Network Capacity Planning OPNET tools practice evaluation

Size: px
Start display at page:

Download "Network Capacity Planning OPNET tools practice evaluation"

Transcription

1 Network Capacity Planning OPNET tools practice evaluation Irene Merayo Pastor Enginyeria i Arquitectura La Salle, Universitat Ramon Llull, Catalonia, EUROPE Paseo Bonanova, 8, Barcelona E Mail: st11183@salleurl.edu ABSTRACT Nowadays companies are more dependent on communications as a basic tool for their success. This is why the companies must have a previous knowledge about which are the incidences and problematics new applications can take on their communications. INTRODUCTION In the area of networks and communications analysis tools, OPNET offers an extensive range of products, where we can find specific modules that will help us to analyze the problems a company can find in relation to its net. The modules we are referring to are ACE, Flow Analysis and NetDoctor. ACE permits the characterization of an application using analysis tools, which have been created to find and differentiate the delays produced by networks and applications. ACE will help us to find network design errors and improve application characteristics to reduce the impact this can take on the network and obtain an optimum efficiency. Also, it has been mentioned Flow Analysis which permits analyzing different types of networks, such as IP, ATM networks and commuted circuits. It will be used to diagnose actual network problems or as an aid to predict future performance of a net. We can also study the effects that some characteristics have on the net performance. These characteristics can be: Volume of traffic Traffic type Equipment failure Device configuration Finally, NetDoctor module manages network integrity and security. Some of these tasks are: Configuration problems identification. Security policies violation detection. Network inefficiencies These tasks are the reason which makes NetDoctor very useful. Due to the extensive volume of configuration information a network supports, NetDoctor becomes an essential tool to find out many types of problems.

2 OBJECTIVES The aim of this project is to analyze on OPNET tools both performance and efficiency. First, we must learn how and what is necessary to make a simulation. Once we have enough knowledge to simulate a network we can continue and study the tools we want to evaluate. Before realizing any test for evaluating the tools, we must study and learn all the characteristics each tool offers and how they are applied. OPNET MODULES ACE The performance of network applications depends on interactions between servers, networks and applications. IT organizations need a detailed and quantitative vision of these interactions to solve and expand applications efficiently. Indeed, ACE is the OPNET tool which will permit us to characterize an application, and analyze it to find out the impact this will have on a specific environment. The performance of ACE can be divided in the following steps: It permits capturing, filtering and synchronizing application traces of multiple network segments. It graphically visualizes the results, in the application and the network layer. It diagnoses problems automatically with AppDoctor. It validates if the obtained results are the expected ones. Fig. 1 Different ACE analysis This capturing characteristic makes ACE more useful in capturing than typical programs used to do it. ACE offers the possibility of capturing traces from different places, controlling the captures from an only device (Capture Manager). It can be done using both capture Agents and Manager. Another characteristic of the ACE module is that you can also import captures from other programs to Opnet, for example, we will be able to make captures onto the network with the Sniffer Pro to lately import them to Opnet using ACE tool. FLOW ANALYSIS OPNET s Flow Analysis module empowers planning and engineering groups to design robust IP and ATM networks. With Flow Analysis, you can view the effects of traffic volume, traffic types, equipment failure, or device configuration on the operation of the network. The failure analysis may be a very interesting characteristic to previously know the impact a device failure can cause on network performance. This possibility helps administrator to apply changes on the network to decrease the impact that failure could have.

3 Fig. 2 Failure analysis We use the Flow Analysis to: Visualize the route taken by each virtual circuit or traffic flow. Model multiple failure scenarios quickly and easily. Using this option you can prove the tolerance of the network and the QoS it offers. Automatically identify bottlenecks in ATM networks. Calculate end to end delays for IP traffic flux, including propagations, transmission and queuing. In this case the tool will be analyzed using IP mode. NETDOCTOR Studies show that configuration errors are the major source of network downtime, degraded performance and gaps in network security. Maintaining network integrity and security is essential to guarantee the QoS and decrease failure risks. The problem is that the number and diversity of network devices makes extremely difficult to identify configuration problems. Here is where NetDoctor module takes importance and utility. NetDoctor is a tool that basically is used to automatically identify device misconfigurations, policy violations and inefficiencies. Moreover, you obtain significant benefits by integrating this tool into configuration and management, identifying problems that could damage in the future the network performance, assisting changes and administration configuration processes, checking policy security application It is important to remember that before executing any analysis with NetDoctor you must simulate whatever you want to analyze with Flow Analysis or DES. In this case, the simulation will be done with Flow Analysis because it is another module being studied. TOOLS APPLICATION This section will discuss if the benefits that the previous modules offers, really contribute to network and application analysis. Before executing any analysis on the mentioned modules, the following steps must be done: Studying OPNET general performance. Studying each module and their benefits. Learning to configure simulated and physics implementations. Once the previous studies have been completed, you are able to analyze the OPNET modules using a simulated and physical network. The network used in

