Complexity Analysis of Routing Algorithms in Computer Networks

Size: px
Start display at page:

Download "Complexity Analysis of Routing Algorithms in Computer Networks"

Transcription

1 Complexity Analysis of Routing Algorithms in Computer Networks Peter BARTALOS Slovak University of Technology Faculty of Informatics and Information Technologies Ilkovičova 3, 84 6 Bratislava, Slovakia peterbartalos@stonlinesk Abstract There is a huge growth of the Internet users in the last years The network became overloaded One of the necessary processes in computer networks is routing, performed by various algorithms It became important to analyze the complexity of routing strategies This paper includes a complexity analysis of two routing strategies We have showed, that the space complexity of routing with routing tables in network with n nodes is O(nlog ) and the time is O() The space complexity of interval routing with at most k intervals is O(k logn) and the time is O(log(k )), where is the maximum degree of the graph Introduction The routing is one of the latency sources in communications network Routing algorithm has a task to determine the suitable port for delivering message addressed to one network node The aim is to have the fastest routing available in the network The case of every node sending the message to each other by correct delivery can be considered as optimal one It could be achieved by keeping a table of size O (n) by every node, where n is the number of nodes It is not very suitable in larger networks There are lots of methods which memory demand for the data holding required for routing is very low To ensure effective routing with the best possible throughput it is important to identify and analyze complexity of routing strategies In this paper we will use the classic operators of asymptotic notation Supervisor: Mgr Martin Nehéz, Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technologies STU in Bratislava M Bieliková (Ed), IITSRC 5, April 7, 5, pp 69-76

2 7 Peter Bartalos Preliminaries Asymptotic notation (such as O, Ω, o) is used in this paper as it is usual in the computer science, cf [3] As a basic computational model we assume a standard abstract random access machine (RAM), cf [3] We will assume a RAM with logarithmic cost criterion for analysis of space complexities and unit cost for time complexities The network is modeled as a simple unoriented graph G = (V, E), where nodes from V represent processors and edges from E are communication links The maximum degree of G is denoted by For other details see [5, 3] Routing tables Informal description The principle of routing with routing tables is straightforward Every node keeps a table with entries for each other node Using these entries, it could be determined via which outgoing port a message had to be sent m 4 5 Fig Routing tables (message m destined to node 5) Routing with routing tables is today a dominant strategy There are lots of methods to reduce the memory demand for the data holding required for routing The aggregation is one of the most important It is based on that we don t hold information for each node in network but only for subnetworks to which nodes belong This way one can excessively reduce the size of routing tables number of bits number of operations

3 Complexity Analysis of Routing Algorithms in Computer Networks 7 Complexity analysis The Algorithm contains a description of a routing algorithm with routing tables in pseudocode Recall that network is modeled by a graph G = (V, E) with maximum degree Algorithm The algorithm is understood for routing in nodeu V Input: destination node d, message m A data structure table[] is a field which implements the routing table Its size is n and it stores identification labels of ports which are positive integers It is organized in such a manner that in i-th position is stored an ID-number of port via which a message addressed to a node w u is forwarded receive(m, d); if d = = u then OK else p = table[d]; send(m, d) to p; Lemma To store a positive integer j it is required a register with at least log j bits Proof It is possible to vary at most j = n values in n-bit register Taking logarithm of j= n resulted in log j = n It means for storing the j value is an n bit register necessary Indeed, log j bits are necessary, since the number of bits must be an integer Theorem Routing with routing tables requires O( nlog ) bits to store the routing information Proof The size of registers in RAMs depends on the number stored in it 3 We need log bits 4 to keep port numbers We need to store n such values Hence the memory requirements are log = O( n log ) n bits Using routing tables represented by data structure described in previous section the process of finding the corresponding port is very fast The time of executing the algorithm doesn t depend on network parameters It is a constant time performance Theorem Time complexity of Algorithm in RAM model with unit cost criterion is O () 3 in difference with real computers with fixed register sizes 4 from Lemma

4 7 Peter Bartalos Proof Algorithm consists of 4 operations It is necessary to carry out exactly these 4 = O() operations for optional input, ie constant amount, independent on input 3 Interval routing 3 Informal description Interval routing is a space efficient routing strategy used in computer networks This method gaining a great interest because of accessible implementation chips available on the market The basis of interval routing idea is to label all of the nodes with integer from one set (for example {,, 3,, n}) and labeling of all arcs with interval (in range of number of nodes) These intervals means that a message addressed to a node labeled with u, via a port labeled with interval which includes a node u is forwarded 4 [3, 5] [, 3] [] [, ] 3 [4] [5] [, 5] [5] [4] m [, 3] 5 Fig Interval routing (message m destined to node 5) Definition : Interval labeling scheme (ILS) of graph G = (V, E) is a scheme, where: a node labeling is an assignment of unique labels to nodes of V for each node v V, an edge labeling is an assignment of disjoint intervals to arcs e I(v), where I(v) denotes the set of arcs outgoing from v

