Measuring, modeling and troubleshooting Quality of Experience at Internet access:

Size: px
Start display at page:

Download "Measuring, modeling and troubleshooting Quality of Experience at Internet access:"

Transcription

1 Measuring, modeling and troubleshooting Quality of Experience at Internet access: Inferring traffic differentiation with ChkDiff Riccardo Ravaioli, I3S/CNRS/UNS Guillaume Urvoy-Keller, I3S/CNRS/UNS, INRIA

2 Generalities What is Quality of Experience (QoE)? - A subjective measure of human experience Good, Medium, Poor for an audio conversation 0, 1, 2, for a video streaming - Measured over a panel of testers (e.g., lab, crowdsourcing) How can QoE be estimated/modeled? - By linking it to measurable metrics (Quality of Service or QoS) - Application level, network level, device level, etc Diverse factors impacting QoE. We focus on two main ones: - (Global) Network performances issues ACQUA: Application for predicting Quality of User experience at Internet Access - Application-Specific Network performance issues (middleboxes, firewals, shapers) ChkDiff: Checking Traffic Differentiation at Internet Access - 2

3 Controlled Experimentation Crowdsourcing ACQUA in a nutshell For more details: Appli 1 QoE Model 1 Internet Expected Quality 1 Appli 2 QoE Model 2 Expected Quality 2 (Neutral) Network and device level measurements Appli N QoE Model N Measurements re-utilization Expected Quality N Classification vs. Network Measurements Measurements at end-user Troubleshooting by analyzing Landmarks Learning/Calibration Vary network performance - 3

4 But quality is not only result of global performance issues Evidences that ISPs degrade the performance of selected traffic - [2007] Comcast interrupts P2P upload transfers - [2011, 2012] Free throttles bandwidth allocated to YouTube during evening hours - [2014] Comcast slows down traffic on OpenVPN default port - [2014] Verizon deteriorates connections to Netflix These actions are never advertised ChkDiff: Is my network access neutral? Which applications are impacted by traffic differentiation? - 4

5 Existing work Application flow (Skype, BitTorrent) user Control flow (randomized payload, different port) server Compare - Max throughput - Delay and loss distribution at original and high rate - Received rate to infer token bucket parameters Does not scale to all user applications (one run per application) Does not preserve IP addresses - 5

6 Key Ideas in ChkDiff Goal: be agnostic to - Targeted applications - Differentiation mechanisms at layer 3 (IP) How? - Consider real user traffic, not synthetic traces - Replay outgoing traffic to routers at hops close to the user - Replay incoming traffic from a measurement server - Analyse per-flow delay distribution and losses - Compare flows to each other (ground truth = other flows) Any shaping at layers 3 and 7 will result in higher delays and losses Check for differentiation on the exact set of applications run by the user - 6

7 ChkDiff: outline user hop h server 1. Dump user traffic 2. Arrange into 5-tuple flows 3. Set same size to all packets - Same transmission time when replayed 4. Shuffle packets according to flow sizes - PASTA property holds - Each flow sees the same network conditions 5. Replay upstream traffic 6. Replay downstream traffic 7. Run per-flow statistical analysis on delay distribution and losses - 7

8 Example: ChkDiff upstream user hop h server for each hop h {1,2 k} do for each run r {1,2,3} do replay trace with TTL:=h at a constant rate > original rate collect ICMP time-exceeded packets detect shaped flows at hop h Compare delay distribution (Kolmogorov-Smirnov test) of each flow to that of all other trace delays Check if losses of each flow are consistent with overall losses of the trace (binomial approximation) Flow is differentiated if rejected in all 3 runs - 8

9 Responsiveness to TTL-limited probes At any given probing rate, routers are - Unresponsive - Rate-limited - Fully responsive ICMP rate-limitation appears as: Characterizing ICMP Rate Limitation on Routers, ICC 15 Large-scale campaign to characterize routers - Probed 850 routers at hops 1-5 from PlanetLab nodes - 9

10 ICMP rate limitation: characterization TTL-fingerprinting on routers to get vendor name - Cisco (59%), Juniper (30.5%), others (10.5%) Analysis of rate-limitation parameters - Burst size, inter-burst time, answering rate 20, 100 and 500 pps for most cisco routers 50 pps for 75% of Juniper - 10

11 ICMP rate limitation: delays Are RTTs (Round-Trip Times) biased by our probing rate? No correlation between probing rate and resulting RTT Not hitting any capacity limits of routers - 11

