Programming and Proving with Distributed Protocols Disel: Distributed Separation Logic.

Size: px
Start display at page:

Download "Programming and Proving with Distributed Protocols Disel: Distributed Separation Logic."

Transcription

1 Programming and Proving with Distributed Protocols Disel: Distributed Separation Logic ` {P } c {Q} Ilya Sergey James R. Wilcox Zach Tatlock

2 Distributed Systems

3 Distributed Infrastructure

4 Distributed Applications

5 Verified Distributed Systems

6 Verified Distributed Infrastructure Veri- Wow Iron -Cert

7 Verified Distributed Applications Veri- Wow Iron -Cert

8 Verified Distributed Applications Veri- Challenging to verify apps in terms of infra. starting from scratch is unacceptable Wow Indicates deeper problems with composition one node s client is another s server! Iron -Cert

9 Verified Challenges Distributed Solutions Applications Client reasoning Veri- Protocols Wow Invariants WithInv rule Separation Frame rule/hooks Disel: Iron -Cert `{P } c {Q}

10 Outline `{P } c {Q} Protocols and running example Logical mechanisms programming with protocols invariants framing and hooks Implementation and future work

11 Cloud Compute 21 C S

12 Cloud Compute

13 Cloud Compute: Server while true: (from, n) <- recv Req send Resp(n, factors(n)) to from Traditional specification: messages from server have correct factors Proved by finding an invariant of the system

14 Cloud Compute: Server

15 Cloud Compute: Client

16 Cloud Compute: Client send Req(21) to server (_, ans) <- recv Resp assert ans == {3, 7} Start over with clients in system? In Disel: use protocol to describe client interface

17 Protocols

18 Protocols A protocol is an interface among nodes Enables compositional verification

19 Cloud Compute Protocol Messages: State: Transitions: Sends: precondition and effect Receives: effect

20 Cloud Compute Protocol Messages: Req(n) Resp(n,s) State: outstanding: Set<Msg> Transitions: Sends: Receives: Req Req Resp Resp

21 Cloud Compute Req(21) C S Send Req(n) Precondition: Effect: none none

22 Cloud Compute Req(21) C S { } (C,21) Receive Req(n) Effect: add (from, n) to out

23 Cloud Compute C S { } Resp({3,7}) Send Resp(n,l) Requires: l == factors(n) (n,to) in out Effect: removes (n,to) from out

24 Cloud Compute C S { } Resp({3,7}) Recv Resp(n,l) Effect: none

25 Cloud Compute Protocol Messages: Req(n) Resp(n,s) State: outstanding: Set<Msg> Transitions: Sends: Receives: Req Req Resp Resp

26 Outline `{P } c {Q} Protocols and running example Logical mechanisms programming with protocols invariants framing and hooks Implementation and future work

27 Cloud Compute: Server while true: (from, n) <- recv Req send Resp(n, factors(n)) to from Precondition on send requires correct factors

28 Cloud Compute: Server t 2 `{Pre }send m m to to h h t t { sent ( m, h) } t while true: (from, n) <- recv Req send Resp(n, factors(n)) to from Precondition on send requires correct factors

29 Cloud Compute: Client send Req(21) to server (_, ans) <- recv Resp assert ans == {3, 7} recv doesn t ensure correct factors

30 Cloud Compute: Client t 2 ` {>} recv m {recvd( m)} t send Req(21) to server (_, ans) <- recv Resp assert ans == {3, 7} recv doesn t ensure correct factors

31 Protocol Invariants `{P } c {Q} I inductive 0 `{P ^ I} c {Q ^ I} Protocol where every state satisfies I

32 Cloud Compute: Client t 2 0 ` {>} recv m {recvd( m)} t send Req(21) to server (_, ans) <- recv Resp assert ans == {3, 7} Now recv ensures correct factors

33 Cloud Compute: More Clients send Req(21) to server1 send Req(35) to server2 (_, ans1) <- recv Resp (_, ans2) <- recv Resp assert ans1 [ ans2 == {3, 5, 7} Same protocol enables verification