4 this case is the network on the next figure. Fig. 3 Analyzed network ACE ANALYSIS Network shown in figure 4 has been physically configured with a 56k Serial connection. To capture all the traffic on the network and to have the possibility of executing PathProve on different existing paths, Capture Agents have been distributed as seen in the following figure: Fig. 4 CaptureAgents and Manager distribution The traffic captured is only an HTTP server access done from machines and to HTTP server ( ), and a ping between the previous hosts. The reason of this ping is to make ACE Manager able to auto synchronize frames captured from the different agents. Once having capture files, the following step is importing them. In the importing phase is where I find the first inconsistency. When it has to be specified the Tier Locations, the machines that are agents appear with the tier location in Local to site specified. Example: Tier Auto detected Local to Site Really, the tier is the capturing machine, so the tier location must be in the option Capturing Machine al Site, but the problem is that if a machine is auto detected you can not change its location. The bandwidth and latency are the parameters that have to be configured both in segments and between tier locations, the problem is that you can not use the segment parameters results to configure bandwidth/latency between locations, because their definitions differ a bit. According to the latency definition in the importing process, it is one half the total round trip (ping) time, but in this process (ping) take place other delays such as processing delay (of destination machine), congestion delay, Using this way of analyzing latency, we will be ignoring part of other delays on ACE analyzing, because they are included in latency instead of their respective delays. After importing the traffic, the next step is analyzing it. In this step there seems to be some inconsistencies. For example, on AppDoctor diagnosis of the traffic explained appears many Bottlenecks and potential bottlenecks as seen in figure 5. Some of this bottlenecks are a problem, there is a Protocol Overhead bottleneck

5 between and hosts which seems to have no explanation, because the only traffic between this devices is a simple ping. After various tests it can be seen that AppDoctor activate the Protocol Overhead bottleneck between two machines if the percentage of short messages is big, although traffic are ping messages. Another bottleneck is the Network Effects of Chattiness one. It is found between the address and hosts. The only reason of having this effect is that ACE interprets the inexistent path between these devices as a delay. Finally, in QuickPredict analysis, the response time is measured from the time it sends the first applicationpayload packet to the time it receives the last one. This method to calculate the response time makes the results to be dependent on the application speed. Although the latency and bandwidth were null and infinite respectively, there will be a minimum response time (not null) because it depends on the time the application takes to send the messages. NETDOCTOR ANALYSIS As it has said in previous sections, NetDoctor is a tool that basically is used to automatically identify: - Device misconfigurations - Policy violations - Inefficiencies These tools are going to be analized, applying them to create the explained scenario, and testing on it how works the identification of policy violations. In order to detect policy violations, you have to define a security demand and configure the characteristics, like connectivity, information (permit or deny) and socket information (IPs, ports and protocol). Fig. 5 Security demands configuration The results format is not if it is correct or not, they are shown as in the figure: Line# Demand Name Expected Behavior 0 Servidor HTTP > PC Xarxa_30 Deny Status Unroutable Fig. 6 Security results Description Represents Network Security Demand If the behavior would be permitting the result will be the same except that in the Expected Behavior field it would appear Permit instead of Deny, so if you want to know whatever policy performance, all the results have to be analyzed. It also show the hops the demand can realize, so you can see where the traffic is blocked or if it is permitted all the hops the frame have to do. Another useful characteristic is the possibility of rules creation and edition. This tool permits user to modify the

6 characteristics of an existing rule or creating a new one that defines new technologies, without having to wait for OPNET actualizations. For example, in this case, it has been modified an administration rule, exactly the OS version of the routers used in the simulation. The routers used to configure the physical network (figure 3) are 2601 CISCO model and they support 12.2 OS version, but OPNET has defined in the rule to give a warning if a router has a different version than The only modification that has been done to avoid the appearance of warnings is to change the Default Value and the Description of the os_version parameter. Fig. 7 Rule edition FLOW ANALYSIS ANALISYS Flow Analysis is an OPNET module used to analyze networks that supports specific traffic (configured or imported). In this case the network is an IP network and the traffic supported are flows imported from ACE captures which have been taken from the physical network. It is important to remember that flow analysis only runs with background traffic. The simulation will be done on the network where NetDoctor analyses have been done, so you know that it doesn t have configuration errors. Traffic flows are the following: Fig. 8 Traffic imported flows The flows on the network are: HTTP Server (PC Opnet_1). HTTP Server (PC Opnet_2) (PC Opnet_2) (PC Opnet_1). In order to obtain each one of the flows you have to configure correctly the devices when you are importing. OPNET detects in the file imported the devices that have generated traffic so you are able to divide each part of traffic between each pair of devices. The first idea was to analyze the efficiency of both Flow Analysis and ACE results and compare them, but the flow importing method calculates the traffic level in different intervals applying specific procedures. R = sum of repetitions for frame files ( repetitions _ frames frame _ size) V = R R TAR = number _ users interval _ duration 3600 Poisson( TAR) V bps _ per _ interval = durada _ interval Fig. 9 Variable traffic calculation