12 ChkDiff: validation in neutral set-up user shaper router Why packets with the same size? - For routers at hops 1,2 the delay variability is comparable to the variability of transmission delays - Flows with large packets would appear as shaped Why 3 runs? - False positives disappear with 2 runs - Safer margin of error - 12

13 ChkDiff: validation in non-neutral set-up Throttled bandwidth - applied to selected flows (fraction f r of the trace) - bw as a function of the sending rate of flows to differentiate (bw = k bw * rate) Throttled bandwidth + ICMP rate limitation - router responds at 20 pps max - user replays at 30, 50, 80, 100 pps When up to 60% of traffic is shaped, no flow is incorrectly flagged 80% is too much for baseline to work Similar results as in the first case ICMP rate limitation affects losses, delays are not altered - 13

14 ChkDiff: validation in non-neutral set-up Losses Losses + ICMP rate limitation - uniform drops at rate lr shaped on each flow to differentiate - uniform drops at rate lr all on the whole trace - router responds at 20 pps max - user replays at 30, 50, 80, 100 pps Replaying up to 5x the ICMP rate limitation Results are not significantly altered - 14

15 ChkDiff: download it! Code available on: Runs on Linux, requires tcpdump & tcpreplay Sample output: - 15

16 Thank you - 16

17 ACQUA in a nutshell Model Calibration Phase Controlled experimentation in the lab Application e.g. Skype Vary artificially network performance Ask end users for their feedback Write down QoE Write down QoE and network conditions Model for QoE (Decision Tree, SVM, BayesianNet) Crowdsourcing QoE Estimation/Prediction Phase Measure network performance Model for QoE Expected QoE - 17

18 Network measurements in ACQUA Path-level measurements - Bandwidth, delay and loss, upload and download, Device-level measurements - Signal strength, type of connection, traffic in/out, Measurements inside and from the device Measurements to Landmarks - Measurement servers - Expected QoE per landmark - Statistics of QoE over landmarks - Troubleshooting by landmark elimination Internet - Dozen of landmarks for a good span of QoE - 18

19 Model calibration by controlled experimentation Varying network conditions in ACQUA Space of experimentation can be huge - One dimension per performance metric - Complexity power of the number of metrics A two-layer approach for space sampling - Fourier Amplitude Sensitivity Analysis (FAST) method for a fair coverage of the space and for sample suggestion - Active learning for sample acceptance/rejection (Vowpal Wabbit implementation) Only accepted samples transform into scenarios to experiment with - 19

20 Experimenting with Skype Five measurable path metrics - Bandwidth and loss rate, both upload and download - Round-trip delay QoE = Skype quality meter DummyNet - Four levels - Good, Medium, Poor, No Call Controlled experimental setup - DummyNet at access point - Both ways - Local Skype traffic - Around 600 experiments A local skype call One network configuration (5 values) Controlled experimentation One experiment QoE of Skype (Good, Medium, Poor, No Call) - 20

21 Modeling Skype Quality of Experience A variety of machine learning techniques - Decision Tree, Naïve Bayesian, Lazy learner, Support Vector Machine, etc. Focus on Decision Trees for their readability Performance metrics: Precision and Recall per Quality class - 21

22 Precision Precision Skype QoE prediction accuracy Recall Recall - Best performance for the Medium class, no particular technique outperforming - Almost 70% prediction accuracy (or recall) on average - 22

23 Skype tree sample - 23

24 12kbs a critical rate ARQ/FEC Skype Quality Rules Rule = set of branches from root to leaf 20 rules (after pruning) - Rule 1: Download Bandwidth > 1078, Download Delay <= 94 class Excellent [84.1%] - Rule 2: Upd Bandwidth > 1903, Dwn Bandwidth > 1078 class Excellent [70.7%] - Rule 3: Dwn Bandwidth <= 1078, Dwn Delay <= 665, Upd Loss > 0, Upd Loss <= 2, Dwn Loss > 0, Dwn Loss <= 2 class Excellent [66.2%] - Rule 4: Dwn Bandwidth <= 12 class No Call [90.6%] - Rule 5: Upd Bandwidth <= 14, Upd Loss <= 27 class No Call [75.7%] - Rule 6: Upd Delay <= 506, Upd Loss > 27, Upd Loss <= 46, Dwn Loss > 45 class No Call [61.2%] - Default class: Good Skype can easily deal with one-way losses if bandwidth is available one-way delay up tp 400ms - 24

25 Frequency of quality results - 25

26 Sensitivity analysis (offered by FAST) Participation of each metric to the overall variability of the quality 30% 25% 20% 15% 10% 5% 27% 24% 17% 14% 10% 8% 0% Upd Loss Dwn Loss Upd Bandwidth Dwn Bandwidth Upd Delay Dwn Delay - 26

