communications in HyperCast

Many-to-Many Communications in HyperCast Many-to-Many Communications in HyperCast Jorg Liebeherr University of Virginia Jörg Liebeherr, 2001 HyperCast Project HyperCast is a set of protocols for large-scale overlay multicasting and peer-to-peer

More information

Arvind Krishnamurthy Fall 2003

Arvind Krishnamurthy Fall 2003 Overlay Networks Arvind Krishnamurthy Fall 003 Internet Routing Internet routing is inefficient: Does not always pick the lowest latency paths Does not always pick paths with low drop rates Experimental

More information

Resilient Multicast using Overlays

Resilient Multicast using Overlays 1 Resilient Multicast using Overlays Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, Aravind Srinivasan Department of Computer Science, University of Maryland, College Park, MD 20742, USA Emails: suman,

More information

A Contemporary Study of Application Layer Multicast Protocols in aid of Effective Communication

A Contemporary Study of Application Layer Multicast Protocols in aid of Effective Communication A Contemporary Study of Application Layer Multicast Protocols in aid of Effective Communication M. Anitha #1, P. Yogesh *2 # Department of Computer Science and Engineering, * Department of Information

More information

Bridge-Node Selection and Loss Recovery in Island Multicast

Bridge-Node Selection and Loss Recovery in Island Multicast Bridge-Node Selection and Loss Recovery in Island Multicast W.-P. Ken Yiu K.-F. Simon Wong S.-H. Gary Chan Department of Computer Science The Hong Kong University of Science and Technology Clear Water

More information

Scalable Peer Finding on the Internet

Scalable Peer Finding on the Internet 1 Scalable Peer inding on the Internet Suman Banerjee, Christopher Kommareddy, Bobby Bhattacharjee Department of Computer Science, University of Maryland, College Park Abstract We consider the problem

More information

A Survey and Comparison of. Application-level Multicast Protocols

A Survey and Comparison of. Application-level Multicast Protocols A Survey and omparison of Application-level Multicast Protocols Xing Jin Wan-hing Wong S.-. Gary han oi-lun Ngan epartment of omputer Science The ong Kong University of Science and Technology lear Water

More information

Building Low Delay Application Layer Multicast Trees

Building Low Delay Application Layer Multicast Trees Building Low Delay Application Layer Multicast Trees Su-Wei, Tan Gill Waters Computing Laboratory, University of Kent Email: {swt3,a.g.waters}@kent.ac.uk Abstract Application Layer Multicast (ALM) enables

More information

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination

Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination Bayeux: An Architecture for Scalable and Fault Tolerant Wide area Data Dissemination By Shelley Zhuang,Ben Zhao,Anthony Joseph, Randy Katz,John Kubiatowicz Introduction Multimedia Streaming typically involves

More information

A Comparative Study of Application Layer Multicast Protocols

A Comparative Study of Application Layer Multicast Protocols omparative Study of pplication Layer Multicast Protocols Suman anerjee, obby hattacharjee bstract ue to the sparse deployment of IP multicast in the Internet today, some researchers have proposed application

More information

A DNS-aided Application Layer Multicast Protocol

A DNS-aided Application Layer Multicast Protocol A Application Layer Multicast Protocol Sze-Horng Lee, Chun-Chuan Yang, and Hsiu-Lun Hsu Sze-Horng Lee: Department of Computer Science & Information Engineering National Chi Nan University, Puli, Taiwan,

More information

Proactive Route Maintenance and Overhead Reduction for Application Layer Multicast

Proactive Route Maintenance and Overhead Reduction for Application Layer Multicast Proactive Route Maintenance and Overhead Reduction for Application Layer Multicast Tetsuya Kusumoto, Yohei Kunichika, Jiro Katto and Sakae Okubo Graduated school of Science and Engineering, Waseda University

More information

! Naive n-way unicast does not scale. ! IP multicast to the rescue. ! Extends IP architecture for efficient multi-point delivery. !