7 T = application bits source destination V = number of users TAR = repetitions per user per hour T U R bps _ per _ flow = 3600 Fig. 10 Uniform traffic calculation Although traffic is not analyzed packet per packet, the other results, like delays, would be similar to ACE results because the physical and simulated network is the same, and the imported traffic in Flow Analysis is the one captured with ACE. The results obtained with ACE and Flow Analysis are completely different, for example the processing effect on HTTP Server is approximately 3.3 msec instead of the inexistent processing delay that appears in Flow Analysis. This is an inconsistency, because if you are analyzing the same simulated characteristics as you have physically the results would be similar and they aren t. Apart from simulating networks and viewing the results to analyze them, this module offers other characteristics that become useful to make other type of analysis: Failure analysis Visualize route maps These characteristics have been applied on a simple network with redundant paths and it has been tested if the traffic is routable although having a connection failure, and if there exists difference between the results obtained in one path (figure 11) or the other (figure 12). Fig. 71 Default path Fig. 82 Redundant path for failures The result is surely changing in the Demand Routing between the server and PC Opnet_2. The rest of results won t change because of the inexistent delays. CONCLUSIONS The importance of detecting inefficiencies and problems on networks has increased in the last years. The reason is the expansion of networks and the continuous development of new applications. It has been verified that OPNET integrates all necessary tools to realize network and application analysis. The objective of this project was to evaluate each module benefits, apart from analyzing the efficiency of each one. ACE integrates the possibility of making simultaneous captures from different points of a network, managing the network from an only device

8 (Capture Manager). This new development makes ACE differentiate from typical sniffers. Moreover, NetDoctor and Flow Analysis help to check configuration, security policies, routing, The fact of having tools to analyze the performance of networks and applications before introducing them physically, helps companies to detect problems and inconsistencies that could decrease their efficiency.

Impact of TCP Window Size on a File Transfer

Impact of TCP Window Size on a File Transfer Impact of TCP Window Size on a File Transfer Introduction This example shows how ACE diagnoses and visualizes application and network problems; it is not a step-by-step tutorial. If you have experience

More information

This tutorial shows how to use ACE to Identify the true causes of poor response time Document the problems that are found

This tutorial shows how to use ACE to Identify the true causes of poor response time Document the problems that are found FTP Application Overview This tutorial shows how to use ACE to Identify the true causes of poor response time Document the problems that are found The screen images in this tutorial were captured while

More information

CS519: Computer Networks. Lecture 1 (part 2): Jan 28, 2004 Intro to Computer Networking

CS519: Computer Networks. Lecture 1 (part 2): Jan 28, 2004 Intro to Computer Networking : Computer Networks Lecture 1 (part 2): Jan 28, 2004 Intro to Computer Networking Remember this picture? How did the switch know to forward some packets to B and some to D? From the address in the packet

More information

Two-Tier Oracle Application

Two-Tier Oracle Application Two-Tier Oracle Application This tutorial shows how to use ACE to analyze application behavior and to determine the root causes of poor application performance. Overview Employees in a satellite location

More information

SELECTION OF METRICS (CONT) Gaia Maselli

SELECTION OF METRICS (CONT) Gaia Maselli SELECTION OF METRICS (CONT) Gaia Maselli maselli@di.uniroma1.it Computer Network Performance 2 Selecting performance metrics Computer Network Performance 3 Selecting performance metrics speed Individual

More information

Student ID: CS457: Computer Networking Date: 3/20/2007 Name:

Student ID: CS457: Computer Networking Date: 3/20/2007 Name: CS457: Computer Networking Date: 3/20/2007 Name: Instructions: 1. Be sure that you have 9 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel

Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Quality of Service Mechanism for MANET using Linux Semra Gulder, Mathieu Déziel Semra.gulder@crc.ca, mathieu.deziel@crc.ca Abstract: This paper describes a QoS mechanism suitable for Mobile Ad Hoc Networks

More information

CS 556 Advanced Computer Networks Spring Solutions to Midterm Test March 10, YOUR NAME: Abraham MATTA

CS 556 Advanced Computer Networks Spring Solutions to Midterm Test March 10, YOUR NAME: Abraham MATTA CS 556 Advanced Computer Networks Spring 2011 Solutions to Midterm Test March 10, 2011 YOUR NAME: Abraham MATTA This test is closed books. You are only allowed to have one sheet of notes (8.5 11 ). Please

More information

Routing, Routing Algorithms & Protocols

Routing, Routing Algorithms & Protocols Routing, Routing Algorithms & Protocols Computer Networks Lecture 6 http://goo.gl/pze5o8 Circuit-Switched and Packet-Switched WANs 2 Circuit-Switched Networks Older (evolved from telephone networks), a