27 Sampling the space of parameters Fair coverage of the six-dimensional space - With random selection, the probability to pick a corner is as low as 10-6! FAST: Fourier Amplitude Sensitivity Analysis - Virtual time - Each parameter is a sinusoid of virtual time, with different frequency FAST provides sensitivity analysis for free Energy of a parameter = Energy of the corresponding frequency in the output spectrum + its replicas 538 experiments with repetitions - 27

28 Decision Tree Building Chosen for its efficiency, readability and ease of implementation C4.5 algorithm: - Numerical attributes and binary tree - Top down tree building - Start with attributes providing the maximum information gain (best compression of the tree if attribute removed) - Pruning: remove low frequency leafs - Cross validation under-going (less accuracy announced by still acceptable) - 28

29 PlanetLab experiments Dummynet is finally not reality PlanetLab nodes - Real paths different than emulated ones - Metrics unknowns, to be measured PlanetLab-driven path conditions - Tunneling via PlanetLab instead of emulation - Running measurement tools - Almost same accuracy as in the lab - 29

30 The ACQUA application Client in C#, Server in Java - Clients proactive in performing measurements - Servers reactive Measurements - Trains of UDP packets, periodically - From Client to Server***s*** Metrics per path (client <-> server) - Upload Delay, Download Delay, Round Trip Delay - Upload Available Bandwidth, Download Available Bandwidth - Upload Packet Loss Rate, Download Packet Loss Rate An XML file per application modelling its Expected Quality Lines evolving with time and showing - Mean/Variance Measurements over paths - Mean/Variance Expected Quality of Experience - 30

31 ACQUA GUI Augmented with two application profiles: Skype and Video-Like - 31

32 ACQUA GUI Augmented with two application profiles: Skype and Video-Like - 32

33 Concluding remarks A new framework for QoE estimation/prediction starting from network-level measurements Methodology to be applied to other applications as well - Meters might not be present - Reuse existing models for QoE First calibration of models in the lab, then crowd sourcing for refinement Measurements themselves pose lot of problems: - Choice of measurement servers - Choice of metrics - Consideration of new technologies for content delivery (CDN, Cloud, etc) - Overhead of measurements - Collaboration of users and network - 33

34 Network Neutrality A network is neutral if it treats all traffic flows equally No discrimination on - header information (IP src, IP dest, port) - payload (reveals application) Differentiation techniques - Blocking, deprioritizing, packet dropping, modification of TCP advertised window size, application-level mechanisms - 34

From network-level measurements to expected Quality of Experience. the Skype use case

From network-level measurements to expected Quality of Experience. the Skype use case From network-level measurements to expected Quality of Experience the Skype use case 2015 IEEE 2015 International IEEE International Workshop Workshop on Measurements on Measurements & Networking & Networking

More information

Tuning RED for Web Traffic

Tuning RED for Web Traffic Tuning RED for Web Traffic Mikkel Christiansen, Kevin Jeffay, David Ott, Donelson Smith UNC, Chapel Hill SIGCOMM 2000, Stockholm subsequently IEEE/ACM Transactions on Networking Vol. 9, No. 3 (June 2001)

More information

SamKnows test methodology

SamKnows test methodology SamKnows test methodology Download and Upload (TCP) Measures the download and upload speed of the broadband connection in bits per second. The transfer is conducted over one or more concurrent HTTP connections

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Lecture 24: Scheduling and QoS

Lecture 24: Scheduling and QoS Lecture 24: Scheduling and QoS CSE 123: Computer Networks Alex C. Snoeren HW 4 due Wednesday Lecture 24 Overview Scheduling (Weighted) Fair Queuing Quality of Service basics Integrated Services Differentiated

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP 4.5 routing algorithms link state

More information

RSVP Support for RTP Header Compression, Phase 1

RSVP Support for RTP Header Compression, Phase 1 RSVP Support for RTP Header Compression, Phase 1 The Resource Reservation Protocol (RSVP) Support for Real-Time Transport Protocol (RTP) Header Compression, Phase 1 feature provides a method for decreasing

More information

ECE 697J Advanced Topics in Computer Networks

ECE 697J Advanced Topics in Computer Networks ECE 697J Advanced Topics in Computer Networks Network Measurement 12/02/03 Tilman Wolf 1 Overview Lab 3 requires performance measurement Throughput Collecting of packet headers Network Measurement Active

