MA/CS 109 Lecture 2. The Konigsberg Bridge Problem And Its generalizabons

Size: px
Start display at page:

Download "MA/CS 109 Lecture 2. The Konigsberg Bridge Problem And Its generalizabons"

Transcription

1 MA/CS 109 Lecture 2 The Konigsberg Bridge Problem And Its generalizabons

2 All Course informabon at hdp:// Remark: This page will be conbnually updated. First Homework to be posted soon. Due Tues Sept 19 IN CLASS Discussions meet Monday (and Tuesday)

3 Template for Doing MathemaBcs Problem Model Repeat Modify Examples/Conjectures Model Proof- - - Did we answer the quesbon?- - - No Yes Fame + $$$

4 Is it possible to walk through the city, crossing each bridge exactly once and ending where you began?

5 Don t care about the building, only the brigdes.

6 Doesn t mader how wide the bridges are or how curvy or how wide the river is.

7 Finally, the water doesn t mader and how big the land masses are doesn t mader and the color of the picture certainly doesn t mader So all we really need to talk about the 7 bridges of Konigsberg is the picture

8 Networks A network is a collecbon of dots called nodes, and a collecbon of curves that start and end at nodes. The curves are called edges. [NOTE: Nodes are somebmes called verbces and networks are somebmes called graphs but we will use Network to avoid confusion with graphs with horizontal and verbcal axes ]

9 We can spedivy a network by giving a list of nodes and a list of edges and saying what the end points of each edga are. The Konigsberg netowrk has four nodes (1,2,3,4) and seven edges (a,b,c,d,e,f,g). a goes 1 to 2 b goes 1 to 2 c goes 2 to 3 d goes 2 to 3 e goes 1 to 4 f goes 2 to 4 g goes 3 to 4 a c b d f g e 4

10

11 A path on a network is a list of edges such that each edge of the list ends at a node where the next edge begins. So on the network below, starbng at node 1, abacgje is a path, but startgin at node 1, abfc is not. 1 e a c 2 3 b d f g 4

12 A circuit is a path that starts and ends at the same node. So starbng at node 1, abacge is a circuit, but starbng at node 1, afgc is a path that is not a circuit (it is a path, but ends at node 2). a c b d f g e 4

13 An Euler circuit (pronounced Oil- er ) is a circuit that uses each edge of the graph exactly once (so a path that starts and ends at the same node that uses each edge exactly once). a c b d f g e 4

14 Leonhard Euler: Dead, white, male, European mathemabcian in a funny hat Eu

15 Konigsberg Bridge Problem: Does the network below have an Euler circuit? 1 e a 2 b f 4 c d g 3

16 Why bother The Konigsberg bridge problem is a toy problem a starter problem that helps us to think about what is important in a network. The study of paths and circuits in networks has lots of applicabons efficient delivery problems, communicabon in terrorist networks,

17 Other applicabons: Spread of disease: Nodes = individuals, edge represents Has had sex with paths indicate how sexually transmided disease can spread Computer communicabon: Nodes = individual computers (connected to the internet), edges represent exchanged rumors spread along paths. Internet traffic: Nodes = web pages, edges are hyperlinks. Paths indicate possibility of surfing from on page to another.

18 NavigaBon: Nodes = intersecbons on a map, edges are roads connecbng intersecbons. A path is literally a path decorate paths with lengths or Bme of travel and ask for shortest paths. Ecology: Nodes = species, edge is the relabonship eats or is eaten by (we may want to add arrows to indicate eats giving a directed network like a map with one way streets). Paths indicate the possibility of impact of eliminabng one species on the populabon of another.

19 Etc., etc., A good abstract idea can have lots of applicabons. Figuring out something about the abstract problem tells us something about all the applicabons (That is the power of abstract thinking. Even though it simplifies the real world, it also extends the applicability of our work in unexpected ways.) Back to Konigsberg and Euler circuits

20 Go the problem- made the model Problem Model Repeat Modify Examples/Conjectures Model Proof- - - Did we answer the quesbon?- - - No Yes Fame $$$

21 Examples: Always start simple! Given a network, how can you tell if it has an Euler circuit or not? Example of a network without an Euler circuit This network is disconnected, no way to get from one piece to the other.