More information

PRACTICE QUESTIONS ON RESOURCE ALLOCATION

PRACTICE QUESTIONS ON RESOURCE ALLOCATION PRACTICE QUESTIONS ON RESOURCE ALLOCATION QUESTION : Internet Versus Station Wagon A famous maxim, sometimes attributed to Dennis Ritchie, says Never underestimate the bandwidth of a station wagon full

More information

SIMULATION FRAMEWORK MODELING

SIMULATION FRAMEWORK MODELING CHAPTER 5 SIMULATION FRAMEWORK MODELING 5.1 INTRODUCTION This chapter starts with the design and development of the universal mobile communication system network and implementation of the TCP congestion

More information

Homework 1 50 points. Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below:

Homework 1 50 points. Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below: Homework 1 50 points Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below: A circuit-switching scenario in which Ncs users, each requiring a bandwidth

More information

Configuring QoS. Understanding QoS CHAPTER

Configuring QoS. Understanding QoS CHAPTER 29 CHAPTER This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-qos) commands or by using standard QoS commands on the Catalyst 3750 switch. With QoS, you can provide

More information

CS519: Computer Networks

CS519: Computer Networks Lets start at the beginning : Computer Networks Lecture 1: Jan 26, 2004 Intro to Computer Networking What is a for? To allow two or more endpoints to communicate What is a? Nodes connected by links Lets

More information

Configuring Banyan VINES

Configuring Banyan VINES Configuring Banyan VINES This chapter describes how to configure Banyan VINES and provides configuration examples. For a complete description of the VINES commands in this chapter, refer to the Banyan

More information

Congestion Control in ATM Networks using Artificial Intelligence Techniques Guiomar Corral, Agustín Zaballos, Joan Camps, Josep M.

Congestion Control in ATM Networks using Artificial Intelligence Techniques Guiomar Corral, Agustín Zaballos, Joan Camps, Josep M. Congestion Control in ATM Networks using Artificial Intelligence Techniques Guiomar Corral, Agustín Zaballos, Joan Camps, Josep M. Garrell Enginyeria i Arquitectura La Salle, Universitat Ramon Llull, Catalonia,

More information

Fairness Example: high priority for nearby stations Optimality Efficiency overhead

Fairness Example: high priority for nearby stations Optimality Efficiency overhead Routing Requirements: Correctness Simplicity Robustness Under localized failures and overloads Stability React too slow or too fast Fairness Example: high priority for nearby stations Optimality Efficiency

More information

Configure IP SLA Tracking for IPv4 Static Routes on an SG550XG Switch

Configure IP SLA Tracking for IPv4 Static Routes on an SG550XG Switch Configure IP SLA Tracking for IPv4 Static Routes on an SG550XG Switch Introduction When using static routing, you may experience a situation where a static route is active, but the destination network

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Two Analyzing Technical Goals and Tradeoffs Original slides by Cisco Press & Priscilla Oppenheimer Scalability Availability Performance Accuracy Security Manageability Usability

More information

Configuring Policy-Based Routing

Configuring Policy-Based Routing CHAPTER 17 This chapter describes how to configure policy based routing. This chapter includes the following sections: Information About Policy Based Routing, page 17-1 Licensing Requirements for Policy-Based

More information

On Network Dimensioning Approach for the Internet

On Network Dimensioning Approach for the Internet On Dimensioning Approach for the Internet Masayuki Murata ed Environment Division Cybermedia Center, (also, Graduate School of Engineering Science, ) e-mail: murata@ics.es.osaka-u.ac.jp http://www-ana.ics.es.osaka-u.ac.jp/

More information

Quality of Service. Understanding Quality of Service

Quality of Service. Understanding Quality of Service The following sections describe support for features on the Cisco ASR 920 Series Router. Understanding, page 1 Configuring, page 2 Global QoS Limitations, page 2 Classification, page 3 Marking, page 6

More information

Lecture 4: Introduction to Computer Network Design

Lecture 4: Introduction to Computer Network Design Lecture 4: Introduction to Computer Network Design Instructor: Hussein Al Osman Based on Slides by: Prof. Shervin Shirmohammadi Hussein Al Osman CEG4190 4-1 Computer Networks Hussein Al Osman CEG4190 4-2

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Two Analyzing Technical Goals and Tradeoffs Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Technical Goals Scalability Availability Performance Security Manageability

More information

Worst-case Ethernet Network Latency for Shaped Sources

Worst-case Ethernet Network Latency for Shaped Sources Worst-case Ethernet Network Latency for Shaped Sources Max Azarov, SMSC 7th October 2005 Contents For 802.3 ResE study group 1 Worst-case latency theorem 1 1.1 Assumptions.............................