! Naive n-way unicast does not scale. ! IP multicast to the rescue. ! Extends IP architecture for efficient multi-point delivery. ! Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination ACM NOSSDAV 001 Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, John D. Kubiatowicz {shelleyz, ravenben,

More information

Peer-to-Peer Streaming Systems. Behzad Akbari

Peer-to-Peer Streaming Systems. Behzad Akbari Peer-to-Peer Streaming Systems Behzad Akbari 1 Outline Introduction Scaleable Streaming Approaches Application Layer Multicast Content Distribution Networks Peer-to-Peer Streaming Metrics Current Issues

More information

Research Article Scalable Island Multicast for Peer-to-Peer Streaming

Research Article Scalable Island Multicast for Peer-to-Peer Streaming Hindawi Publishing Corporation Advances in Multimedia Volume 007, Article ID 78913, 9 pages doi:10.1155/007/78913 Research Article Scalable Island Multicast for Peer-to-Peer Streaming Xing Jin, 1 Kan-Leung

More information

ZIGZAG: An Efficient Peer-to-Peer Scheme for Media Streaming

ZIGZAG: An Efficient Peer-to-Peer Scheme for Media Streaming ZIGZAG: An Efficient Peer-to-Peer Scheme for Media Streaming Duc A. Tran School of Electrical Engineering and Computer Science University of Central Florida Orlando, FL 3286 2362 Email: dtran@cs.ucf.edu

More information

Application Layer Multicast with Proactive Route Maintenance over Redundant Overlay Trees

Application Layer Multicast with Proactive Route Maintenance over Redundant Overlay Trees 56893792 Application Layer Multicast with Proactive Route Maintenance over Redundant Overlay Trees Yohei Kunichika, Jiro Katto and Sakae Okubo Department of Computer Science, Waseda University {yohei,

More information

Overlay Multicast/Broadcast

Overlay Multicast/Broadcast Overlay Multicast/Broadcast Broadcast/Multicast Introduction Structured Overlays Application Layer Multicast Flooding: CAN & Prefix Flood. Unstructured Overlays Centralised Distributed Tree-based: Scribe/

More information

TOMA: A Viable Solution for Large-Scale Multicast Service Support

TOMA: A Viable Solution for Large-Scale Multicast Service Support TOMA: A Viable Solution for Large-Scale Multicast Service Support Li Lao 1, Jun-Hong Cui 2, and Mario Gerla 1 1 Computer Science Dept., University of California, Los Angeles, CA 90095 2 Computer Science

More information

Tree-Based Application Layer Multicast using Proactive Route Maintenance and its Implementation

Tree-Based Application Layer Multicast using Proactive Route Maintenance and its Implementation Tree-Based Application Layer Multicast using Proactive Route Maintenance and its Implementation Tetsuya Kusumoto, Yohei Kunichika 1, Jiro Katto, and Sakae Okubo Graduate School of Science and Engineering,

More information

Scalable Overlay Multicast Tree Construction for Media Streaming

Scalable Overlay Multicast Tree Construction for Media Streaming Scalable Overlay Multicast Tree Construction for Media Streaming Gabriel Parmer, Richard West, Gerald Fry Computer Science Department Boston University Boston, MA 02215 {gabep1,richwest,gfry}@cs.bu.edu

More information

Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies

Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies Gerald Fry and Richard West Boston University Boston, MA 02215 {gfry,richwest}@cs.bu.edu Introduction Internet growth

More information

A Survey of Application-Layer Multicast Protocols

A Survey of Application-Layer Multicast Protocols A Survey of Application-Layer Multicast Protocols Mojtaba Hosseini, Dewan Tanvir Ahmed, Shervin Shirmohammadi, and Nicolas D. Georganas Distributed Collaborative Virtual Environments Laboratory (DISCOVER

More information

Overlay Multicast. Application Layer Multicast. Structured Overlays Unstructured Overlays. CAN Flooding Centralised. Scribe/SplitStream Distributed

Overlay Multicast. Application Layer Multicast. Structured Overlays Unstructured Overlays. CAN Flooding Centralised. Scribe/SplitStream Distributed Overlay Multicast Application Layer Multicast Structured Overlays Unstructured Overlays CAN Flooding Centralised Scribe/SplitStream Distributed PeerCast 1 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

More information

Scalable Resilient Media Streaming

Scalable Resilient Media Streaming 1 Scalable Resilient Media Streaming Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, Aravind Srinivasan, Ryan Braud Department of Computer Science University of Maryland, College Park, MD 20742, USA