More information

Passive Aggressive Measurements with MGRP

Passive Aggressive Measurements with MGRP Passive Aggressive Measurements with MGRP Pavlos Papageorge, Justin McCann and Michael Hicks ACM SIGCOMM 2009 {University of Maryland, College Park} Vaibhav Bajpai NDS Seminar 2011 Outline Introduction

More information

Networking Quality of service

Networking Quality of service System i Networking Quality of service Version 6 Release 1 System i Networking Quality of service Version 6 Release 1 Note Before using this information and the product it supports, read the information

More information

Internet Path Stability: Exploring the Impact of MPLS. Zakaria Al-Qudah, PhD. Yarmouk University April 2, 2015

Internet Path Stability: Exploring the Impact of MPLS. Zakaria Al-Qudah, PhD. Yarmouk University April 2, 2015 Internet Path Stability: Exploring the Impact of MPLS Zakaria Al-Qudah, PhD. Yarmouk University April 2, 2015 1 Outline Introduction Related Work Contribution Methodology Results Conclusions 2 About Myself

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

ClassBench: A Packet Classification Benchmark. By: Mehdi Sabzevari

ClassBench: A Packet Classification Benchmark. By: Mehdi Sabzevari ClassBench: A Packet Classification Benchmark By: Mehdi Sabzevari 1 Outline INTRODUCTION ANALYSIS OF REAL FILTER SETS - Understanding Filter Composition - Application Specifications - Address Prefix Pairs

More information

IP Multicast Technology Overview

IP Multicast Technology Overview IP multicast is a bandwidth-conserving technology that reduces traffic by delivering a single stream of information simultaneously to potentially thousands of businesses and homes. Applications that take

More information

Date: June 4 th a t 1 4:00 1 7:00

Date: June 4 th a t 1 4:00 1 7:00 Kommunika tionssyste m FK, Examina tion G 5 0 7 Date: June 4 th 0 0 3 a t 4:00 7:00 KTH/IMIT/LCN No help material is allowed. You may answer questions in English or Swedish. Please answer each question

More information

Resource allocation in networks. Resource Allocation in Networks. Resource allocation

Resource allocation in networks. Resource Allocation in Networks. Resource allocation Resource allocation in networks Resource Allocation in Networks Very much like a resource allocation problem in operating systems How is it different? Resources and jobs are different Resources are buffers

More information

Avaya ExpertNet Lite Assessment Tool

Avaya ExpertNet Lite Assessment Tool IP Telephony Contact Centers Mobility Services WHITE PAPER Avaya ExpertNet Lite Assessment Tool April 2005 avaya.com Table of Contents Overview... 1 Network Impact... 2 Network Paths... 2 Path Generation...

More information

RPT: Re-architecting Loss Protection for Content-Aware Networks

RPT: Re-architecting Loss Protection for Content-Aware Networks RPT: Re-architecting Loss Protection for Content-Aware Networks Dongsu Han, Ashok Anand ǂ, Aditya Akella ǂ, and Srinivasan Seshan Carnegie Mellon University ǂ University of Wisconsin-Madison Motivation:

More information

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4 CCNA Exploration Network Fundamentals Chapter 06 Addressing the Network IPv4 Updated: 20/05/2008 1 6.0.1 Introduction Addressing is a key function of Network layer protocols that enables data communication

More information

Cloud Control with Distributed Rate Limiting. Raghaven et all Presented by: Brian Card CS Fall Kinicki

Cloud Control with Distributed Rate Limiting. Raghaven et all Presented by: Brian Card CS Fall Kinicki Cloud Control with Distributed Rate Limiting Raghaven et all Presented by: Brian Card CS 577 - Fall 2014 - Kinicki 1 Outline Motivation Distributed Rate Limiting Global Token Bucket Global Random Drop

More information

Adaptive Video Multicasting

Adaptive Video Multicasting Adaptive Video Multicasting Presenters: Roman Glistvain, Bahman Eksiri, and Lan Nguyen 1 Outline Approaches to Adaptive Video Multicasting Single rate multicast Simulcast Active Agents Layered multicasting

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

Correlating Network Congestion with Video QoE Degradation - a Last-Mile Perspective

Correlating Network Congestion with Video QoE Degradation - a Last-Mile Perspective Correlating Congestion with Video QoE Degradation - a Last-Mile Perspective Francesco Bronzino, Paul Schmitt, Renata Teixeira, Nick Feamster, Srikanth Sundaresan AIMS 13 March 2018 Last-Mile Measurement:

More information

Measuring MPLS overhead

Measuring MPLS overhead Measuring MPLS overhead A. Pescapè +*, S. P. Romano +, M. Esposito +*, S. Avallone +, G. Ventre +* * ITEM - Laboratorio Nazionale CINI per l Informatica e la Telematica Multimediali Via Diocleziano, 328