5 Complexity Analysis of Routing Algorithms in Computer Networks 73 An interval routing scheme, denoted also IRS, in a graph is a valid ILS The validity means that the routing strategy guarantees that the message will always be delivered to its destination using that ILS Proposition [] The validity of every ILS can be checked in O(n ) time, where n is the number of nodes of the graph Intervals used in labeling are understood as cyclic: [a, b] = {a, a +,, V,,, b} for a > b In case of IRS using only linear interval I = [a, b], where a b, it is called a linear (LIRS) If the labels of all outgoing arcs are grouped into at most k intervals then the scheme is denoted as k-irs The memory requirements of interval routing schemes depends also on k The Compactness of a graph G is the smallest integer k such that G supports k-irs Proposition [] For general graphs, the problem of deciding whether G supports -IRS is NP-complete 3 Complexity analysis Let Ψ (u) be the number of intervals assigned to a node u Let Ψ denote max( Ψ (u) ) over all nodes u V (G) Lemma It holds: Ψ k, hence Ψ = O ( k ) Proof Let us denote φ i (u) the number of intervals which belongs to port i in node u We know that we denote every port with at most k intervals in k-irs, so φ i (u) k ϕ i ( u) represents Ψ (u) Since Ψ( u) = ϕ i ( u) k = k deg( u) k for ports ports ports each node u V, hence Ψ k, what implies 5 Ψ = O ( k ) The pseudo code of a routing algorithm is as follows Algorithm : The algorithm is understood for routing in node u V Input: destination node D, number of intervals in node Ψ Output: port number Other variables: index of interval I Algorithm uses these functions: int getleftborder(int i) returns the lower bound of interval stored in i-th position in sequence P = (a,,a ψ ) of lower bounds of intervals 5 from definition of O-notation

6 74 Peter Bartalos int divide(int R) returns R / for R > and for R equals I = Ψ / ; R = I / ; While() if(getleftborder( I )) <= D ) if(getleftborder( I + )) > D ) return( I ); else I = I + R ; R = divide( R ); else I = I - R ; R = divide( R ); Theorem 3 Provided having a graph G and let u V(G) Assume that it is possible to create k-irs for G We need than O ( k deg( u)log n) bits to keep routing information in node u The space complexity for a whole network is O( k log n), since we can substitute deg(u) by Proof For a convenience, let us assume only a linear k-irs The proof for a general (ie nonlinear) k-irs can be done by a similar manner In all nodes we will denote the i-th interval in node [a i, b i ] for i {,, Ψ } and the port to which this interval belongs we will denote p i Let us assume that intervals [a i, b i ] are increasingly sorted and linear Recall that P = (a,,a ψ ) is a sequence of lower bounds of intervals and P = (p,,p ψ ) is the sequence of ports such that p i is a ID-number of port via which a message addressed to a node included in interval [a i, b i ] is forwarded Than we only need to store these two sequences for routing It is not necessary to keep upper bounds b i of intervals We can evaluate them: b i = a i+ - for i < Ψ and b i = n for i = Ψ Storing the lower bound requires O(log n) bits and the number of port O (log ) bits In both sequences we have exactly Ψ members Totally we need Ψ( O (log n) + O(log )) bits As < n, therefore also log < log n It yields Ψ( O(log n) + O(log )) = Ψ O(log n) = O( Ψ log n) = O( k log n) n Proposition 3 [] A more accurate coding allows us to use only O( k log ) bits k per node Assume the encoding of subsection 3, finding the interval which belongs to the destination node requires looking in at most Ψ intervals Using sequential searching the time complexity is O (Ψ) However P is sorted, we can reduced the time We obtain the following results Theorem 4 Time complexity of Algorithm in RAM model with unit cost criterion is O (log( k ))

7 Complexity Analysis of Routing Algorithms in Computer Networks 75 Proof It was showed in [5] that the complexity of binary searching is O(log n) for n element list Assuming the Algorithm the resulting complexity is O (log Ψ) = O(log( k )) 4 Conclusions The main results of this paper are summarized in Table Tab Summary Routing tables Interval routing Space complexity O ( nlog ) O( k log n) Time complexity O () O (log( k )) Our results can be used mainly to estimation of latency of message passing in widearea networks References Aho, A, Hopcroft, J, Ullman, J: Design and Analysis of Computer Algorithms Addison-Wesley 974 Bakker,E M, Leeuwen, J, Tan, R B: Linear Interval routing Department of Computer Science, Utrecht University, 99 3 Bartalos, P: Complexity analysis of routing algorithms in computer networks Bachelor thesis (in Slovak) Faculty of Informatics and Information Technologies, STU December 4 4 Bodlaender, H L, Leeuwen, J, Tan, R B, Thilikos, D M: On Interval Routing Schemes and Treewidth Department of Computer Science, Utrecht University Cormen, T, Leiserson, C, Rivest, R: Intorduction to lgorithms MIT Press, 99 6 Flammini, M, Leeuwen, J, Spaccamela, A M: The Complexity of Interval Routing on Random Graphs Comput J 4 ()(998) Fraigniaud, P, Gavoille, C: Interval routing schemes Algorithmica (998) Gavoille, C, Nehéz, M: Interval routing in reliability networks Theoretical Compurer Science Vol 333, No 3, (5) Gavoille, C, Nehéz, M: On Interval Routing in Random Meshes In: Proc Eurocomb '3 (J Fiala ed), ITI Charles University Prague (3), 47-5 Gavoille, C, Peleg, D: The compactness of interval routing for almost all graphs SIAM J Comput 3, No 3 (),, 76-7