More information

Application Layer Multicast For Efficient Peer-to-Peer Applications

Application Layer Multicast For Efficient Peer-to-Peer Applications Application Layer Multicast For Efficient Peer-to-Peer Applications Adam Wierzbicki 1 e-mail: adamw@icm.edu.pl Robert Szczepaniak 1 Marcin Buszka 1 1 Polish-Japanese Institute of Information Technology

More information

Two challenges for building large self-organizing overlay networks

Two challenges for building large self-organizing overlay networks Two challenges for building large selforganizing overlay networks Jorg Liebeherr University of Virginia Two issues in multicast overlay networks 1. Why do we keep on proposing overlay networks for multicast?

More information

A Comparative Study of Multicast Protocols: Top, Bottom, or In the Middle?

A Comparative Study of Multicast Protocols: Top, Bottom, or In the Middle? A Comparative Study of Multicast Protocols: Top, Bottom, or In the Middle? Li Lao 1, Jun-Hong Cui 2, Mario Gerla 1, Dario Maggiorini 3 1 Computer Science Department, University of California, Los Angeles,

More information

Overlay Networks for Multimedia Contents Distribution

Overlay Networks for Multimedia Contents Distribution Overlay Networks for Multimedia Contents Distribution Vittorio Palmisano vpalmisano@gmail.com 26 gennaio 2007 Outline 1 Mesh-based Multicast Networks 2 Tree-based Multicast Networks Overcast (Cisco, 2000)

More information

RECENTLY emerged Internet applications such as Internet

RECENTLY emerged Internet applications such as Internet 446 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 3, JUNE 6 Virtual Direction Multicast: An Efficient Overlay Tree Construction Algorithm Suat Mercan and Murat Yuksel Abstract: In this paper, we

More information

Efficient Group Rekeying Using Application-Layer Multicast

Efficient Group Rekeying Using Application-Layer Multicast Efficient Group Rekeying Using Application-Layer Multicast X. Brian Zhang, Simon S. Lam, and Huaiyu Liu Department of Computer Sciences, The University of Texas at Austin, Austin, TX 7872 {zxc, lam, huaiyu}@cs.utexas.edu

More information

Application-Layer Multicasting With Delaunay Triangulation Overlays

Application-Layer Multicasting With Delaunay Triangulation Overlays 1472 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002 Application-Layer Multicasting With Delaunay Triangulation Overlays Jörg Liebeherr, Member, IEEE, Michael Nahas, Member,

More information

Strategies towards Robust and Stable Application Layer Multicast

Strategies towards Robust and Stable Application Layer Multicast Strategies towards Robust and Stable Application Layer Multicast Tetsuya Kusumoto, Su Zhou, Jiro Katto and Sakae Okubo Dept. of Computer Science, Waseda University, Tokyo, Japan Abstract The purpose of

More information

Application-Layer Multicasting with Delaunay Triangulation Overlays

Application-Layer Multicasting with Delaunay Triangulation Overlays Application-Layer Multicasting with Delaunay Triangulation Overlays Jörg Liebeherr Michael Nahas Weisheng Si Department of Computer Science University of Virginia Charlottesville, VA 22904 Abstract Application-layer

More information

11. Application-Layer Multicast

11. Application-Layer Multicast 11. Application-Layer Multicast Kostas Katrinis, Martin May (ETH Zurich) 11.1 Why Multicast on Application Layer Since the early days of the Internet, extending routing capabilities beyond point-to-point

More information

Overlay Multicast/Broadcast

Overlay Multicast/Broadcast Overlay Multicast/Broadcast Broadcast/Multicast Introduction Structured Overlays Application Layer Multicast Flooding: CAN & Prefix Flood. Unstructured Overlays Centralised Distributed Tree-based: Scribe/

More information

A Scalable Overlay Multicast Architecture for Large-Scale Applications

A Scalable Overlay Multicast Architecture for Large-Scale Applications A Scalable Overlay Multicast Architecture for Large-Scale Applications Li Lao, Member, IEEE, Jun-Hong Cui, Member, IEEE, Mario Gerla, Fellow, IEEE, Shigang Chen, Member, IEEE Abstract In this paper, we