More information

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control ETSF05/ETSF10 Internet Protocols Performance & QoS Congestion Control Quality of Service (QoS) Maintaining a functioning network Meeting applications demands User s demands = QoE (Quality of Experience)

More information

CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC

CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC CHAPTER 6 SOLUTION TO NETWORK TRAFFIC PROBLEM IN MIGRATING PARALLEL CRAWLERS USING FUZZY LOGIC 6.1 Introduction The properties of the Internet that make web crawling challenging are its large amount of

More information

Multimedia Networking

Multimedia Networking CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose

More information

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Semra.gulder@crc.ca, mathieu.deziel@crc.ca Abstract: This paper describes a QoS mechanism suitable for Mobile Ad Hoc Networks

More information

"Filling up an old bath with holes in it, indeed. Who would be such a fool?" "A sum it is, girl," my father said. "A sum. A problem for the mind.

Filling up an old bath with holes in it, indeed. Who would be such a fool? A sum it is, girl, my father said. A sum. A problem for the mind. We were doing very well, up to the kind of sum when a bath is filling at the rate of so many gallons and two holes are letting the water out, and please to say how long it will take to fill the bath, when

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

SaaS Providers. ThousandEyes for. Summary

SaaS Providers. ThousandEyes for. Summary USE CASE ThousandEyes for SaaS Providers Summary With Software-as-a-Service (SaaS) applications rapidly replacing onpremise solutions, the onus of ensuring a great user experience for these applications

More information

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control

ETSF05/ETSF10 Internet Protocols. Performance & QoS Congestion Control ETSF05/ETSF10 Internet Protocols Performance & QoS Congestion Control Quality of Service (QoS) Maintaining a functioning network Meeting applications demands User s demands = QoE (Quality of Experience)

More information

Principles. IP QoS DiffServ. Agenda. Principles. L74 - IP QoS Differentiated Services Model. L74 - IP QoS Differentiated Services Model

Principles. IP QoS DiffServ. Agenda. Principles. L74 - IP QoS Differentiated Services Model. L74 - IP QoS Differentiated Services Model Principles IP QoS DiffServ Differentiated Services Architecture DSCP, CAR Integrated Services Model does not scale well flow based traffic overhead (RSVP messages) routers must maintain state information

More information

Predicting connection quality in peer-to-peer real-time video streaming systems

Predicting connection quality in peer-to-peer real-time video streaming systems Predicting connection quality in peer-to-peer real-time video streaming systems Alex Giladi Jeonghun Noh Information Systems Laboratory, Department of Electrical Engineering Stanford University, Stanford,

More information

The Measurement Manager Modular End-to-End Measurement Services

The Measurement Manager Modular End-to-End Measurement Services The Measurement Manager Modular End-to-End Measurement Services Ph.D. Research Proposal Department of Electrical and Computer Engineering University of Maryland, College Park, MD Pavlos Papageorgiou pavlos@eng.umd.edu

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Glasnost: Enabling End Users to Detect Traffic Differentiation

Glasnost: Enabling End Users to Detect Traffic Differentiation Glasnost: Enabling End Users to Detect Traffic Differentiation Krishna P. Gummadi Networked Systems Research Group Networked Systems Research Group Max Planck Institute for Software Systems High-level

More information

Identifying Traffic Differentiation in Mobile Networks

Identifying Traffic Differentiation in Mobile Networks Identifying Traffic Differentiation in Mobile Networks Arash Molavi Kakhki, Abbas Razaghpanah, Anke Li, Hyungjoon Koo, Rajesh Golani, David Choffnes, Phillipa Gill, Alan Mislove Northeastern University,

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 34 This chapter describes how to use different methods to configure quality of service (QoS) on the Catalyst 3750 Metro switch. With QoS, you can provide preferential treatment to certain types

More information

Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren

Lecture 21: Congestion Control CSE 123: Computer Networks Alex C. Snoeren Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren Lecture 21 Overview" How fast should a sending host transmit data? Not to fast, not to slow, just right Should not be faster than

More information

Congestion in Data Networks. Congestion in Data Networks

Congestion in Data Networks. Congestion in Data Networks Congestion in Data Networks CS420/520 Axel Krings 1 Congestion in Data Networks What is Congestion? Congestion occurs when the number of packets being transmitted through the network approaches the packet

More information

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing Layer 3: Network Layer 9. Mar. 2005 1 INF-3190: Switching and Routing Network Layer Goal Enable data transfer from end system to end system End systems Several hops, (heterogeneous) subnetworks Compensate