8 76 Peter Bartalos Gavoille, C, Peleg, D: The compactness of interval routing Université Bordeaux 999 Gavoille, C: A survey on interval routing SIAM J Discrete Math, No 4 (999), Gruska, J: Foundations of Computing Int Thomson Computer Press Lau, F C M, Tse, S S H: A Lower Bound for Interval Routing in General Networks Networks 9, No (997), Lau, F C M, Tse, S S H: On Two-label Interval Routing Department of Computer Science The University of Hong Kong Lau, F C M, Tse, S S H: Two Lower Bounds for Multi-Label Interval Routing In: Proc of SIROCCO '95, Carleton Scientific Press, Lau, F C M, Tse, S S H: On the Space and Traffic Problems of Interval Routing Department of Computer Science The University of Hong Kong Lau, F C M, Tse, S S H: More on the Efficiency of Interval Routing Department of Computer Science The University of Hong Kong Nehéz, M: On Subgraphs with Compactness in Random Meshes In: Proc 3rd International Conference APLIMAT 4, Dept of Mathematics, Faculty of Mechanical Engineering, Slovak University of Technology, Bratislava (4), Leeuwen, J, Tan, R B: Interval routing Comput J 3 (987), 98-37

arxiv: v3 [cs.ds] 18 Apr 2011

arxiv: v3 [cs.ds] 18 Apr 2011 A tight bound on the worst-case number of comparisons for Floyd s heap construction algorithm Ioannis K. Paparrizos School of Computer and Communication Sciences Ècole Polytechnique Fèdèrale de Lausanne

More information

Sparse Hypercube 3-Spanners

Sparse Hypercube 3-Spanners Sparse Hypercube 3-Spanners W. Duckworth and M. Zito Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia Department of Computer Science, University of

More information

Characterization of Networks Supporting Multi-dimensional Linear Interval Routing Scheme

Characterization of Networks Supporting Multi-dimensional Linear Interval Routing Scheme Characterization of Networks Supporting Multi-dimensional Linear Interval Routing Scheme YASHAR GANJALI Department of Computer Science University of Waterloo Canada Abstract An Interval routing scheme

More information

A Simplified Correctness Proof for a Well-Known Algorithm Computing Strongly Connected Components

A Simplified Correctness Proof for a Well-Known Algorithm Computing Strongly Connected Components A Simplified Correctness Proof for a Well-Known Algorithm Computing Strongly Connected Components Ingo Wegener FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany wegener@ls2.cs.uni-dortmund.de

More information

Labeling Schemes for Vertex Connectivity

Labeling Schemes for Vertex Connectivity Labeling Schemes for Vertex Connectivity AMOS KORMAN CNRS and Université Paris Diderot - Paris 7, France. This paper studies labeling schemes for the vertex connectivity function on general graphs. We

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms About the course (objectives, outline, recommended reading) Problem solving Notions of Algorithmics (growth of functions, efficiency, programming model, example analysis)

More information

Optimal Parallel Randomized Renaming

Optimal Parallel Randomized Renaming Optimal Parallel Randomized Renaming Martin Farach S. Muthukrishnan September 11, 1995 Abstract We consider the Renaming Problem, a basic processing step in string algorithms, for which we give a simultaneously

More information

The complexity of shortest path and dilation bounded interval routing

The complexity of shortest path and dilation bounded interval routing The complexity of shortest path and dilation bounded interval routing Rastislav Kralovic a, Peter Ruzicka b;, Daniel Stefankovic a a Department of Computer Science, Faculty of Mathematics and Physics,

More information

Modeling Systems Using Design Patterns

Modeling Systems Using Design Patterns Modeling Systems Using Design Patterns Jaroslav JAKUBÍK Slovak University of Technology Faculty of Informatics and Information Technologies Ilkovičova 3, 842 16 Bratislava, Slovakia jakubik@fiit.stuba.sk

More information

Heap-on-Top Priority Queues. March Abstract. We introduce the heap-on-top (hot) priority queue data structure that combines the

Heap-on-Top Priority Queues. March Abstract. We introduce the heap-on-top (hot) priority queue data structure that combines the Heap-on-Top Priority Queues Boris V. Cherkassky Central Economics and Mathematics Institute Krasikova St. 32 117418, Moscow, Russia cher@cemi.msk.su Andrew V. Goldberg NEC Research Institute 4 Independence

More information

Algorithms and Data Structures. Algorithms and Data Structures. Algorithms and Data Structures. Algorithms and Data Structures

Algorithms and Data Structures. Algorithms and Data Structures. Algorithms and Data Structures. Algorithms and Data Structures Richard Mayr Slides adapted from Mary Cryan (2015/16) with some changes. School of Informatics University of Edinburgh ADS (2018/19) Lecture 1 slide 1 ADS (2018/19) Lecture 1 slide 3 ADS (2018/19) Lecture

More information

Finding a -regular Supergraph of Minimum Order

Finding a -regular Supergraph of Minimum Order Finding a -regular Supergraph of Minimum Order Hans L. Bodlaender a, Richard B. Tan a,b and Jan van Leeuwen a a Department of Computer Science Utrecht University Padualaan 14, 3584 CH Utrecht The Netherlands

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures or, Classical Algorithms of the 50s, 60s, 70s Richard Mayr Slides adapted from Mary Cryan (2015/16) with small changes. School of Informatics University of Edinburgh ADS

More information

On the Complexity of Multi-Dimensional Interval Routing Schemes

On the Complexity of Multi-Dimensional Interval Routing Schemes On the Complexity of Multi-Dimensional Interval Routing Schemes Abstract Multi-dimensional interval routing schemes (MIRS) introduced in [4] are an extension of interval routing schemes (IRS). We give