More information

Overlay multicasting of real-time streams in virtual environments

Overlay multicasting of real-time streams in virtual environments University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2006 Overlay multicasting of real-time streams in virtual environments

More information

A Scalable Overlay Multicast Architecture for Large-Scale Applications

A Scalable Overlay Multicast Architecture for Large-Scale Applications A Scalable Overlay Multicast Architecture for Large-Scale Applications Li Lao 1, Jun-Hong Cui 2, Mario Gerla 1 llao@cs.ucla.edu, jcui@cse.uconn.edu, gerla@cs.ucla.edu 1 Computer Science Department, University

More information

Application-layer Multicast with Delaunay Triangulations

Application-layer Multicast with Delaunay Triangulations Application-layer Multicast with Delaunay Triangulations Jörg Liebeherr, Michael Nahas, Department of Computer Science, University of Virginia, Charlottesville, VA 9 Abstract Recently, application-layer

More information

The Design and Implementation of StrandCast

The Design and Implementation of StrandCast The Design and Implementation of StrandCast Brian Begnoche bbegnoch@cs.unc.edu David Gotz gotz@cs.unc.edu University of North Carolina at Chapel Hill CB #3175, Sitterson Hall Chapel Hill, NC 27599 USA

More information

Peer-to-Peer Overlay Multicast for Scalable Audiovisual Services over Converging Wired and Wireless Networks

Peer-to-Peer Overlay Multicast for Scalable Audiovisual Services over Converging Wired and Wireless Networks Peer-to-Peer Overlay Multicast for Scalable Audiovisual Services over Converging Wired and Wireless Networks Ahmed Mehaoua 1, Li Fang 1, George Kormentzas 2, and Dominique Seret 1 1 University Paris Descartes

More information

DualCast: Protocol Design of Multiple Shared Trees Based Application Layer Multicast

DualCast: Protocol Design of Multiple Shared Trees Based Application Layer Multicast 2008 14th IEEE International Conference on Parallel and Distributed Systems DualCast: Protocol Design of Multiple Shared Trees Based Application Layer Multicast SHAN Baosong, LIANG Yuan, ZHOU Mi and LOU

More information

Semantic Multicast for Content-based Stream Dissemination

Semantic Multicast for Content-based Stream Dissemination Semantic Multicast for Content-based Stream Dissemination Olga Papaemmanouil Brown University Uğur Çetintemel Brown University Stream Dissemination Applications Clients Data Providers Push-based applications

More information

Application Layer Multicast Technology of Streaming Media

Application Layer Multicast Technology of Streaming Media 1122 JOURNAL OF NETWORKS, VOL. 6, NO. 8, AUGUST 2011 Application Layer Multicast Technology of Streaming Media Jiansheng Liu 1, Jiajia Wei 1, 2, Guangxue Yue 1, 2, 3, Linquan Xie 1, Xiaofeng Xiong 1 1.School

More information

Scalable Secure Group Communication over IP Multicast. Authors:Suman Banerjee, Bobby Bhattacharjee. Speaker: Kun Sun

Scalable Secure Group Communication over IP Multicast. Authors:Suman Banerjee, Bobby Bhattacharjee. Speaker: Kun Sun Scalable Secure Group Communication over IP Multicast Authors:Suman Banerjee, Bobby Bhattacharjee Speaker: Kun Sun Contents Introduction Related Work Secure multicast using clustering Spatial Clustering

More information

Topology-Aware Peer-to-Peer On-demand Streaming

Topology-Aware Peer-to-Peer On-demand Streaming Topology-Aware Peer-to-Peer On-demand Streaming Rongmei Zhang, Ali R. Butt, and Y. Charlie Hu Purdue University, West Lafayette IN 4797, USA {rongmei, butta, ychu}@purdue.edu Abstract. In this paper, we

More information

A Scalable Hybrid Overlay Multicast Architecture for Large-Scale Applications

A Scalable Hybrid Overlay Multicast Architecture for Large-Scale Applications A Scalable Hybrid Overlay Multicast Architecture for Large-Scale Applications Li Lao, Jun-Hong Cui 2, Mario Gerla llao@cs.ucla.edu, jcui@cse.uconn.edu, gerla@cs.ucla.edu Computer Science Department, University