More information

Optical Packet Switching

Optical Packet Switching Optical Packet Switching DEISNet Gruppo Reti di Telecomunicazioni http://deisnet.deis.unibo.it WDM Optical Network Legacy Networks Edge Systems WDM Links λ 1 λ 2 λ 3 λ 4 Core Nodes 2 1 Wavelength Routing

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 34 This chapter describes how to use different methods to configure quality of service (QoS) on the Catalyst 3750 Metro switch. With QoS, you can provide preferential treatment to certain types

More information

Configuring IP SLA UDP Jitter Operations

Configuring IP SLA UDP Jitter Operations This chapter describes how to configure an IP Service Level Agreements (SLAs) UDP jitter operation to analyze round-trip delay, one-way delay, one-way jitter, one-way packet loss, and connectivity in networks

More information

PfR Voice Traffic Optimization Using Active Probes

PfR Voice Traffic Optimization Using Active Probes PfR Voice Traffic Optimization Using Active Probes This module documents a Performance Routing (PfR) solution that supports outbound optimization of voice traffic based on the voice metrics, jitter and

More information

Security Labs in OPNET IT Guru

Security Labs in OPNET IT Guru Security Labs in OPNET IT Guru Universitat Ramon Llull Barcelona 2004 Security Labs in OPNET IT Guru Authors: Cesc Canet Juan Agustín Zaballos Translation from Catalan: Cesc Canet -I- Overview This project

More information

Network Planning & Engineering

Network Planning & Engineering Network Planning & Engineering OPNET IT GURU Opnet IT Guru Opnet IT Guru Network Planner enable planning and design of multitechnology, multi vendor networks. Network Planner s unique ability to model

More information

Chapter 4 NETWORK HARDWARE

Chapter 4 NETWORK HARDWARE Chapter 4 NETWORK HARDWARE 1 Network Devices As Organizations grow, so do their networks Growth in number of users Geographical Growth Network Devices : Are products used to expand or connect networks.

More information

Network management and QoS provisioning - revise. When someone have to share the same resources is possible to consider two particular problems:

Network management and QoS provisioning - revise. When someone have to share the same resources is possible to consider two particular problems: Revise notes Multiplexing & Multiple Access When someone have to share the same resources is possible to consider two particular problems:. multiplexing;. multiple access. The first one is a centralized

More information

EXAM TCP/IP NETWORKING Duration: 3 hours

EXAM TCP/IP NETWORKING Duration: 3 hours SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours Jean-Yves Le Boudec January 2017 INSTRUCTIONS 1. Write your solution into this document and return it to us (you do not need to

More information

CHAPTER 3 GRID MONITORING AND RESOURCE SELECTION

CHAPTER 3 GRID MONITORING AND RESOURCE SELECTION 31 CHAPTER 3 GRID MONITORING AND RESOURCE SELECTION This chapter introduces the Grid monitoring with resource metrics and network metrics. This chapter also discusses various network monitoring tools and

More information

Chapter 1 Introduction

Chapter 1 Introduction Emerging multimedia, high-speed data, and imaging applications are generating a demand for public networks to be able to multiplex and switch simultaneously a wide spectrum of data rates. These networks

More information

Next Steps Spring 2011 Lecture #18. Multi-hop Networks. Network Reliability. Have: digital point-to-point. Want: many interconnected points

Next Steps Spring 2011 Lecture #18. Multi-hop Networks. Network Reliability. Have: digital point-to-point. Want: many interconnected points Next Steps Have: digital point-to-point We ve worked on link signaling, reliability, sharing Want: many interconnected points 6.02 Spring 2011 Lecture #18 multi-hop networks: design criteria network topologies

More information

Cisco Virtualized Workload Mobility Introduction

Cisco Virtualized Workload Mobility Introduction CHAPTER 1 The ability to move workloads between physical locations within the virtualized Data Center (one or more physical Data Centers used to share IT assets and resources) has been a goal of progressive

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS SWITCHING A switch is a mechanism that allows us to interconnect links to form a larger network. A switch is a multi-input, multi-output device, which transfers packets

More information

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 Q1. 2 points Write your NET ID at the top of every page of this test. Q2. X points Name 3 advantages of a circuit network

More information

Configuring QoS. Finding Feature Information. Prerequisites for QoS

Configuring QoS. Finding Feature Information. Prerequisites for QoS Finding Feature Information, page 1 Prerequisites for QoS, page 1 Restrictions for QoS, page 3 Information About QoS, page 4 How to Configure QoS, page 28 Monitoring Standard QoS, page 80 Configuration

More information

Advanced Network Design

Advanced Network Design Advanced Network Design Organization Whoami, Book, Wikipedia www.cs.uchicago.edu/~nugent/cspp54015 Grading Homework/project: 60% Midterm: 15% Final: 20% Class participation: 5% Interdisciplinary Course

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #2 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Fall 2011 Question Paper NOTE: Students may take this question

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 37 This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-qos) commands or by using standard QoS commands on the Catalyst 3750-E or 3560-E switch. With QoS,

More information

Assignment #1. Csci4211 Spring Due on Feb. 13th, Notes: There are five questions in this assignment. Each question has 10 points.