More information

Algorithms and Data Structures, or

Algorithms and Data Structures, or Algorithms and Data Structures, or... Classical Algorithms of the 50s, 60s and 70s Mary Cryan A&DS Lecture 1 1 Mary Cryan Our focus Emphasis is Algorithms ( Data Structures less important). Most of the

More information

Speeding Up Evaluation of Powers and Monomials

Speeding Up Evaluation of Powers and Monomials Speeding Up Evaluation of Powers and Monomials (Extended Abstract) Hatem M. Bahig and Hazem M. Bahig Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Cairo,

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 160 (2012) 505 512 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam 1-planarity of complete multipartite

More information

Heuristic Algorithms for Multiconstrained Quality-of-Service Routing

Heuristic Algorithms for Multiconstrained Quality-of-Service Routing 244 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL 10, NO 2, APRIL 2002 Heuristic Algorithms for Multiconstrained Quality-of-Service Routing Xin Yuan, Member, IEEE Abstract Multiconstrained quality-of-service

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Algorithm Analysis. (Algorithm Analysis ) Data Structures and Programming Spring / 48

Algorithm Analysis. (Algorithm Analysis ) Data Structures and Programming Spring / 48 Algorithm Analysis (Algorithm Analysis ) Data Structures and Programming Spring 2018 1 / 48 What is an Algorithm? An algorithm is a clearly specified set of instructions to be followed to solve a problem

More information

Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course

Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course Irena Pevac Department of Computer Science Central Connecticut State University, New Britain, CT, USA Abstract: We propose

More information

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs Nicolas Lichiardopol Attila Pór Jean-Sébastien Sereni Abstract In 1981, Bermond and Thomassen conjectured that every digraph

More information

Coloring Fuzzy Circular Interval Graphs

Coloring Fuzzy Circular Interval Graphs Coloring Fuzzy Circular Interval Graphs Friedrich Eisenbrand 1 Martin Niemeier 2 SB IMA DISOPT EPFL Lausanne, Switzerland Abstract Computing the weighted coloring number of graphs is a classical topic

More information

Generating edge covers of path graphs

Generating edge covers of path graphs Generating edge covers of path graphs J. Raymundo Marcial-Romero, J. A. Hernández, Vianney Muñoz-Jiménez and Héctor A. Montes-Venegas Facultad de Ingeniería, Universidad Autónoma del Estado de México,

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

CS2 Algorithms and Data Structures Note 1

CS2 Algorithms and Data Structures Note 1 CS2 Algorithms and Data Structures Note 1 Analysing Algorithms This thread of the course is concerned with the design and analysis of good algorithms and data structures. Intuitively speaking, an algorithm

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 252: Data Structures and Algorithms Lecture 1 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati Time Table D / T 8-8:55 9-9:55 10-10:55

More information

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 The Encoding Complexity of Network Coding Michael Langberg, Member, IEEE, Alexander Sprintson, Member, IEEE, and Jehoshua Bruck,

More information

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees Applied Mathematics Letters 24 (2011) 719 723 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Graph triangulations and the compatibility

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

The p-sized partitioning algorithm for fast computation of factorials of numbers

The p-sized partitioning algorithm for fast computation of factorials of numbers J Supercomput (2006) 38:73 82 DOI 10.1007/s11227-006-7285-5 The p-sized partitioning algorithm for fast computation of factorials of numbers Ahmet Ugur Henry Thompson C Science + Business Media, LLC 2006

More information

arxiv: v1 [cs.ds] 12 May 2013

arxiv: v1 [cs.ds] 12 May 2013 Full Square Rhomboids and Their Algebraic Expressions Mark Korenblit arxiv:105.66v1 [cs.ds] 1 May 01 Holon Institute of Technology, Israel korenblit@hit.ac.il Abstract. The paper investigates relationship

More information

Graphs connected with block ciphers

Graphs connected with block ciphers Graphs connected with block ciphers OTOKAR GROŠEK Slovak University of Technology Department of Applied Informatics Ilkovičova 3 812 19 Bratislava SLOVAKIA PAVOL ZAJAC Slovak University of Technology Department

More information

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap Applied Mathematical Sciences, Vol. 5, 011, no. 49, 437-44 M i -Edge Colorings of Graphs Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University

More information

Position Sort. Anuj Kumar Developer PINGA Solution Pvt. Ltd. Noida, India ABSTRACT. Keywords 1. INTRODUCTION 2. METHODS AND MATERIALS

Position Sort. Anuj Kumar Developer PINGA Solution Pvt. Ltd. Noida, India ABSTRACT. Keywords 1. INTRODUCTION 2. METHODS AND MATERIALS Position Sort International Journal of Computer Applications (0975 8887) Anuj Kumar Developer PINGA Solution Pvt. Ltd. Noida, India Mamta Former IT Faculty Ghaziabad, India ABSTRACT Computer science has

More information

Polynomial-time Algorithm for Determining the Graph Isomorphism

Polynomial-time Algorithm for Determining the Graph Isomorphism American Journal of Information Science and Computer Engineering Vol. 3, No. 6, 2017, pp. 71-76 http://www.aiscience.org/journal/ajisce ISSN: 2381-7488 (Print); ISSN: 2381-7496 (Online) Polynomial-time

More information

Throughout this course, we use the terms vertex and node interchangeably.