22 First restricbon: We say a network is strongly connected if for every pair of edges, there is a path that uses both edges (i.e., it is possible to walk from every bridge to every other bridge.) Since this is required for Euler circuits, we will just add it to our model. From now on, all networks we consider will be strongly connected.

23 Also, for convenience, we will not allow edges that start and end at the same node that is, the picture Is not allowed real bridges don t do this. (Building the model is a powerful is a powerful step you can create the world you want.)

24 (We are actually modifying the model here adding restricbons to avoid cases we don t want to think about. This means our work won t be quite so general, but it will be a lidle easier and we make the trade off.)

25 Three simple networks 1 a 2 d b 3 Does the ler one have an Euler circuit?

26 Three simple networks 1 a 2 d b 3 The ler one has an Euler circuit. We know this ( prove this) since we can say what the Euler circuit is start at 1 then abc.

27 Three simple networks 1 a 2 d b 3 The middle one does NOT have an Euler circuit. You can try all cases 3 places to start and the only choice is a or b at node 1.

28 Three simple networks 1 a 2 d b 3 The right hand one is more difficult. There are three places to start, and more choices but not So many that you can t try them all

29 d Start at 2: acb nope bca nope bcd nope bda nope bdc nope ADempts at Euler paths: Start at 1: abcd nope abdc nope cbad nope cdab nope dbac nope dcab nope Start at 3: bacd nope badc nope cabd nope dabc nope cdba nope dcba nope NO POSSIBLE PATH IS AN EULER CIRCUIT tried them all Proof by exhausbon.

30 What did we learn? Even simple networks can have lots of paths! But what keeps a path from becoming an Euler circuit? In all the cases we tried, we either ran out of edges before we got back to the starbng node or we got stuck that is, we got to a node where there were no unused edges to leave the node on (but the circuit wasn t completed).

31 How can we use this observabon? Say it a different way. If a network HAS an Euler circuit, then when you walk along that Euler circuit, every Bme you reach a node there is an unused edge available to leave that node, unbl you get to the end of the circuit and are back where you started.

32 So If you have a network that has an Euler circuit, then at every node that isn t the start=end node of the circuit, every Bme you arrive at the node via an edge, you can leave by another (not yet used) edge. So At every node the arriving edges match up with the leaving edges.

33 Since every edge is used by the Euler circuit, for each node, the edges touching are either arriving edges or leaving edges (never both) and the number of arriving edges must equal the number of leaving edges.

34 New idea (counbng the edges that touch a node), so we need a new word. The degree of a node is the number of edges that start or end at that node

35 But then If a network has an Euler circuit, a node that is not the start=end node has Degree =arriving edges + leaving edges =arriving edges + arriving edges = 2 (arriving edges). We call an integer that is 2 Bmes another integer an even number.

36 So saying this more efficiently If a network has an Euler circuit then every node that is not the start=end node must have even degree. Wow What about the start=end node? Well, the first edge in the Euler circuit is a leaving edge, but the last edge is an arriving edge. Every other Bme you arrive at this node you must leave. So even at the start=end node, the number of arriving edges matches the number of leaving edges so the degree is even.

37 StarBng Node What about the starbng node? If you are standing there, your friend starts the Euler circuit by leaving (on a leaving edge). Each Bme they return (on an arriving edge), the either leave again (on a leaving edge) like at other nodes OR the circuit is finished.

38 So, we can pair the arriving and leaving edges as before, by pairing the first leaving edge with the last arriving edge. So the degree of the starbng node is even also!! Conjecture: If a network has an Euler circuit, then the degree of every node of the network must be an even number.

39 Conjecture: If a network has an Euler circuit, then the degree of every node of the network must be an even number. What this says (and what it doesn t say!). IF you have a network that (somehow) you already know has an Euler Circuit, THEN the degree of every node is even. (IF I have a network with all even degree nodes, this conjecture says NO COMMENT only says something one way.)

40 Proof: Remember, a proof is an explanabon of why a statement MUST be true. It isn t evidence that it is true, OR an example where it is true. Proofs are forever

41 Since a proof is just an explanabon why a conjecture (or theory) must be true, we don t need special language or special symbols. We just need to write carefully, making sure each statement follows from the ones that come before. For our conjecture on Euler circuits, we need only repeat carefully our thinking above that lead to the conjecture.