More information

Efficient Group Rekeying Using Application-Layer Multicast

Efficient Group Rekeying Using Application-Layer Multicast Efficient Group Rekeying Using Application-Layer Multicast X. Brian Zhang, Simon S. Lam, and Huaiyu Liu Department of Computer Sciences, The University of Texas at Austin, Austin, TX 7872 {zxc, lam, huaiyu}@cs.utexas.edu

More information

User-Perceived Performance of the NICE Application Layer Multicast Protocol in Large and Highly Dynamic Groups

User-Perceived Performance of the NICE Application Layer Multicast Protocol in Large and Highly Dynamic Groups User-Perceived Performance of the NICE Application Layer Multicast Protocol in Large and Highly Dynamic Groups Christian Hübsch, Christoph P. Mayer, and Oliver P. Waldhorst Institute of Telematics, Karlsruhe

More information

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Dynamic Characteristics of k-ary n-cube Networks for Real-time Communication

Dynamic Characteristics of k-ary n-cube Networks for Real-time Communication Dynamic Characteristics of k-ary n-cube Networks for Real-time Communication Gerald Fry and Richard West Computer Science Department Boston University Boston, MA 02215 {gfry,richwest@cs.bu.edu Abstract

More information

Internet Indirection Infrastructure (i3) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana. UC Berkeley SIGCOMM 2002

Internet Indirection Infrastructure (i3) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana. UC Berkeley SIGCOMM 2002 Internet Indirection Infrastructure (i3) Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana UC Berkeley SIGCOMM 2002 Motivations Today s Internet is built around a unicast pointto-point

More information

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations.

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations. Goals CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University of California, Berkeley

More information

Comparison of k-ary n-cube and de Bruijn Overlays in QoS-constrained Multicast Applications

Comparison of k-ary n-cube and de Bruijn Overlays in QoS-constrained Multicast Applications Comparison of k-ary n-cube and de Bruijn Overlays in QoS-constrained Multicast Applications Richard West, Gerald Fry and Gary Wong Computer Science Department Boston University Boston, MA 02215 {richwest,gfry,gtw}@cs.bu.edu

More information

A Middleware for Implementation and Evaluation of Application Layer Multicast Protocols in Real Environments

A Middleware for Implementation and Evaluation of Application Layer Multicast Protocols in Real Environments A Middleware for Implementation and Evaluation of Application Layer Multicast Protocols in Real Environments Kazushi Ikeda, Thilmee M. Baduge, Takaaki Umedu, Hirozumi Yamaguchi and Teruo Higashino Graduate

More information

Efficient Multi-source Data Dissemination in Peer-to-Peer Networks

Efficient Multi-source Data Dissemination in Peer-to-Peer Networks Efficient Multi-source Data Dissemination in Peer-to-Peer Networks Zhenyu Li 1,2, Zengyang Zhu 1,2, Gaogang Xie 1, Zhongcheng Li 1 1 Institute of Computing Technology, Chinese Academy of Sciences 2 Graduate

More information

Path-aware Overlay Multicast

Path-aware Overlay Multicast Path-aware Overlay Multicast Minseok Kwon and Sonia Fahmy Department of Computer Sciences, Purdue University 250 N. University St. West Lafayette, IN 47907 2066, USA Tel: +1 (765) 494-6183, Fax: +1 (765)

More information

and Network Layer Transparent Multimedia Transport

and Network Layer Transparent Multimedia Transport ALM API for Topology Management and Network Layer Transparent Multimedia Transport 71 ST IETF SAM RG MEETING, PHILADELPHIA. Lim Boon Ping Ettikan KK K.K 1 Requirement

More information

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals.