34 Frame rule `{P } c {Q} independent protocols R stable ` {P R} c {Q R} Reuse invariants from component protocols

35 Frame rule: Hooks `{P } c {Q} R stable ` {P R} c {Q R} Allows one protocol to restrict another

36 Outline `{P } c {Q} Protocols and running example Logical mechanisms programming with protocols invariants framing and hooks Implementation and future work

37 Implementation Shallowly embedded in Coq with full power of functional programming Executable via extraction to OCaml via trusted shim to implement semantics Case study: two-phase commit exercises all features of the logic

38 Related and Future Work Concurrent separation logics Iris, FCSL, CAP, Adding other effects e.g. mutable heap, threads, failure

39 Composition: A way to make proofs harder In 1997, the unfortunate reality is that engineers rarely specify and reason formally about the systems they build. It seems unlikely that reasoning about the composition of open-system specifications will be a practical concern within the next 15 years.

40 Verified Challenges Distributed Solutions Applications Client reasoning Veri- Protocols Wow Invariants WithInv rule Separation Frame rule/hooks Disel: Iron -Cert `{P } c {Q}

Programming Language Abstractions for Modularly Verified Distributed Systems. James R. Wilcox Zach Tatlock Ilya Sergey

Programming Language Abstractions for Modularly Verified Distributed Systems. James R. Wilcox Zach Tatlock Ilya Sergey Programming Language Abstractions for Modularly Verified Distributed Systems ` {P } c {Q} James R. Wilcox Zach Tatlock Ilya Sergey Distributed Systems Distributed Infrastructure Distributed Applications

More information

Verdi: A Framework for Implementing and Formally Verifying Distributed Systems

Verdi: A Framework for Implementing and Formally Verifying Distributed Systems Verdi: A Framework for Implementing and Formally Verifying Distributed Systems Key-value store VST James R. Wilcox, Doug Woos, Pavel Panchekha, Zach Tatlock, Xi Wang, Michael D. Ernst, Thomas Anderson

More information

Programming and Proving with Distributed Protocols

Programming and Proving with Distributed Protocols Programming and Proving with Distributed Protocols ILYA SERGEY, University College London, UK JAMES R. WILCOX, University of Washington, USA ZACHARY TATLOCK, University of Washington, USA Distributed systems

More information

Main Goal. Language-independent program verification framework. Derive program properties from operational semantics

Main Goal. Language-independent program verification framework. Derive program properties from operational semantics Main Goal Language-independent program verification framework Derive program properties from operational semantics Questions: Is it possible? Is it practical? Answers: Sound and complete proof system,

More information

Part II. Hoare Logic and Program Verification. Why specify programs? Specification and Verification. Code Verification. Why verify programs?

Part II. Hoare Logic and Program Verification. Why specify programs? Specification and Verification. Code Verification. Why verify programs? Part II. Hoare Logic and Program Verification Part II. Hoare Logic and Program Verification Dilian Gurov Props: Models: Specs: Method: Tool: safety of data manipulation source code logic assertions Hoare

More information

A Concurrent Perspective on Smart Contracts. 1st Workshop on Trusted Smart Contracts

A Concurrent Perspective on Smart Contracts. 1st Workshop on Trusted Smart Contracts A Concurrent Perspective on Smart Contracts Ilya Sergey Aquinas Hobor 1st Workshop on Trusted Smart Contracts 7 April 2017 class ConcurrentQueue { public synchronized void enqueue(e elem) { public

More information

An Annotated Language

An Annotated Language Hoare Logic An Annotated Language State and Semantics Expressions are interpreted as functions from states to the corresponding domain of interpretation Operators have the obvious interpretation Free of

More information

Hoare logic. A proof system for separation logic. Introduction. Separation logic

Hoare logic. A proof system for separation logic. Introduction. Separation logic Introduction Hoare logic Lecture 6: Examples in separation logic In the previous lecture, we saw how reasoning about pointers in Hoare logic was problematic, which motivated introducing separation logic.