42 Proof of our conjecture: Suppose you have any network that has an Euler circuit (I m not telling you ANYTHING else about the network other than it has an Euler circuit). At any node (that isn t the starbng node of the circuit), every edge touching the node is an arriving edge or a leaving edge of the circuit, and each arriving edge can be paired with the leaving edge that follows it in the circuit.

43 Does this help? Does this answer say anything about Konigsberg? If Konigsberg had an Euler circuit, then the degree of every node would have to be even But

44 Hey there are nodes of odd degree In fact, every node has odd degree!! So this graph can NOT have an Euler circuit!! There was no path around Konigsberg that was an Euler circuit!. VICTORY FAME $$$

#30: Graph theory May 25, 2009

#30: Graph theory May 25, 2009 #30: Graph theory May 25, 2009 Graph theory is the study of graphs. But not the kind of graphs you are used to, like a graph of y = x 2 graph theory graphs are completely different from graphs of functions.

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Launch problem: Lining streets

Launch problem: Lining streets Math 5340 June 15,2012 Dr. Cordero Launch problem: Lining streets Lining Street Problem A Problem on Eulerian Circuits http://www.edmath.org/mattours/discrete/ Your job for the day is to drive slowly around

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory

Grades 7 & 8, Math Circles 31 October/1/2 November, Graph Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grades 7 & 8, Math Circles 31 October/1/2 November, 2017 Graph Theory Introduction Graph Theory is the

More information

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010 Junior Circle Meeting 3 Circuits and Paths April 18, 2010 We have talked about insect worlds which consist of cities connected by tunnels. Here is an example of an insect world (Antland) which we saw last

More information

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 The Seven Bridges of Königsberg In

More information

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III

Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III 1 Eulerian Graphs Intermediate Math Circles Wednesday, February 22, 2017 Graph Theory III Let s begin this section with a problem that you may remember from lecture 1. Consider the layout of land and water

More information

MA/CS 109 Lecture 3. Networks, Euler paths, and speaking carefully!

MA/CS 109 Lecture 3. Networks, Euler paths, and speaking carefully! MA/CS 109 Lecture 3 Networks, Euler paths, and speaking carefully! Last Time: Last Fme we proved the statement: Theorem 1: If a network has an Euler circuit, then the degree of every node must be an even

More information

Networks and Graphs: Circuits, Paths, and Graph Structures VII.A Student Activity Sheet 1: Euler Circuits and Paths

Networks and Graphs: Circuits, Paths, and Graph Structures VII.A Student Activity Sheet 1: Euler Circuits and Paths The Königsberg Bridge Problem The following figure shows the rivers and bridges of Königsberg. Residents of the city occupied themselves by trying to find a walking path through the city that began and

More information

Networks and Graphs: Circuits, Paths, and Graph Structures VII.A Student Activity Sheet 1: Euler Circuits and Paths

Networks and Graphs: Circuits, Paths, and Graph Structures VII.A Student Activity Sheet 1: Euler Circuits and Paths The Königsberg Bridge Problem The following figure shows the rivers and bridges of Königsberg. Residents of the city occupied themselves by trying to find a walking path through the city that began and

More information

Graph Theory

Graph Theory Graph Theory 2012.04.18 Our goal today is to learn some basic concepts in graph theory and explore fun problems using graph theory. A graph is a mathematical object that captures the notion of connection.

More information

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study.

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. Graph Theory Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However, it wasn t studied too systematically until

More information

Introduction to Networks

Introduction to Networks LESSON 1 Introduction to Networks Exploratory Challenge 1 One classic math puzzle is the Seven Bridges of Königsberg problem which laid the foundation for networks and graph theory. In the 18th century

More information

AQR UNIT 7. Circuits, Paths, and Graph Structures. Packet #

AQR UNIT 7. Circuits, Paths, and Graph Structures. Packet # AQR UNIT 7 NETWORKS AND GRAPHS: Circuits, Paths, and Graph Structures Packet # BY: Introduction to Networks and Graphs: Try drawing a path for a person to walk through each door exactly once without going

More information

1.7 Limit of a Function

1.7 Limit of a Function 1.7 Limit of a Function We will discuss the following in this section: 1. Limit Notation 2. Finding a it numerically 3. Right and Left Hand Limits 4. Infinite Limits Consider the following graph Notation:

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees Axiomatizing Arithmetic Logic: The Big Picture Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic (+,, =, >, 0, 1). Typical true formulas include:

More information

Simple Graph. General Graph

Simple Graph. General Graph Graph Theory A graph is a collection of points (also called vertices) and lines (also called edges), with each edge ending at a vertex In general, it is allowed for more than one edge to have the same

More information

Graph Theory. Defining a Graph

Graph Theory. Defining a Graph Graph Theory This topic is one of the most applicable to real-life applications because all networks (computer, transportation, communication, organizational, etc.) can be represented with a graph. For

More information

The Bridges of Konigsberg Problem Can you walk around the town crossing each bridge only once?