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals. Overlay Networks: Motivations CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University

More information

P2P Network Structured Networks: Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili

P2P Network Structured Networks: Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili P2P Network Structured Networks: Distributed Hash Tables Pedro García López Universitat Rovira I Virgili Pedro.garcia@urv.net Index Introduction to DHT s Origins of structured overlays Case studies Chord

More information

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree

FatNemo: Building a Resilient Multi-source Multicast Fat-Tree FatNemo: Building a Resilient Multi-source Multicast Fat-Tree Stefan Birrer, Dong Lu, Fabián E. Bustamante, Yi Qiao, and Peter Dinda Northwestern University, Evanston IL 60201, USA, {sbirrer,donglu,fabianb,yqiao,pdinda}@cs.northwestern.edu

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 22: Overlay networks Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information

Peer-to-Peer Networks 12 Fast Download

Peer-to-Peer Networks 12 Fast Download Peer-to-Peer Networks 12 Fast Download Arne Vater Technical Faculty Computer Networks and Telematics University of Freiburg IP Multicast Motivation - Transmission of a data stream to many receivers Unicast

More information

Overview of Overlay Multicast Protocols Dennis M. Moen C3I Center George Mason University

Overview of Overlay Multicast Protocols Dennis M. Moen C3I Center George Mason University Overview of Overlay Multicast Protocols Dennis M. Moen C3I Center George Mason University dmoen@gmu.edu Introduction Multicasting remains a critical element in the deployment of scalable networked virtual

More information

Kapitel 5: Mobile Ad Hoc Networks. Characteristics. Applications of Ad Hoc Networks. Wireless Communication. Wireless communication networks types

Kapitel 5: Mobile Ad Hoc Networks. Characteristics. Applications of Ad Hoc Networks. Wireless Communication. Wireless communication networks types Kapitel 5: Mobile Ad Hoc Networks Mobilkommunikation 2 WS 08/09 Wireless Communication Wireless communication networks types Infrastructure-based networks Infrastructureless networks Ad hoc networks Prof.

More information

Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure

Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002 1489 Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure Miguel Castro, Peter Druschel, Anne-Marie

More information

Reliable Peer-to-peer End System Multicasting through Replication

Reliable Peer-to-peer End System Multicasting through Replication Reliable Peer-to-peer End System Multicasting through Replication Jianjun Zhang, Ling Liu, Calton Pu and Mostafa Ammar College of Computing, Georgia Institute of Technology {zhangjj, lingliu, calton, ammar}@cc.gatech.edu

More information

A Dominating Set Based Peer-to-Peer Protocol for Real-time Multi-source Collaboration

A Dominating Set Based Peer-to-Peer Protocol for Real-time Multi-source Collaboration A Dominating Set Based Peer-to-Peer Protocol for Real-time Multi-source Collaboration Dewan Tanvir Ahmed, Shervin Shirmohammadi and Abdulmotaleb El Saddik Distributed and Collaborative Virtual Environments

More information

Algorithms and Trade-Offs in Multicast Service. Overlay Design

Algorithms and Trade-Offs in Multicast Service. Overlay Design Algorithms and Trade-Offs in Multicast Service Overlay Design Li Lao 1, Jun-Hong Cui 2, Mario Gerla 3 llao@google.com, jcui@cse.uconn.edu, gerla@cs.ucla.edu 1 Google Santa Monica, 604 Arizona Avenue, Santa

More information

A Scalable Application-Level Multicast Approach based on Mobile Agents

A Scalable Application-Level Multicast Approach based on Mobile Agents A Scalable Application-Level Multicast Approach based on Mobile Agents C. Ragusa, A. Liotta, G. Pavlou Centre for Communication System Research University of Surrey Guildford Surrey, UK {c.ragusa, a.liotta,

More information

Reliable End System Multicasting with a Heterogeneous Overlay Network

Reliable End System Multicasting with a Heterogeneous Overlay Network Reliable End System Multicasting with a Heterogeneous Overlay Network Jianjun Zhang, Ling Liu, Calton Pu and Mostafa Ammar College of Computing Georgia Institute of Technology Atlanta, GA 333, U.S.A. {zhangjj,

More information

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Global Computation Model. Cluster-based Applications

Challenges in the Wide-area. Tapestry: Decentralized Routing and Location. Global Computation Model. Cluster-based Applications Challenges in the Wide-area Tapestry: Decentralized Routing and Location System Seminar S 0 Ben Y. Zhao CS Division, U. C. Berkeley Trends: Exponential growth in CPU, b/w, storage Network expanding in