Throughout this course, we use the terms vertex and node interchangeably. Chapter Vertex Coloring. Introduction Vertex coloring is an infamous graph theory problem. It is also a useful toy example to see the style of this course already in the first lecture. Vertex coloring

More information

Modules of Content Management Systems and their Reusability

Modules of Content Management Systems and their Reusability Modules of Content Management Systems and their Reusability Michal JAKUBÍK Slovak University of Technology Faculty of Informatics and Information Technologies Ilkovičova 3, 842 16 Bratislava, Slovak republic

More information

Expected Time in Linear Space

Expected Time in Linear Space Optimizing Integer Sorting in O(n log log n) Expected Time in Linear Space Ajit Singh M. E. (Computer Science and Engineering) Department of computer Science and Engineering, Thapar University, Patiala

More information

Encoding/Decoding, Counting graphs

Encoding/Decoding, Counting graphs Encoding/Decoding, Counting graphs Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ May 13, 2016 11-avoiding binary strings Let s consider

More information

Superconcentrators of depth 2 and 3; odd levels help (rarely)

Superconcentrators of depth 2 and 3; odd levels help (rarely) Superconcentrators of depth 2 and 3; odd levels help (rarely) Noga Alon Bellcore, Morristown, NJ, 07960, USA and Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv

More information

Complexity Analysis in Heterogeneous System

Complexity Analysis in Heterogeneous System Vol., No. 1 Complexity Analysis in Heterogeneous System Kuldeep Sharma & Deepak Garg Department of Computer Science and Engineering Thapar University Patiala-147004, India Abstract Complexity analysis

More information

Infinite locally random graphs

Infinite locally random graphs Infinite locally random graphs Pierre Charbit and Alex D. Scott Abstract Motivated by copying models of the web graph, Bonato and Janssen [3] introduced the following simple construction: given a graph

More information

Provably Efficient Non-Preemptive Task Scheduling with Cilk

Provably Efficient Non-Preemptive Task Scheduling with Cilk Provably Efficient Non-Preemptive Task Scheduling with Cilk V. -Y. Vee and W.-J. Hsu School of Applied Science, Nanyang Technological University Nanyang Avenue, Singapore 639798. Abstract We consider the

More information

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Arnaud Labourel a a LaBRI - Universite Bordeaux 1, France Abstract In 1974, Kundu [4] has shown that triangulated

More information

Algorithm Analysis and Design

Algorithm Analysis and Design Algorithm Analysis and Design Dr. Truong Tuan Anh Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology VNU- Ho Chi Minh City 1 References [1] Cormen, T. H., Leiserson,

More information

arxiv: v3 [cs.ds] 3 Apr 2018

arxiv: v3 [cs.ds] 3 Apr 2018 arxiv:1711.07746v3 [cs.ds] 3 Apr 2018 The Hidden Binary Search Tree: A Balanced Rotation-Free Search Tree in the AVL RAM Model Saulo Queiroz Email: sauloqueiroz@utfpr.edu.br Academic Department of Informatics

More information

Average Case Analysis for Tree Labelling Schemes

Average Case Analysis for Tree Labelling Schemes Average Case Analysis for Tree Labelling Schemes Ming-Yang Kao 1, Xiang-Yang Li 2, and WeiZhao Wang 2 1 Northwestern University, Evanston, IL, USA, kao@cs.northwestern.edu 2 Illinois Institute of Technology,

More information

Computing the Longest Common Substring with One Mismatch 1

Computing the Longest Common Substring with One Mismatch 1 ISSN 0032-9460, Problems of Information Transmission, 2011, Vol. 47, No. 1, pp. 1??. c Pleiades Publishing, Inc., 2011. Original Russian Text c M.A. Babenko, T.A. Starikovskaya, 2011, published in Problemy

More information

Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets

Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets Michael Dorfling a,1 Wayne Goddard b,c Johannes H. Hattingh d Michael A. Henning a,1 a School of Mathematical Sciences,

More information

Computation with No Memory, and Rearrangeable Multicast Networks

Computation with No Memory, and Rearrangeable Multicast Networks Discrete Mathematics and Theoretical Computer Science DMTCS vol. 16:1, 2014, 121 142 Computation with No Memory, and Rearrangeable Multicast Networks Serge Burckel 1 Emeric Gioan 2 Emmanuel Thomé 3 1 ERMIT,

More information

FUTURE communication networks are expected to support

FUTURE communication networks are expected to support 1146 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL 13, NO 5, OCTOBER 2005 A Scalable Approach to the Partition of QoS Requirements in Unicast and Multicast Ariel Orda, Senior Member, IEEE, and Alexander Sprintson,

More information

[13] D. Karger, \Using randomized sparsication to approximate minimum cuts" Proc. 5th Annual

[13] D. Karger, \Using randomized sparsication to approximate minimum cuts Proc. 5th Annual [12] F. Harary, \Graph Theory", Addison-Wesley, Reading, MA, 1969. [13] D. Karger, \Using randomized sparsication to approximate minimum cuts" Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms,

More information

Multiway Blockwise In-place Merging

Multiway Blockwise In-place Merging Multiway Blockwise In-place Merging Viliam Geffert and Jozef Gajdoš Institute of Computer Science, P.J.Šafárik University, Faculty of Science Jesenná 5, 041 54 Košice, Slovak Republic viliam.geffert@upjs.sk,