More information

IP Multicast. Overview. Casts. Tarik Čičić University of Oslo December 2001

IP Multicast. Overview. Casts. Tarik Čičić University of Oslo December 2001 IP Multicast Tarik Čičić University of Oslo December 00 Overview One-to-many communication, why and how Algorithmic approach (IP) multicast protocols: host-router intra-domain (router-router) inter-domain

More information

Lecture Outline. Bag of Tricks

Lecture Outline. Bag of Tricks Lecture Outline TELE302 Network Design Lecture 3 - Quality of Service Design 1 Jeremiah Deng Information Science / Telecommunications Programme University of Otago July 15, 2013 2 Jeremiah Deng (Information

More information

End-to-End Mechanisms for QoS Support in Wireless Networks

End-to-End Mechanisms for QoS Support in Wireless Networks End-to-End Mechanisms for QoS Support in Wireless Networks R VS Torsten Braun joint work with Matthias Scheidegger, Marco Studer, Ruy de Oliveira Computer Networks and Distributed Systems Institute of

More information

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

The Internet today. Measuring the Internet: challenges and applications. Politecnico di Torino 7/12/2011. Speaker: Marco Mellia

The Internet today. Measuring the Internet: challenges and applications. Politecnico di Torino 7/12/2011. Speaker: Marco Mellia Measuring the Internet: challenges and applications Telecommunication Group presentation Speaker: Marco Mellia Politecnico di Torino 7/12/2011 The Internet today 2 A very complex scenario many eterogeneous

More information

Network Support for Multimedia

Network Support for Multimedia Network Support for Multimedia Daniel Zappala CS 460 Computer Networking Brigham Young University Network Support for Multimedia 2/33 make the best of best effort use application-level techniques use CDNs

More information

CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1. Brian Harrington. February 13, University of Toronto Scarborough

CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1. Brian Harrington. February 13, University of Toronto Scarborough CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1 Brian Harrington University of Toronto Scarborough February 13, 2018 ADMIN Assignments Midterm after reading week (Feb 27) In class Covering everything

More information

On Network Dimensioning Approach for the Internet

On Network Dimensioning Approach for the Internet On Dimensioning Approach for the Internet Masayuki Murata ed Environment Division Cybermedia Center, (also, Graduate School of Engineering Science, ) e-mail: murata@ics.es.osaka-u.ac.jp http://www-ana.ics.es.osaka-u.ac.jp/

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services Overview 15-441 15-441 Computer Networking 15-641 Lecture 19 Queue Management and Quality of Service Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 What is QoS? Queuing discipline and scheduling

More information

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Data Plane. Nate Foster Cornell University Spring 2013 CS 5114 Network Programming Languages Data Plane http://www.flickr.com/photos/rofi/2097239111/ Nate Foster Cornell University Spring 2013 Based on lecture notes by Jennifer Rexford and Michael Freedman

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

Monitoring and Analysis

Monitoring and Analysis CHAPTER 3 Cisco Prime Network Analysis Module 5.1 has two types of dashboards: One type is the summary views found under the Monitor menu, and the other type is the over time views found under the Analyze

More information

Review. Some slides are in courtesy of J. Kurose and K. Ross

Review. Some slides are in courtesy of J. Kurose and K. Ross Review The Internet (IP) Protocol Datagram format IP fragmentation ICMP: Internet Control Message Protocol NAT: Network Address Translation Routing in the Internet Intra-AS routing: RIP and OSPF Inter-AS

More information

Redeeming the P Word. Making the Case for Probes as an Effective UC Diagnostics Tools WHITE PAPER

Redeeming the P Word. Making the Case for Probes as an Effective UC Diagnostics Tools WHITE PAPER Redeeming the P Word Making the Case for Probes as an Effective UC Diagnostics Tools WHITE PAPER With the growth of Unified Communications, there is an increasing need to effectively identify, diagnose,

More information

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues 168 430 Computer Networks Chapter 13 Congestion in Data Networks What Is Congestion? Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity

More information

Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management

Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management Table of Contents INTRODUCTION... 4 DSCP CLASSIFICATION... 5 QUALITY OF SERVICE ON GWN7000... 6 USING QOS TO PRIORITIZE VOIP TRAFFIC...