More information

Large-scale Application-Layer Multicast with Delaunay Triangulations

Large-scale Application-Layer Multicast with Delaunay Triangulations Large-scale pplication-layer Multicast with elaunay Triangulations Jörg Liebeherr Michael ahas epartment of omputer Science University of Virginia harlottesville, V 2294 bstract pplication-layer multicast

More information

EE122: Multicast. Kevin Lai October 7, 2002

EE122: Multicast. Kevin Lai October 7, 2002 EE122: Multicast Kevin Lai October 7, 2002 Internet Radio www.digitallyimported.com (techno station) - sends out 128Kb/s MP3 music streams - peak usage ~9000 simultaneous streams only 5 unique streams

More information

A Scalable Content- Addressable Network

A Scalable Content- Addressable Network A Scalable Content- Addressable Network In Proceedings of ACM SIGCOMM 2001 S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker Presented by L.G. Alex Sung 9th March 2005 for CS856 1 Outline CAN basics

More information

EE122: Multicast. Internet Radio. Multicast Service Model 1. Motivation

EE122: Multicast. Internet Radio. Multicast Service Model 1. Motivation Internet Radio EE122: Multicast Kevin Lai October 7, 2002 wwwdigitallyimportedcom (techno station) - sends out 128Kb/s MP music streams - peak usage ~9000 simultaneous streams only 5 unique streams (trance,

More information

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals What is Multicasting? Multicasting Fundamentals Unicast transmission transmitting a packet to one receiver point-to-point transmission used by most applications today Multicast transmission transmitting

More information

Adaptive Routing of QoS-constrained Media Streams over Scalable Overlay Topologies

Adaptive Routing of QoS-constrained Media Streams over Scalable Overlay Topologies Adaptive Routing of QoS-constrained Media Streams over Scalable Overlay Topologies Gerald Fry and Richard West Computer Science Department Boston University Boston, MA 02215 {gfry,richwest}@csbuedu Abstract

More information

IMPROVEMENTS IN DISTRIBUTION OF METEOROLOGICAL DATA USING APPLICATION LAYER MULTICAST. A Thesis SAURIN BIPIN SHAH

IMPROVEMENTS IN DISTRIBUTION OF METEOROLOGICAL DATA USING APPLICATION LAYER MULTICAST. A Thesis SAURIN BIPIN SHAH IMPROVEMENTS IN DISTRIBUTION OF METEOROLOGICAL DATA USING APPLICATION LAYER MULTICAST A Thesis by SAURIN BIPIN SHAH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

Architecture and Implementation of a Content-based Data Dissemination System

Architecture and Implementation of a Content-based Data Dissemination System Architecture and Implementation of a Content-based Data Dissemination System Austin Park Brown University austinp@cs.brown.edu ABSTRACT SemCast is a content-based dissemination model for large-scale data

More information

Priority-Based Distribution Trees for Application-Level Multicast

Priority-Based Distribution Trees for Application-Level Multicast Priority-Based Distribution Trees for Application-Level Multicast Jürgen Vogel, Jörg Widmer, Dirk Farin, Martin Mauve, Wolfgang Effelsberg Praktische Informatik IV, University of Mannheim, Germany vogel,

More information

Internet Indirection Infrastructure

Internet Indirection Infrastructure Motivations Internet Indirection Infrastructure Modified version of Ion Stoica s talk at ODU Nov 14, 05 Today s Internet is built around a unicast point-to-point communication abstraction: Send packet

More information

FatNemo: Building a Resilient Multi-Source Multicast Fat-Tree

FatNemo: Building a Resilient Multi-Source Multicast Fat-Tree FatNemo: Building a Resilient Multi-Source Multicast Fat-Tree Stefan Birrer, Dong Lu, Fabián E. Bustamante, Yi Qiao, and Peter Dinda Northwestern University, Evanston IL 60201, USA, {sbirrer,donglu,fabianb,yqiao,pdinda}@cs.northwestern.edu

More information

Edge Device Multi-unicasting for Video Streaming

Edge Device Multi-unicasting for Video Streaming Edge Device Multi-unicasting for Video Streaming T. Lavian, P. Wang, R. Durairaj, F. Travostino Advanced Technology Lab, Nortel Networks D. B. Hoang University of Technology, Sydney Presented By Ramesh

More information

Adaptive Routing of QoS-constrained Media Streams over Scalable Overlay Topologies

Adaptive Routing of QoS-constrained Media Streams over Scalable Overlay Topologies Adaptive Routing of QoS-constrained Media Streams over Scalable Overlay Topologies Gerald Fry and Richard West Computer Science Department Boston University Boston, MA 02215 {gfry,richwest}@cs.bu.edu Abstract

More information

Application-Layer Multicast in MANETs: To Broadcast or not to Broadcast?