More information

IE 495 Lecture 3. Septermber 5, 2000

IE 495 Lecture 3. Septermber 5, 2000 IE 495 Lecture 3 Septermber 5, 2000 Reading for this lecture Primary Miller and Boxer, Chapter 1 Aho, Hopcroft, and Ullman, Chapter 1 Secondary Parberry, Chapters 3 and 4 Cosnard and Trystram, Chapter

More information

Efficient validation and construction of border arrays

Efficient validation and construction of border arrays Efficient validation and construction of border arrays Jean-Pierre Duval Thierry Lecroq Arnaud Lefebvre LITIS, University of Rouen, France, {Jean-Pierre.Duval,Thierry.Lecroq,Arnaud.Lefebvre}@univ-rouen.fr

More information

A tight bound for online colouring of disk graphs

A tight bound for online colouring of disk graphs Theoretical Computer Science 384 (2007) 152 160 www.elsevier.com/locate/tcs A tight bound for online colouring of disk graphs Ioannis Caragiannis a,, Aleksei V. Fishkin b, Christos Kaklamanis a, Evi Papaioannou

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

On the Max Coloring Problem

On the Max Coloring Problem On the Max Coloring Problem Leah Epstein Asaf Levin May 22, 2010 Abstract We consider max coloring on hereditary graph classes. The problem is defined as follows. Given a graph G = (V, E) and positive

More information

A more efficient algorithm for perfect sorting by reversals

A more efficient algorithm for perfect sorting by reversals A more efficient algorithm for perfect sorting by reversals Sèverine Bérard 1,2, Cedric Chauve 3,4, and Christophe Paul 5 1 Département de Mathématiques et d Informatique Appliquée, INRA, Toulouse, France.

More information

Colorability in Orthogonal Graph Drawing

Colorability in Orthogonal Graph Drawing Colorability in Orthogonal Graph Drawing Jan Štola Department of Applied Mathematics, Charles University Malostranské nám. 25, Prague, Czech Republic Jan.Stola@mff.cuni.cz Abstract. This paper studies

More information

Introduction to the Analysis of Algorithms. Algorithm

Introduction to the Analysis of Algorithms. Algorithm Introduction to the Analysis of Algorithms Based on the notes from David Fernandez-Baca Bryn Mawr College CS206 Intro to Data Structures Algorithm An algorithm is a strategy (well-defined computational

More information

Why study algorithms? CS 561, Lecture 1. Today s Outline. Why study algorithms? (II)

Why study algorithms? CS 561, Lecture 1. Today s Outline. Why study algorithms? (II) Why study algorithms? CS 561, Lecture 1 Jared Saia University of New Mexico Seven years of College down the toilet - John Belushi in Animal House Q: Can I get a programming job without knowing something

More information

Forbidden-Set Labeling on Graphs

Forbidden-Set Labeling on Graphs Forbidden-Set Labeling on Graphs B. Courcelle LaBRI Bordeaux University Bruno.Courcelle@labri.fr C. Gavoille LaBRI Bordeaux University Cyril.Gavoille@labri.fr A. Twigg Thomson Research, Paris Computer

More information

Improving Adaptive Hypermedia by Adding Semantics

Improving Adaptive Hypermedia by Adding Semantics Improving Adaptive Hypermedia by Adding Semantics Anton ANDREJKO Slovak University of Technology Faculty of Informatics and Information Technologies Ilkovičova 3, 842 16 Bratislava, Slovak republic andrejko@fiit.stuba.sk

More information

Homogeneous and Non Homogeneous Algorithms

Homogeneous and Non Homogeneous Algorithms Homogeneous and Non Homogeneous Algorithms Paparrizos K. Ioannis Department of Informatics Aristotle University of Thessaloniki 54124 Thessaloniki, Greece E-mail: ipapa@csd.auth.gr Abstract Motivated by

More information

Reducing Directed Max Flow to Undirected Max Flow and Bipartite Matching

Reducing Directed Max Flow to Undirected Max Flow and Bipartite Matching Reducing Directed Max Flow to Undirected Max Flow and Bipartite Matching Henry Lin Division of Computer Science University of California, Berkeley Berkeley, CA 94720 Email: henrylin@eecs.berkeley.edu Abstract

More information

Elementary maths for GMT. Algorithm analysis Part I

Elementary maths for GMT. Algorithm analysis Part I Elementary maths for GMT Algorithm analysis Part I Algorithms An algorithm is a step-by-step procedure for solving a problem in a finite amount of time Most algorithms transform input objects into output

More information

On 2-Subcolourings of Chordal Graphs

On 2-Subcolourings of Chordal Graphs On 2-Subcolourings of Chordal Graphs Juraj Stacho School of Computing Science, Simon Fraser University 8888 University Drive, Burnaby, B.C., Canada V5A 1S6 jstacho@cs.sfu.ca Abstract. A 2-subcolouring

More information

A digital pretopology and one of its quotients

A digital pretopology and one of its quotients Volume 39, 2012 Pages 13 25 http://topology.auburn.edu/tp/ A digital pretopology and one of its quotients by Josef Šlapal Electronically published on March 18, 2011 Topology Proceedings Web: http://topology.auburn.edu/tp/