Assignment #1. Csci4211 Spring Due on Feb. 13th, Notes: There are five questions in this assignment. Each question has 10 points. Assignment #1 Csci4211 Spring 2017 Due on Feb. 13th, 2017 Notes: There are five questions in this assignment. Each question has 10 points. 1. (10 pt.) Describe the special properties of the following transmission

More information

Transport Layer PREPARED BY AHMED ABDEL-RAOUF

Transport Layer PREPARED BY AHMED ABDEL-RAOUF Transport Layer PREPARED BY AHMED ABDEL-RAOUF TCP Flow Control TCP Flow Control 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window

More information

Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks

Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks Kok Soon Thia and Chen Khong Tham Dept of Electrical Engineering National University of Singapore Tel: (65) 874-5095 Fax:

More information

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control Chapter 12 Congestion in Data Networks Effect of Congestion Control Ideal Performance Practical Performance Congestion Control Mechanisms Backpressure Choke Packet Implicit Congestion Signaling Explicit

More information

UNIT- 2 Physical Layer and Overview of PL Switching

UNIT- 2 Physical Layer and Overview of PL Switching UNIT- 2 Physical Layer and Overview of PL Switching 2.1 MULTIPLEXING Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link. Figure

More information

CSCI Computer Networks

CSCI Computer Networks CSCI-1680 - Computer Networks Link Layer III: LAN & Switching Chen Avin Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca Today: Link Layer (cont.)

More information

Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management

Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management Grandstream Networks, Inc. GWN7000 QoS - VoIP Traffic Management Table of Contents INTRODUCTION... 4 DSCP CLASSIFICATION... 5 QUALITY OF SERVICE ON GWN7000... 6 USING QOS TO PRIORITIZE VOIP TRAFFIC...

More information

FACULTY OF COMPUTING AND INFORMATICS

FACULTY OF COMPUTING AND INFORMATICS namibia UniVERSITY OF SCIEnCE AnD TECHnOLOGY FACULTY OF COMPUTING AND INFORMATICS DEPARTMENT OF COMPUTER SCIENCE QUALIFICATION: Bachelor of Computer Science {Honours) QUALIFICATION CODE: 08BCSH LEVEL:

More information

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF hapter 4 Lab 4-1, Redistribution Between RIP and OSPF Topology Objectives Review configuration and verification of RIP and OSPF. onfigure passive interfaces in both RIP and OSPF. Filter routing updates

More information

Chapter 7 CONCLUSION

Chapter 7 CONCLUSION 97 Chapter 7 CONCLUSION 7.1. Introduction A Mobile Ad-hoc Network (MANET) could be considered as network of mobile nodes which communicate with each other without any fixed infrastructure. The nodes in

More information

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network This Lecture BUS0 - Computer Facilities Network Management Switching networks Circuit switching Packet switching gram approach Virtual circuit approach Routing in switching networks Faculty of Information

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Prof. Dr.-Ing Jochen H. Schiller Inst. of Computer Science Freie Universität Berlin Germany Mobile Communications Chapter 9: Mobile Transport Layer Motivation, TCP-mechanisms Classical approaches (Indirect

More information

General comments on candidates' performance

General comments on candidates' performance BCS THE CHARTERED INSTITUTE FOR IT BCS Higher Education Qualifications BCS Level 5 Diploma in IT April 2018 Sitting EXAMINERS' REPORT Computer Networks General comments on candidates' performance For the

More information

Multi-class Applications for Parallel Usage of a Guaranteed Rate and a Scavenger Service

Multi-class Applications for Parallel Usage of a Guaranteed Rate and a Scavenger Service Department of Computer Science 1/18 Multi-class Applications for Parallel Usage of a Guaranteed Rate and a Scavenger Service Markus Fidler fidler@informatik.rwth-aachen.de Volker Sander sander@fz.juelich.de

More information

CHAPTER 5 THROUGHPUT, END-TO-END DELAY AND UTILIZATION ANALYSIS OF BEACON ENABLED AND NON-BEACON ENABLED WSN

CHAPTER 5 THROUGHPUT, END-TO-END DELAY AND UTILIZATION ANALYSIS OF BEACON ENABLED AND NON-BEACON ENABLED WSN 137 CHAPTER 5 THROUGHPUT, END-TO-END DELAY AND UTILIZATION ANALYSIS OF BEACON ENABLED AND NON-BEACON ENABLED WSN 5.1 INTRODUCTION The simulation study in this chapter analyses the impact of the number

More information

Outline 9.2. TCP for 2.5G/3G wireless

Outline 9.2. TCP for 2.5G/3G wireless Transport layer 9.1 Outline Motivation, TCP-mechanisms Classical approaches (Indirect TCP, Snooping TCP, Mobile TCP) PEPs in general Additional optimizations (Fast retransmit/recovery, Transmission freezing,

More information

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION TELECOMMUNICATION STANDARDIZATION SECTOR STUDY PERIOD 21-24 English only Questions: 12 and 16/12 Geneva, 27-31 January 23 STUDY GROUP 12 DELAYED CONTRIBUTION 98 Source:

More information

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online 1 CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online Solutions 1. General Networking a. In traditional client-server communication using TCP, a new socket is created.