Application-Layer Multicast in MANETs: To Broadcast or not to Broadcast? Application-Layer Multicast in MANETs: To Broadcast or not to Broadcast? Peter Baumung Institute of Telematics Universität Karlsruhe (TH) email: baumung@tm.uka.de Abstract Mobile ad-hoc networks allow

More information

A Case for End System Multicast

A Case for End System Multicast 1456 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002 A Case for End System Multicast Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang, Member, IEEE Abstract

More information

Index. peer-to-peer systems, PPFEED (see Peer-to-peer file sharing (PPFEED)) ARQ schemes, 30. B Butterfly networks, 30

Index. peer-to-peer systems, PPFEED (see Peer-to-peer file sharing (PPFEED)) ARQ schemes, 30. B Butterfly networks, 30 Index A Adaptive network coding (ANC) bandwidth utilization, 164 cumulative encoding technique, 163 LC, 163, 164 MDC, 164 overlay topology construction, 166 167 peer joining, 168 170 average satisfaction,

More information

CoopNet: Cooperative Networking

CoopNet: Cooperative Networking CoopNet: Cooperative Networking Venkat Padmanabhan Microsoft Research September 2002 1 Collaborators MSR Researchers Phil Chou Helen Wang MSR Intern Kay Sripanidkulchai (CMU) 2 Outline CoopNet motivation

More information

Operating Omega ATS and Lynx ATS. QUOTE TRANSFER PROTOCOL (QTP) SPECIFICATION v 1.05

Operating Omega ATS and Lynx ATS. QUOTE TRANSFER PROTOCOL (QTP) SPECIFICATION v 1.05 Operating Omega ATS and Lynx ATS QUOTE TRANSFER PROTOCOL (QTP) SPECIFICATION v 1.05 Revision History Date Revision Description of Change April 15, 2016 1.00 Created April 27, 2016 1.01 Edits made to document.

More information

Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks

Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks Jayanta Biswas and Mukti Barai and S. K. Nandy CAD Lab, Indian Institute of Science Bangalore, 56, India {jayanta@cadl, mbarai@cadl,

More information

! Purpose of Multicasting Routing is to reduce cost for applications that send same data to Multiple recipients.

! Purpose of Multicasting Routing is to reduce cost for applications that send same data to Multiple recipients. PAPER OVERVIEW:! Evaluation of two Multicasting protocols namely CBT and PIM.! Comparison of protocols in terms of End-to-end delay, Network resource usage, Join time, Size of the tables containing multicast

More information

Motivation and goal Design concepts and service model Architecture and implementation Performance, and so on...

Motivation and goal Design concepts and service model Architecture and implementation Performance, and so on... Motivation and goal Design concepts and service model Architecture and implementation Performance, and so on... Autonomous applications have a demand for grasping the state of hosts and networks for: sustaining

More information

Distributed Systems Multicast & Group Communication Services

Distributed Systems Multicast & Group Communication Services Distributed Systems 600.437 Multicast & Group Communication Services Department of Computer Science The Johns Hopkins University 1 Multicast & Group Communication Services Lecture 3 Guide to Reliable Distributed

More information

Brocade: Landmark Routing on Peer to Peer Networks. Ling Huang, Ben Y. Zhao, Yitao Duan, Anthony Joseph, John Kubiatowicz

Brocade: Landmark Routing on Peer to Peer Networks. Ling Huang, Ben Y. Zhao, Yitao Duan, Anthony Joseph, John Kubiatowicz Brocade: Landmark Routing on Peer to Peer Networks Ling Huang, Ben Y. Zhao, Yitao Duan, Anthony Joseph, John Kubiatowicz State of the Art Routing High dimensionality and coordinate-based P2P routing Decentralized

More information