The Bridges of Konigsberg Problem Can you walk around the town crossing each bridge only once? The Bridges of Konigsberg Problem Can you walk around the town crossing each bridge only once? Many people had tried the walk and felt that it was impossible, but no one knew for sure. In 1736, Leonard

More information

Definition: A complete graph is a graph with N vertices and an edge between every two vertices.

Definition: A complete graph is a graph with N vertices and an edge between every two vertices. Complete Graphs Let N be a positive integer. Definition: A complete graph is a graph with N vertices and an edge between every two vertices. There are no loops. Every two vertices share exactly one edge.

More information

Graph Theory: Starting Out

Graph Theory: Starting Out Graph Theory: Starting Out Administrivia To read: Chapter 7, Sections 1-3 (Ensley/Crawley) Problem Set 5 sent out; due Monday 12/8 in class. There will be two review days next week (Wednesday and Friday)

More information

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities? 1 Introduction Graph theory is one of the most in-demand (i.e. profitable) and heavily-studied areas of applied mathematics and theoretical computer science. May graph theory questions are applied in this

More information

6.2. Paths and Cycles

6.2. Paths and Cycles 6.2. PATHS AND CYCLES 85 6.2. Paths and Cycles 6.2.1. Paths. A path from v 0 to v n of length n is a sequence of n+1 vertices (v k ) and n edges (e k ) of the form v 0, e 1, v 1, e 2, v 2,..., e n, v n,

More information

Ma/CS 6a Class 8: Eulerian Cycles

Ma/CS 6a Class 8: Eulerian Cycles Ma/CS 6a Class 8: Eulerian Cycles By Adam Sheffer The Bridges of Königsberg Can we travel the city while crossing every bridge exactly once? 1 How Graph Theory was Born Leonhard Euler 1736 Eulerian Cycle

More information

Graph Theory. 26 March Graph Theory 26 March /29

Graph Theory. 26 March Graph Theory 26 March /29 Graph Theory 26 March 2012 Graph Theory 26 March 2012 1/29 Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However,

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions

Brief History. Graph Theory. What is a graph? Types of graphs Directed graph: a graph that has edges with specific directions Brief History Graph Theory What is a graph? It all began in 1736 when Leonhard Euler gave a proof that not all seven bridges over the Pregolya River could all be walked over once and end up where you started.

More information

9 R1 Get another piece of paper. We re going to have fun keeping track of (inaudible). Um How much time do you have? Are you getting tired?

9 R1 Get another piece of paper. We re going to have fun keeping track of (inaudible). Um How much time do you have? Are you getting tired? Page: 1 of 14 1 R1 And this is tell me what this is? 2 Stephanie x times y plus x times y or hm? 3 R1 What are you thinking? 4 Stephanie I don t know. 5 R1 Tell me what you re thinking. 6 Stephanie Well.

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 An Introduction to Graphs A few centuries ago, residents of the city of Königsberg, Prussia were interested in a certain problem.

More information

(Refer Slide Time: 02.06)

(Refer Slide Time: 02.06) Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 27 Depth First Search (DFS) Today we are going to be talking

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CS4335: Design and Analysis of Algorithms Who we are: Dr. Lusheng WANG Dept. of Computer Science office: B6422 phone: 2788 9820 e-mail: lwang@cs.cityu.edu.hk Course web site: http://www.cs.cityu.edu.hk/~lwang/ccs3335.html

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 THE KIT: This kit contains materials for two Instant Insanity games, a student activity sheet with answer key and this instructor

More information

CS70 - Lecture 6. Graphs: Coloring; Special Graphs. 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs:

CS70 - Lecture 6. Graphs: Coloring; Special Graphs. 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs: CS70 - Lecture 6 Graphs: Coloring; Special Graphs 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs: Trees: Three characterizations Hypercubes: Strongly connected! Administration You need

More information

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink.