More information

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm QoS on Low Bandwidth High Delay Links Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm Agenda QoS Some Basics What are the characteristics of High Delay Low Bandwidth link What factors

More information

Understanding TCP Parallelization. Qiang Fu. TCP Performance Issues TCP Enhancements TCP Parallelization (research areas of interest)

Understanding TCP Parallelization. Qiang Fu. TCP Performance Issues TCP Enhancements TCP Parallelization (research areas of interest) Understanding TCP Parallelization Qiang Fu qfu@swin.edu.au Outline TCP Performance Issues TCP Enhancements TCP Parallelization (research areas of interest) Related Approaches TCP Parallelization vs. Single

More information

ATM Quality of Service (QoS)

ATM Quality of Service (QoS) ATM Quality of Service (QoS) Traffic/Service Classes, Call Admission Control Usage Parameter Control, ABR Agenda Introduction Service Classes and Traffic Attributes Traffic Control Flow Control Special

More information

Internet Inter-Domain Traffic. C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, F. Jahanian, Proc. of SIGCOMM 2010

Internet Inter-Domain Traffic. C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, F. Jahanian, Proc. of SIGCOMM 2010 Internet Inter-Domain Traffic C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, F. Jahanian, Proc. of SIGCOMM 2010 Motivation! Measuring the Internet is hard! Significant previous work on Router

More information

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

Exam4Tests. Latest exam questions & answers help you to pass IT exam test easily

Exam4Tests.   Latest exam questions & answers help you to pass IT exam test easily Exam4Tests http://www.exam4tests.com Latest exam questions & answers help you to pass IT exam test easily Exam : PW0-300 Title : Certified Wireless Network Expert Vendors : CWNP Version : DEMO Get Latest

More information

Example questions for the Final Exam, part A

Example questions for the Final Exam, part A ETSF10, ETSF05 Ht 2010 Example questions for the Final Exam, part A 1. In AdHoc routing there are two main strategies, reactive and proactive routing. Describe in a small number of words the concept of

More information

Network Control and Signalling

Network Control and Signalling Network Control and Signalling 1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches

More information

FlexiWeb: Network-Aware Compaction for Accelerating Mobile Web

FlexiWeb: Network-Aware Compaction for Accelerating Mobile Web FlexiWeb: Network-Aware Compaction for Accelerating Mobile Web What s the impact of web latency? 100ms 1% Delay sales Source : https://speakerdeck.com/deanohume/faster-mobilewebsites! 100ms 1% Delay revenue

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

IP SLAs Overview. Finding Feature Information. Information About IP SLAs. IP SLAs Technology Overview

IP SLAs Overview. Finding Feature Information. Information About IP SLAs. IP SLAs Technology Overview This module describes IP Service Level Agreements (SLAs). IP SLAs allows Cisco customers to analyze IP service levels for IP applications and services, to increase productivity, to lower operational costs,

More information

Week-12 (Multimedia Networking)

Week-12 (Multimedia Networking) Computer Networks and Applications COMP 3331/COMP 9331 Week-12 (Multimedia Networking) 1 Multimedia: audio analog audio signal sampled at constant rate telephone: 8,000 samples/sec CD music: 44,100 samples/sec

More information

Measurements close to users

Measurements close to users Measurements close to users Anna-Kaisa Pietilainen, Renata Teixeira MUSE Team Inria Paris-Rocquencourt www.usercentricnetworking.eu Network performance disruptions are frustrating For users For ISPs 2

More information

ip rsvp reservation-host

ip rsvp reservation-host Quality of Service Commands ip rsvp reservation-host ip rsvp reservation-host To enable a router to simulate a host generating Resource Reservation Protocol (RSVP) RESV messages, use the ip rsvp reservation-host

More information

P2P Optimized Traffic Control Riad Hartani & Joe Neil Caspian Networks

P2P Optimized Traffic Control Riad Hartani & Joe Neil Caspian Networks P2P Optimized Traffic Control Riad Hartani & Joe Neil Caspian Networks 2004 Caspian Networks, Inc. P2P Applications WINNY 2 Rapid evolution of P2P applications, significant impact on network architectures

More information

Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control

Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control weafon 2001/9/27 Concept of IntServ Network A flow is the basic management unit Supporting accurate quality control.