More information

Improve the QoS by Applying Differentiated Service over MPLS Network

Improve the QoS by Applying Differentiated Service over MPLS Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 9, September 2015,

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Brad Karp UCL Computer Science CS 3035/GZ01 29 th October 2013 Part I: Transport Concepts Layering context Transport goals Transport mechanisms 2 Context:

More information

Expected Time: 90 min PART-A Max Marks: 42

Expected Time: 90 min PART-A Max Marks: 42 Birla Institute of Technology & Science, Pilani First Semester 2010-2011 Computer Networks (BITS C481) Comprehensive Examination Thursday, December 02, 2010 (AN) Duration: 3 Hrs Weightage: 40% [80M] Instructions-:

More information

Multimedia Networking

Multimedia Networking CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose

More information

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms Overview Chapter 13 TRANSPORT Motivation Simple analysis Various TCP mechanisms Distributed Computing Group Mobile Computing Winter 2005 / 2006 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

More information

Configuring Policy-Based Routing

Configuring Policy-Based Routing 25 CHAPTER This chapter describes the tasks for configuring policy-based routing (PBR) on a router and includes these major sections: Overview of Policy-Based Routing, page 25-1 Policy-Based Routing Configuration

More information

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing

Layer 3: Network Layer. 9. Mar INF-3190: Switching and Routing Layer 3: Network Layer 9. Mar. 2005 1 INF-3190: Switching and Routing Network Layer Goal Enable data transfer from end system to end system End systems Several hops, (heterogeneous) subnetworks Compensate

More information

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm QoS on Low Bandwidth High Delay Links Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm Agenda QoS Some Basics What are the characteristics of High Delay Low Bandwidth link What factors

More information

Introduction to Capacity and Performance Management

Introduction to Capacity and Performance Management 1 Introduction to Capacity and Performance Management Session 2 Presentation_ID.scr 1 Agenda Introductions/Goals Capacity Planning Model Capacity Data Collection Tools and Reporting Best Practices for

More information

Introductions. Computer Networking Lecture 01. January 16, HKU SPACE Community College. HKU SPACE CC CN Lecture 01 1/36

Introductions. Computer Networking Lecture 01. January 16, HKU SPACE Community College. HKU SPACE CC CN Lecture 01 1/36 Introductions Computer Networking Lecture 01 HKU SPACE Community College January 16, 2012 HKU SPACE CC CN Lecture 01 1/36 Outline What is a Computer Network? Basic Requirements of Building a Computer Network

More information

XNS Commands. Not all Cisco access servers support XNS. For more information, refer to the release notes for the release you are running. Note.

XNS Commands. Not all Cisco access servers support XNS. For more information, refer to the release notes for the release you are running. Note. XNS Commands Developed by the Xerox Corporation, the XNS protocols are designed to be used across a variety of communication media, processors, and office applications. Ungermann-Bass, Inc. (now a part

More information

Configuring Policy-Based Routing

Configuring Policy-Based Routing CHAPTER 28 This chapter describes the tasks for configuring policy-based routing (PBR) on a router and includes these major sections: Overview of Policy-Based Routing, page 28-1 Policy-Based Routing Configuration

More information

COMP3331/9331 XXXX Computer Networks and Applications Final Examination (SAMPLE SOLUTIONS)

COMP3331/9331 XXXX Computer Networks and Applications Final Examination (SAMPLE SOLUTIONS) COMP3331/9331 XXXX Computer Networks and Applications Final Examination (SAMPLE SOLUTIONS) Question 1 (X marks) (a) The one-way propagation delay between A and B is 100/1 = 100 seconds. The RTT will be

More information

Congestion Management in Lossless Interconnects: Challenges and Benefits

Congestion Management in Lossless Interconnects: Challenges and Benefits Congestion Management in Lossless Interconnects: Challenges and Benefits José Duato Technical University of Valencia (SPAIN) Conference title 1 Outline Why is congestion management required? Benefits Congestion

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 36 This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-qos) commands or by using standard QoS commands on the Catalyst 3750 switch. With QoS, you can provide

More information

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long 6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long Please read Chapter 19 of the 6.02 book for background, especially on acknowledgments (ACKs), timers,

More information

Bandwidth Guarantee using Class Based Weighted Fair Queue (CBWFQ) Scheduling Algorithm

Bandwidth Guarantee using Class Based Weighted Fair Queue (CBWFQ) Scheduling Algorithm Bandwidth Guarantee using Class Based Weighted Fair Queue (CBWFQ) Scheduling Algorithm Idris Zakariyya 1, M Nordin A Rahman 2 1 Faculty of Informatics and Computing, University Sultan Zainal Abidin, Terengganu,