Dieter Jungnickel (2008), Graphs, Networks and Algorithms, 3rd edition, which is available online via SpringerLink. Lecture 1 First Steps in Graph Theory This lecture introduces Graph Theory, the main subject of the course, and includes some basic definitions as well as a number of standard examples. Reading: Some of

More information

Graph Theory Problems Instructor: Natalya St. Clair. 1 The Seven Bridges of Königsberg Problem

Graph Theory Problems Instructor: Natalya St. Clair. 1 The Seven Bridges of Königsberg Problem Graph Theory Problems erkeley Math ircles 2015 Lecture Notes Graph Theory Problems Instructor: Natalya St. lair 1 The Seven ridges of Königsberg Problem Königsberg is an ancient city of Prussia, now Kalingrad,

More information

Shorthand for values: variables

Shorthand for values: variables Chapter 2 Shorthand for values: variables 2.1 Defining a variable You ve typed a lot of expressions into the computer involving pictures, but every time you need a different picture, you ve needed to find

More information

Intro. Scheme Basics. scm> 5 5. scm>

Intro. Scheme Basics. scm> 5 5. scm> Intro Let s take some time to talk about LISP. It stands for LISt Processing a way of coding using only lists! It sounds pretty radical, and it is. There are lots of cool things to know about LISP; if

More information

MIT BLOSSOMS INITIATIVE. Taking Walks, Delivering Mail: An Introduction to Graph Theory Karima R. Nigmatulina MIT

MIT BLOSSOMS INITIATIVE. Taking Walks, Delivering Mail: An Introduction to Graph Theory Karima R. Nigmatulina MIT MIT BLOSSOMS INITIATIVE Taking Walks, Delivering Mail: An Introduction to Graph Theory Karima R. Nigmatulina MIT Section 1 Hello and welcome everyone! My name is Karima Nigmatulina, and I am a doctoral

More information

The Konigsberg Bridge Problem

The Konigsberg Bridge Problem The Konigsberg Bridge Problem This is a classic mathematical problem. There were seven bridges across the river Pregel at Königsberg. Is it possible to take a walk in which each bridge is crossed exactly

More information

Steven Skiena. skiena

Steven Skiena.   skiena Lecture 22: Introduction to NP-completeness (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Among n people,

More information

Sarah Will Math 490 December 2, 2009

Sarah Will Math 490 December 2, 2009 Sarah Will Math 490 December 2, 2009 Euler Circuits INTRODUCTION Euler wrote the first paper on graph theory. It was a study and proof that it was impossible to cross the seven bridges of Königsberg once

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Notebook Assignments

Notebook Assignments Notebook Assignments These six assignments are a notebook using techniques from class in the single concrete context of graph theory. This is supplemental to your usual assignments, and is designed for

More information

OrbBasic Lesson 1 Goto and Variables: Student Guide

OrbBasic Lesson 1 Goto and Variables: Student Guide OrbBasic Lesson 1 Goto and Variables: Student Guide Sphero MacroLab is a really cool app to give the Sphero commands, but it s limited in what it can do. You give it a list of commands and it starts at

More information

(Refer Slide Time 3:31)

(Refer Slide Time 3:31) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 5 Logic Simplification In the last lecture we talked about logic functions

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits What You Will Learn Graphs Paths Circuits Bridges 14.1-2 Definitions A graph is a finite set of points called vertices (singular form is vertex) connected by line

More information

(Refer Slide Time: 05:25)

(Refer Slide Time: 05:25) Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering IIT Delhi Lecture 30 Applications of DFS in Directed Graphs Today we are going to look at more applications

More information

Walking with Euler through Ostpreußen and RNA

Walking with Euler through Ostpreußen and RNA Walking with Euler through Ostpreußen and RNA Mark Muldoon February 4, 2010 Königsberg (1652) Kaliningrad (2007)? The Königsberg Bridge problem asks whether it is possible to walk around the old city in

More information

Euler and Hamilton paths. Jorge A. Cobb The University of Texas at Dallas

Euler and Hamilton paths. Jorge A. Cobb The University of Texas at Dallas Euler and Hamilton paths Jorge A. Cobb The University of Texas at Dallas 1 Paths and the adjacency matrix The powers of the adjacency matrix A r (with normal, not boolean multiplication) contain the number

More information

Travel Every Edge 3. Example (Travel Every Edge 3) In the graphs above, can you find a circuit that hits every edge without repeating any edges?