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

time using O( n log n ) processors on the EREW PRAM. Thus, our algorithm improves on the previous results, either in time complexity or in the model o

time using O( n log n ) processors on the EREW PRAM. Thus, our algorithm improves on the previous results, either in time complexity or in the model o Reconstructing a Binary Tree from its Traversals in Doubly-Logarithmic CREW Time Stephan Olariu Michael Overstreet Department of Computer Science, Old Dominion University, Norfolk, VA 23529 Zhaofang Wen

More information

A Note on Scheduling Parallel Unit Jobs on Hypercubes

A Note on Scheduling Parallel Unit Jobs on Hypercubes A Note on Scheduling Parallel Unit Jobs on Hypercubes Ondřej Zajíček Abstract We study the problem of scheduling independent unit-time parallel jobs on hypercubes. A parallel job has to be scheduled between

More information

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects

A technique for adding range restrictions to. August 30, Abstract. In a generalized searching problem, a set S of n colored geometric objects A technique for adding range restrictions to generalized searching problems Prosenjit Gupta Ravi Janardan y Michiel Smid z August 30, 1996 Abstract In a generalized searching problem, a set S of n colored

More information

Connectivity check in 3-connected planar graphs with obstacles

Connectivity check in 3-connected planar graphs with obstacles Electronic Notes in Discrete Mathematics 31 (2008) 151 155 www.elsevier.com/locate/endm Connectivity check in 3-connected planar graphs with obstacles Bruno Courcelle a,1,2,3, Cyril Gavoille a,1,3, Mamadou

More information

CSE 373 APRIL 3 RD ALGORITHM ANALYSIS

CSE 373 APRIL 3 RD ALGORITHM ANALYSIS CSE 373 APRIL 3 RD ALGORITHM ANALYSIS ASSORTED MINUTIAE HW1P1 due tonight at midnight HW1P2 due Friday at midnight HW2 out tonight Second Java review session: Friday 10:30 ARC 147 TODAY S SCHEDULE Algorithm

More information

Nondeterministic Query Algorithms

Nondeterministic Query Algorithms Journal of Universal Computer Science, vol. 17, no. 6 (2011), 859-873 submitted: 30/7/10, accepted: 17/2/11, appeared: 28/3/11 J.UCS Nondeterministic Query Algorithms Alina Vasilieva (Faculty of Computing,

More information

Agreedy approximation for minimum connected dominating sets

Agreedy approximation for minimum connected dominating sets Theoretical Computer Science 329 2004) 325 330 www.elsevier.com/locate/tcs Note Agreedy approximation for minimum connected dominating sets Lu Ruan a, Hongwei Du b, Xiaohua Jia b,,1, Weili Wu c,1,2, Yingshu

More information

Introduction to Algorithms Third Edition

Introduction to Algorithms Third Edition Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Third Edition The MIT Press Cambridge, Massachusetts London, England Preface xiü I Foundations Introduction

More information

IP Packet Filtering using Hash Table for Dedicated Real Time IP Filter

IP Packet Filtering using Hash Table for Dedicated Real Time IP Filter I.J. Wireless and Microwave Technologies, 2017, 1, 24-29 Published Online January 2017 in MECS(http://www.mecs-press.net) DOI: 10.5815/ijwmt.2017.01.03 Available online at http://www.mecs-press.net/ijwmt

More information

A note on Prüfer-like coding and counting forests of uniform hypertrees

A note on Prüfer-like coding and counting forests of uniform hypertrees A note on Prüfer-like coding and counting forests of uniform hypertrees Christian Lavault Abstract The present note is designing encoding and decoding algorithms for a forest of rooted uniform hypertrees

More information

THE REGULAR PERMUTATION SCHEDULING ON GRAPHS

THE REGULAR PERMUTATION SCHEDULING ON GRAPHS Journal of Information Control and Management Systems, Vol. 1, (2003) 15 THE REGULAR PERMUTATION SCHEDULING ON GRAPHS Peter CZIMMERMANN, Štefan PEŠKO Department of Mathematical Methods, Faculty of Management

More information

Complexity of the Game Domination Problem

Complexity of the Game Domination Problem Complexity of the Game Domination Problem Boštjan Brešar a,b Paul Dorbec c,d Sandi Klavžar e,a,b Gašper Košmrlj e Gabriel Renault c,d a Faculty of Natural Sciences and Mathematics, University of Maribor,

More information

Algorithmic aspects of k-domination in graphs

Algorithmic aspects of k-domination in graphs PREPRINT 國立臺灣大學數學系預印本 Department of Mathematics, National Taiwan University www.math.ntu.edu.tw/~mathlib/preprint/2012-08.pdf Algorithmic aspects of k-domination in graphs James K. Lan and Gerard Jennhwa

More information

arxiv: v2 [cs.dm] 28 Dec 2010

arxiv: v2 [cs.dm] 28 Dec 2010 Multiple-source multiple-sink maximum flow in planar graphs Yahav Nussbaum arxiv:1012.4767v2 [cs.dm] 28 Dec 2010 Abstract In this paper we show an O(n 3/2 log 2 n) time algorithm for finding a maximum

More information

arxiv: v1 [math.co] 13 Aug 2017

arxiv: v1 [math.co] 13 Aug 2017 Strong geodetic problem in grid like architectures arxiv:170803869v1 [mathco] 13 Aug 017 Sandi Klavžar a,b,c April 11, 018 Paul Manuel d a Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

More information

λ -Harmonious Graph Colouring

λ -Harmonious Graph Colouring λ -Harmonious Graph Colouring Lauren DeDieu McMaster University Southwestern Ontario Graduate Mathematics Conference June 4th, 201 What is a graph? What is vertex colouring? 1 1 1 2 2 Figure : Proper Colouring.