More information

CSE 4215/5431: Mobile Communications Winter Suprakash Datta

CSE 4215/5431: Mobile Communications Winter Suprakash Datta CSE 4215/5431: Mobile Communications Winter 2013 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/4215 Some slides are adapted

More information

MA5400 IP Video Gateway. Introduction. Summary of Features

MA5400 IP Video Gateway. Introduction. Summary of Features MA5400 IP Video Gateway Introduction The MA5400 IP Video Gateway bridges the gap between the MPEG-2 and IP domains providing an innovative solution to the need to transport real-time broadcast quality

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

SaaS Providers. ThousandEyes for. Summary

SaaS Providers. ThousandEyes for. Summary USE CASE ThousandEyes for SaaS Providers Summary With Software-as-a-Service (SaaS) applications rapidly replacing onpremise solutions, the onus of ensuring a great user experience for these applications

More information

ECE 697J Advanced Topics in Computer Networks

ECE 697J Advanced Topics in Computer Networks ECE 697J Advanced Topics in Computer Networks Network Measurement 12/02/03 Tilman Wolf 1 Overview Lab 3 requires performance measurement Throughput Collecting of packet headers Network Measurement Active

More information

CS454/654 Midterm Exam Fall 2004

CS454/654 Midterm Exam Fall 2004 CS454/654 Midterm Exam Fall 2004 (3 November 2004) Question 1: Distributed System Models (18 pts) (a) [4 pts] Explain two benefits of middleware to distributed system programmers, providing an example

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Stefano Vissicchio UCL Computer Science COMP0023 Today Transport Concepts Layering context Transport goals Transport mechanisms and design choices TCP Protocol

More information

BIG-IP Global Traffic Manager

BIG-IP Global Traffic Manager v9 Series Datasheet Global Traffic Manager User Seattle Global Traffic Manager Maximizing ROI, availability, and the user experience across multiple data centers and distributed sites GTM San Francisco

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

Module 2 Communication Switching. Version 1 ECE, IIT Kharagpur

Module 2 Communication Switching. Version 1 ECE, IIT Kharagpur Module 2 Communication Switching Lesson 4 Connectionless And Connection Oriented Packet Switching LESSON OBJECTIVE General This lesson is intended to give the reader the understanding of two important

More information

6250 Networking Diagnostic Test

6250 Networking Diagnostic Test 6250 Networking Diagnostic Test Question 1 a) You are transmitting a packet of length 10,000 bits over a link that is 4000 Km long and has bit rate R. At what value of R would the signal propagation time

More information

2.993: Principles of Internet Computing Quiz 1. Network

2.993: Principles of Internet Computing Quiz 1. Network 2.993: Principles of Internet Computing Quiz 1 2 3:30 pm, March 18 Spring 1999 Host A Host B Network 1. TCP Flow Control Hosts A, at MIT, and B, at Stanford are communicating to each other via links connected

More information

Introduction. Routing & Addressing: Multihoming 10/25/04. The two SIGCOMM papers. A Comparison of Overlay Routing and Multihoming Route Control

Introduction. Routing & Addressing: Multihoming 10/25/04. The two SIGCOMM papers. A Comparison of Overlay Routing and Multihoming Route Control Introduction Routing & Addressing: Multihoming 10/25/04 Hong Tat Tong Two attempts to control/ensure best performance over the Internet Multihoming from the endpoints Overlay with some help from middle-boxes

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Laurent Vanbever nsg.ee.ethz.ch ETH Zürich (D-ITET) April 30 2018 Materials inspired from Scott Shenker & Jennifer Rexford Last week on Communication Networks We started

More information

Security Labs in OPNET IT Guru

Security Labs in OPNET IT Guru Security Labs in OPNET IT Guru Universitat Ramon Llull Barcelona 2004 Security Labs in OPNET IT Guru Authors: Cesc Canet Juan Agustín Zaballos Translation from Catalan: Cesc Canet -I- Overview This project

More information

QoS in IPv6. Madrid Global IPv6 Summit 2002 March Alberto López Toledo.

QoS in IPv6. Madrid Global IPv6 Summit 2002 March Alberto López Toledo. QoS in IPv6 Madrid Global IPv6 Summit 2002 March 2002 Alberto López Toledo alberto@dit.upm.es, alberto@dif.um.es Madrid Global IPv6 Summit What is Quality of Service? Quality: reliable delivery of data

More information

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS 28 CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS Introduction Measurement-based scheme, that constantly monitors the network, will incorporate the current network state in the

More information

Performance Modeling

Performance Modeling Performance Modeling EECS 489 Computer Networks http://www.eecs.umich.edu/~zmao/eecs489 Z. Morley Mao Tuesday Sept 14, 2004 Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica 1 Administrivia

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information