Travel Every Edge 3. Example (Travel Every Edge 3) In the graphs above, can you find a circuit that hits every edge without repeating any edges? Travel Every Edge 3 Example (Travel Every Edge 3) In the graphs above, can you find a circuit that hits every edge without repeating any edges? Find the degrees of the vertices of the graphs above! Make

More information

Lecture 1: An Introduction to Graph Theory

Lecture 1: An Introduction to Graph Theory Introduction to Graph Theory Instructor: Padraic Bartlett Lecture 1: An Introduction to Graph Theory Week 1 Mathcamp 2011 Mathematicians like to use graphs to describe lots of different things. Groups,

More information

Database Management System Prof. D. Janakiram Department of Computer Science & Engineering Indian Institute of Technology, Madras Lecture No.

Database Management System Prof. D. Janakiram Department of Computer Science & Engineering Indian Institute of Technology, Madras Lecture No. Database Management System Prof. D. Janakiram Department of Computer Science & Engineering Indian Institute of Technology, Madras Lecture No. # 20 Concurrency Control Part -1 Foundations for concurrency

More information

OrbBasic 1: Student Guide

OrbBasic 1: Student Guide OrbBasic 1: Student Guide Sphero MacroLab is a really cool app to give the Sphero commands, but it s limited in what it can do. You give it a list of commands and it starts at the top and goes to the bottom,

More information

MITOCW ocw f99-lec12_300k

MITOCW ocw f99-lec12_300k MITOCW ocw-18.06-f99-lec12_300k This is lecture twelve. OK. We've reached twelve lectures. And this one is more than the others about applications of linear algebra. And I'll confess. When I'm giving you

More information

Chapter 9. Graph Theory

Chapter 9. Graph Theory Chapter 9. Graph Theory Prof. Tesler Math 8A Fall 207 Prof. Tesler Ch. 9. Graph Theory Math 8A / Fall 207 / 50 Graphs PC Computer network PC2 Modem ISP Remote server PC Emily Dan Friends Irene Gina Harry

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

Math 110 Graph Theory II: Circuits and Paths

Math 110 Graph Theory II: Circuits and Paths Math 110 Graph Theory II: Circuits and Paths For Next Time. Read Section 6.1 Circuit Training (p. 386ff) for more background on this material. Review the definition of a graph. Make sure you understand

More information

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph Graphs and Trees Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) who is connected to whom Web search views web pages as a graph Who points to whom Niche graphs (Ecology):

More information

Computational Complexity and Implications for Security DRAFT Notes on Infeasible Computation for MA/CS 109 Leo Reyzin with the help of Nick Benes

Computational Complexity and Implications for Security DRAFT Notes on Infeasible Computation for MA/CS 109 Leo Reyzin with the help of Nick Benes Computational Complexity and Implications for Security DRAFT Notes on Infeasible Computation for MA/CS 109 Leo Reyzin with the help of Nick Benes The Study of Computational Complexity Let s summarize what

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

MATH 113 Section 9.2: Topology

MATH 113 Section 9.2: Topology MATH 113 Section 9.2: Topology Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2007 Outline 1 Introduction to Topology 2 Topology and Childrens Drawings 3 Networks 4 Conclusion Geometric Topology

More information

1. The Normal Distribution, continued

1. The Normal Distribution, continued Math 1125-Introductory Statistics Lecture 16 10/9/06 1. The Normal Distribution, continued Recall that the standard normal distribution is symmetric about z = 0, so the area to the right of zero is 0.5000.

More information

Adding content to your Blackboard 9.1 class

Adding content to your Blackboard 9.1 class Adding content to your Blackboard 9.1 class There are quite a few options listed when you click the Build Content button in your class, but you ll probably only use a couple of them most of the time. Note

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits INB Table of Contents Date Topic Page # January 27, 2014 Test #1 14 January 27, 2014 Test # 1 Corrections 15 January 27, 2014 Section 14.1 Examples 16 January 27,

More information

NOTES: ALGEBRA FUNCTION NOTATION

NOTES: ALGEBRA FUNCTION NOTATION STARTER: 1. Graph f by completing the table. f, y -1 0 1 4 5 NOTES: ALGEBRA 4.1 FUNCTION NOTATION y. Graph f 4 4 f 4 4, y --5-4 - - -1 0 1 y A Brief Review of Function Notation We will be using function