More information

MOST attention in the literature of network codes has

MOST attention in the literature of network codes has 3862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010 Efficient Network Code Design for Cyclic Networks Elona Erez, Member, IEEE, and Meir Feder, Fellow, IEEE Abstract This paper introduces

More information

Sorting and Selection on a Linear Array with Optical Bus System

Sorting and Selection on a Linear Array with Optical Bus System Sorting and Selection on a Linear Array with Optical Bus System Hossam ElGindy Dept. of Elec. & Compt. Eng. Uni. of Newcastle, Australia Sanguthevar Rajasekaran Dept. of CISE Univ. of Florida Abstract

More information

A Geometric Approach to the Bisection Method

A Geometric Approach to the Bisection Method Geometric pproach to the isection Method laudio Gutierrez 1, Flavio Gutierrez 2, and Maria-ecilia Rivara 1 1 epartment of omputer Science, Universidad de hile lanco Encalada 2120, Santiago, hile {cgutierr,mcrivara}@dcc.uchile.cl

More information

REDUCING THE CODE SIZE OF RETIMED SOFTWARE LOOPS UNDER TIMING AND RESOURCE CONSTRAINTS

REDUCING THE CODE SIZE OF RETIMED SOFTWARE LOOPS UNDER TIMING AND RESOURCE CONSTRAINTS REDUCING THE CODE SIZE OF RETIMED SOFTWARE LOOPS UNDER TIMING AND RESOURCE CONSTRAINTS Noureddine Chabini 1 and Wayne Wolf 2 1 Department of Electrical and Computer Engineering, Royal Military College

More information

A SIMPLE APPROXIMATION ALGORITHM FOR NONOVERLAPPING LOCAL ALIGNMENTS (WEIGHTED INDEPENDENT SETS OF AXIS PARALLEL RECTANGLES)

A SIMPLE APPROXIMATION ALGORITHM FOR NONOVERLAPPING LOCAL ALIGNMENTS (WEIGHTED INDEPENDENT SETS OF AXIS PARALLEL RECTANGLES) Chapter 1 A SIMPLE APPROXIMATION ALGORITHM FOR NONOVERLAPPING LOCAL ALIGNMENTS (WEIGHTED INDEPENDENT SETS OF AXIS PARALLEL RECTANGLES) Piotr Berman Department of Computer Science & Engineering Pennsylvania

More information

Maximal Independent Set

Maximal Independent Set Chapter 0 Maximal Independent Set In this chapter we present a highlight of this course, a fast maximal independent set (MIS) algorithm. The algorithm is the first randomized algorithm that we study in

More information

An upper bound for the chromatic number of line graphs

An upper bound for the chromatic number of line graphs EuroComb 005 DMTCS proc AE, 005, 151 156 An upper bound for the chromatic number of line graphs A D King, B A Reed and A Vetta School of Computer Science, McGill University, 3480 University Ave, Montréal,

More information

arxiv:math/ v3 [math.co] 24 Dec 1999

arxiv:math/ v3 [math.co] 24 Dec 1999 arxiv:math/9911125v3 [math.co] 24 Dec 1999 Dynamic Monopolies of Constant Size Eli Berger February 8, 2008 Abstract The paper deals with a polling game on a graph. Initially, each vertex is colored white

More information

Advanced Algorithms and Data Structures

Advanced Algorithms and Data Structures Advanced Algorithms and Data Structures Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Prerequisites A seven credit unit course Replaced OHJ-2156 Analysis of Algorithms We take things a bit further than

More information

A COMPARISON OF MESHES WITH STATIC BUSES AND HALF-DUPLEX WRAP-AROUNDS. and. and

A COMPARISON OF MESHES WITH STATIC BUSES AND HALF-DUPLEX WRAP-AROUNDS. and. and Parallel Processing Letters c World Scientific Publishing Company A COMPARISON OF MESHES WITH STATIC BUSES AND HALF-DUPLEX WRAP-AROUNDS DANNY KRIZANC Department of Computer Science, University of Rochester

More information

Range Tree Applications in Computational Geometry

Range Tree Applications in Computational Geometry Range Tree Applications in Computational Geometry ANTONIO-GABRIEL STURZU, COSTIN-ANTON BOIANGIU Computer Science Department Politehnica University of Bucharest Splaiul Independentei 313, Sector 6, Bucharest,

More information

arxiv: v1 [cs.ds] 1 Sep 2015

arxiv: v1 [cs.ds] 1 Sep 2015 On Minimizing Crossings in Storyline Visualizations Irina Kostitsyna 1, Martin Nöllenburg 2, Valentin Polishchuk 3, André Schulz 4, and Darren Strash 5 arxiv:1509.00442v1 [cs.ds] 1 Sep 2015 1 Dept. of

More information

A Distribution-Sensitive Dictionary with Low Space Overhead

A Distribution-Sensitive Dictionary with Low Space Overhead A Distribution-Sensitive Dictionary with Low Space Overhead Prosenjit Bose, John Howat, and Pat Morin School of Computer Science, Carleton University 1125 Colonel By Dr., Ottawa, Ontario, CANADA, K1S 5B6

More information