More information

The administrators capability to shape these four aspects is enabled through the firewalls service quality measurements, such as:

The administrators capability to shape these four aspects is enabled through the firewalls service quality measurements, such as: Quality of Service (QoS) on Palo Alto Networks firewalls represents a set of features used to prioritize and adjust quality aspects of network traffic. The variety of options that comes as an integral

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

Efficient Throughput-Guarantees for Latency-Sensitive Networks-On-Chip

Efficient Throughput-Guarantees for Latency-Sensitive Networks-On-Chip ASP-DAC 2010 20 Jan 2010 Session 6C Efficient Throughput-Guarantees for Latency-Sensitive Networks-On-Chip Jonas Diemer, Rolf Ernst TU Braunschweig, Germany diemer@ida.ing.tu-bs.de Michael Kauschke Intel,

More information

An Approach to Flexible QoS Routing with Active Networks

An Approach to Flexible QoS Routing with Active Networks U Innsbruck Informatik - 1 An Approach to Flexible QoS Routing with Active Networks Michael Welzl Alfred Cihal Max Mühlhäuser Leopold Franzens University Innsbruck Johannes Kepler University Linz TU Darmstadt

More information

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access Last time Wireless link-layer Introduction Wireless hosts, base stations, wireless links Characteristics of wireless links Signal strength, interference, multipath propagation Hidden terminal, signal fading

More information

Presented by: Fabián E. Bustamante

Presented by: Fabián E. Bustamante Presented by: Fabián E. Bustamante A. Nikravesh, H. Yao, S. Xu, D. Choffnes*, Z. Morley Mao Mobisys 2015 *Based on the authors slides Mobile apps are increasingly popular Mobile platforms is the dominant

More information

Multiple unconnected networks

Multiple unconnected networks TCP/IP Life in the Early 1970s Multiple unconnected networks ARPAnet Data-over-cable Packet satellite (Aloha) Packet radio ARPAnet satellite net Differences Across Packet-Switched Networks Addressing Maximum

More information

Chapter 6: Congestion Control and Resource Allocation

Chapter 6: Congestion Control and Resource Allocation Chapter 6: Congestion Control and Resource Allocation CS/ECPE 5516: Comm. Network Prof. Abrams Spring 2000 1 Section 6.1: Resource Allocation Issues 2 How to prevent traffic jams Traffic lights on freeway

More information

Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30

Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30 Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30 R1. Let s review some of the terminology used in this textbook. Recall that

More information

Queuing Mechanisms. Overview. Objectives

Queuing Mechanisms. Overview. Objectives Queuing Mechanisms Overview Objectives This module describes the queuing mechanisms that can be used on output interfaces. It includes the following topics: Queuing Overview FIFO Queuing Priority Queuing

More information

On the State of ECN and TCP Options on the Internet

On the State of ECN and TCP Options on the Internet On the State of ECN and TCP Options on the Internet PAM 2013, March 19, Hong Kong Mirja Kühlewind Sebastian Neuner Brian

More information

Routing and router security in an operator environment

Routing and router security in an operator environment DD2495 p4 2011 Routing and router security in an operator environment Olof Hagsand KTH CSC 1 Router lab objectives A network operator (eg ISP) needs to secure itself, its customers and its neighbors from

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Before configuring standard QoS, you must have a thorough understanding of these items:

Before configuring standard QoS, you must have a thorough understanding of these items: Finding Feature Information, page 1 Prerequisites for QoS, page 1 QoS Components, page 2 QoS Terminology, page 3 Information About QoS, page 3 Restrictions for QoS on Wired Targets, page 41 Restrictions

More information

Information Network Systems The network layer. Stephan Sigg

Information Network Systems The network layer. Stephan Sigg Information Network Systems The network layer Stephan Sigg Tokyo, November 1, 2012 Error-detection and correction Decoding of Reed-Muller codes Assume a second order (16, 11) code for m = 4. The r-th order

More information

CSCD 433/533 Advanced Networks

CSCD 433/533 Advanced Networks CSCD 433/533 Advanced Networks Lecture 2 Network Review Winter 2017 Reading: Chapter 1 1 Topics Network Topics Some Review from CSCD330 Applications Common Services Architecture OSI Model AS and Routing

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms

Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Resource Guide Implementing QoS for WX/WXC Application Acceleration Platforms Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2000 or 888 JUNIPER www.juniper.net Table

More information

Internet Services & Protocols. Quality of Service Architecture

Internet Services & Protocols. Quality of Service Architecture Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Quality of Service Architecture Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:

More information

Bandwidth Allocation & TCP

Bandwidth Allocation & TCP Bandwidth Allocation & TCP The Transport Layer Focus Application Presentation How do we share bandwidth? Session Topics Transport Network Congestion control & fairness Data Link TCP Additive Increase/Multiplicative

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

Implementing Cisco Quality of Service 2.5 (QOS)

Implementing Cisco Quality of Service 2.5 (QOS) Implementing Cisco Quality of Service 2.5 (QOS) COURSE OVERVIEW: Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 1 Midterm exam Midterm this Thursday Close book but one-side 8.5"x11" note is allowed (must

More information