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 8 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite

More information

Unit 7 Day 2 Section Vocabulary & Graphical Representations Euler Circuits and Paths

Unit 7 Day 2 Section Vocabulary & Graphical Representations Euler Circuits and Paths Unit 7 Day 2 Section 4.3-4.5 Vocabulary & Graphical Representations Euler Circuits and Paths 1 Warm Up ~ Day 2 List the tasks and earliest start times in a table, as in exercise #1. Determine the minimum

More information

Fleury s Algorithm The Adjacency Matrix and Distances Is There a Path From A to B? What is the Path from A to B? Is There a Path From ANY A to ANY B?

Fleury s Algorithm The Adjacency Matrix and Distances Is There a Path From A to B? What is the Path from A to B? Is There a Path From ANY A to ANY B? Intro Math Problem Solving 3 Graph TheoryNovember Origin Fleury s Algorithm The Adjacency Matrix and Distances Is There a Path From A to B? What is the Path from A to B? Is There a Path From ANY A to ANY

More information

Section 3.4 Basic Results of Graph Theory

Section 3.4 Basic Results of Graph Theory 1 Basic Results of Graph Theory Section 3.4 Basic Results of Graph Theory Purpose of Section: To formally introduce the symmetric relation of a (undirected) graph. We introduce such topics as Euler Tours,

More information

Car Industry A3.1. Which of the graphs in Figure 2 fit the diagram above? Copy all graphs that fit and add names of manufacturers to the vertices.

Car Industry A3.1. Which of the graphs in Figure 2 fit the diagram above? Copy all graphs that fit and add names of manufacturers to the vertices. Mathematics: Modeling Our World Unit 3: HIDDEN CONNECTIONS A S S E S S M E N T PROBLEM A3.1 Car Industry A3.1 Because competition is heavy, car manufacturers are cooperating with each other more and more.

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs

Discrete Mathematics for CS Spring 2008 David Wagner Note 13. An Introduction to Graphs CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 13 An Introduction to Graphs Formulating a simple, precise specification of a computational problem is often a prerequisite to writing a

More information

CS125 : Introduction to Computer Science. Lecture Notes #11 Procedural Composition and Abstraction. c 2005, 2004 Jason Zych

CS125 : Introduction to Computer Science. Lecture Notes #11 Procedural Composition and Abstraction. c 2005, 2004 Jason Zych CS125 : Introduction to Computer Science Lecture Notes #11 Procedural Composition and Abstraction c 2005, 2004 Jason Zych 1 Lecture 11 : Procedural Composition and Abstraction Solving a problem...with

More information

FINDING THE RIGHT PATH

FINDING THE RIGHT PATH Task 1: Seven Bridges of Konigsberg! Today we are going to begin with the story of Konigsberg in the 18 th century, its geography, bridges, and the question asked by its citizens. FINDING THE RIGHT PATH

More information

Chapter 5: The Mathematics of Getting Around

Chapter 5: The Mathematics of Getting Around Euler Paths and Circuits Chapter 5: The Mathematics of Getting Around 5.1 Street-Routing Problem Our story begins in the 1700s in the medieval town of Königsberg, in Eastern Europe. At the time, Königsberg

More information

1. The Highway Inspector s Problem

1. The Highway Inspector s Problem MATH 100 Survey of Mathematics Fall 2009 1. The Highway Inspector s Problem The Königsberg Bridges over the river Pregel C c d e A g D a B b Figure 1. Bridges f Is there a path that crosses every bridge

More information

14 Graph Theory. Exercise Set 14-1

14 Graph Theory. Exercise Set 14-1 14 Graph Theory Exercise Set 14-1 1. A graph in this chapter consists of vertices and edges. In previous chapters the term was used as a visual picture of a set of ordered pairs defined by a relation or

More information

A simple problem that has a solution that is far deeper than expected!

A simple problem that has a solution that is far deeper than expected! The Water, Gas, Electricity Problem A simple problem that has a solution that is far deeper than expected! Consider the diagram below of three houses and three utilities: water, gas, and electricity. Each

More information

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007

Kuratowski Notes , Fall 2005, Prof. Peter Shor Revised Fall 2007 Kuratowski Notes 8.30, Fall 005, Prof. Peter Shor Revised Fall 007 Unfortunately, the OCW notes on Kuratowski s theorem seem to have several things substantially wrong with the proof, and the notes from

More information

Object-Oriented Analysis and Design Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology-Kharagpur

Object-Oriented Analysis and Design Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology-Kharagpur Object-Oriented Analysis and Design Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology-Kharagpur Lecture 06 Object-Oriented Analysis and Design Welcome

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Why I Am Writing This: Why I am I writing a set of tutorials on compilers and how to build them? Well, the idea goes back several years ago when Rapid-Q, one of the best free BASIC

More information

COS 116 The Computational Universe Laboratory 8: Digital Logic II

COS 116 The Computational Universe Laboratory 8: Digital Logic II COS 116 The Computational Universe Laboratory 8: Digital Logic II In this lab you ll learn that, using only AND, OR, and NOT gates, you can build a circuit that can add two numbers. If you get stuck at

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

1 GSW Bridging and Switching

1 GSW Bridging and Switching 1 Sandwiched between the physical and media access layers of local area networking (such as Ethernet) and the routeing of the Internet layer of the IP protocol, lies the thorny subject of bridges. Bridges

More information

Displaying Data with Graphs. Chapter 6 Mathematics of Data Management (Nelson) MDM 4U

Displaying Data with Graphs. Chapter 6 Mathematics of Data Management (Nelson) MDM 4U Displaying Data with Graphs Chapter 6 Mathematics of Data Management (Nelson) MDM 4U Cause and Effect Diagrams Developed by Dr. Kaoru Ishikawa in 1943 (Japan) Picture composed of lines and symbols designed

More information

Graph Theory Lecture 5: Modeling with Graphs, and Euler Circuits/Paths Spring 2014 Morgan Schreffler Office: POT 902

Graph Theory Lecture 5: Modeling with Graphs, and Euler Circuits/Paths Spring 2014 Morgan Schreffler Office: POT 902 Graph Theory Lecture 5: Modeling with Graphs, and Euler Circuits/Paths Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Modeling With Graphs (General Tips) We like to make

More information

Animations involving numbers

Animations involving numbers 136 Chapter 8 Animations involving numbers 8.1 Model and view The examples of Chapter 6 all compute the next picture in the animation from the previous picture. This turns out to be a rather restrictive

More information

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs.

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs. MA 111, Topic 4: Graph Theory Our last topic in this course is called Graph Theory. This is the mathematics of connections, associations, and relationships. Definition 1. A Graph is a set of points called

More information

6.001 Notes: Section 15.1

6.001 Notes: Section 15.1 6.001 Notes: Section 15.1 Slide 15.1.1 Our goal over the next few lectures is to build an interpreter, which in a very basic sense is the ultimate in programming, since doing so will allow us to define

More information

Valuable points from Lesson 6 Adobe Flash CS5 Professional Classroom in a Book

Valuable points from Lesson 6 Adobe Flash CS5 Professional Classroom in a Book Valuable points from Lesson 6 Adobe Flash CS5 Professional Classroom in a Book You are expected to understand and know how to use/do each of these tasks in Flash CS5, unless otherwise noted below. If you

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material MTH Calculus II Essex County College Division of Mathematics and Physics Lecture Notes # Sakai Web Project Material Introduction - - 0 - Figure : Graph of y sin ( x y ) = x cos (x + y) with red tangent

More information

The premature state of Topology and Graph Theory nourished by Seven Bridges of Königsberg Problem

The premature state of Topology and Graph Theory nourished by Seven Bridges of Königsberg Problem The premature state of Topology and Graph Theory nourished by Seven Bridges of Königsberg Problem Damodar Rajbhandari Many many years ago, There was a problem which created a mind-boggling puzzle to the

More information

: Intro Programming for Scientists and Engineers Assignment 1: Turtle Graphics

: Intro Programming for Scientists and Engineers Assignment 1: Turtle Graphics Assignment 1: Turtle Graphics Page 1 600.112: Intro Programming for Scientists and Engineers Assignment 1: Turtle Graphics Peter H. Fröhlich phf@cs.jhu.edu Joanne Selinski joanne@cs.jhu.edu Due Date: Wednesdays

More information

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH Slide 3.1 3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 3.0 Introduction 3.1 Graph Theory 3.2 Strategies for State Space Search 3.3 Using the State Space to Represent Reasoning with the Predicate

More information