More information

Phantom Monitors: A Simple Foundation for Modular Proofs of Fine-Grained Concurrent Programs

Phantom Monitors: A Simple Foundation for Modular Proofs of Fine-Grained Concurrent Programs Phantom Monitors: A Simple Foundation for Modular Proofs of Fine-Grained Concurrent Programs Christian J Bell, Mohsen Lesani, Adam Chlipala, Stephan Boyer, Gregory Malecha, Peng Wang MIT CSAIL cj@csailmitedu

More information

Verification Condition Generation via Theorem Proving

Verification Condition Generation via Theorem Proving Verification Condition Generation via Theorem Proving John Matthews Galois Connections Inc. J Strother Moore University of Texas at Austin Sandip Ray University of Texas at Austin Daron Vroon Georgia Institute

More information

Rely-Guarantee References for Refinement Types over Aliased Mutable Data

Rely-Guarantee References for Refinement Types over Aliased Mutable Data Rely-Guarantee References for Refinement Types over Aliased Mutable Data Colin S. Gordon, Michael D. Ernst, and Dan Grossman University of Washington PLDI 2013 Static Verification Meets Aliasing 23 x:ref

More information

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Appears as Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science, June 1999 A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Miguel Castro and Barbara Liskov

More information

From Hoare Logic to Matching Logic Reachability. Grigore Rosu and Andrei Stefanescu University of Illinois, USA

From Hoare Logic to Matching Logic Reachability. Grigore Rosu and Andrei Stefanescu University of Illinois, USA From Hoare Logic to Matching Logic Reachability Grigore Rosu and Andrei Stefanescu University of Illinois, USA Matching Logic Reachability - Goal - Language independent program verification framework Derives

More information

Matching Logic. Grigore Rosu University of Illinois at Urbana-Champaign

Matching Logic. Grigore Rosu University of Illinois at Urbana-Champaign Matching Logic Grigore Rosu University of Illinois at Urbana-Champaign Joint work with Andrei Stefanescu and Chucky Ellison. Started with Wolfram Schulte at Microsoft Research in 2009 Question could it

More information

Verified Characteristic Formulae for CakeML. Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish April 27, 2017

Verified Characteristic Formulae for CakeML. Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish April 27, 2017 Verified Characteristic Formulae for CakeML Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish April 27, 2017 Goal: write programs in a high-level (ML-style) language, prove them correct interactively,

More information

Browser Security Guarantees through Formal Shim Verification

Browser Security Guarantees through Formal Shim Verification Browser Security Guarantees through Formal Shim Verification Dongseok Jang Zachary Tatlock Sorin Lerner UC San Diego Browsers: Critical Infrastructure Ubiquitous: many platforms, sensitive apps Vulnerable:

More information

Outline. Computer Science 331. Three Classical Algorithms. The Sorting Problem. Classical Sorting Algorithms. Mike Jacobson. Description Analysis

Outline. Computer Science 331. Three Classical Algorithms. The Sorting Problem. Classical Sorting Algorithms. Mike Jacobson. Description Analysis Outline Computer Science 331 Classical Sorting Algorithms Mike Jacobson Department of Computer Science University of Calgary Lecture #22 1 Introduction 2 3 4 5 Comparisons Mike Jacobson (University of

More information

Hoare Logic and Model Checking

Hoare Logic and Model Checking Hoare Logic and Model Checking Kasper Svendsen University of Cambridge CST Part II 2016/17 Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft Introduction In the

More information

Strong Formal Verification for RISC-V From Instruction-Set Manual to RTL

Strong Formal Verification for RISC-V From Instruction-Set Manual to RTL Strong Formal Verification for RISC-V From Instruction-Set Manual to RTL Adam Chlipala MIT CSAIL RISC-V Workshop November 2017 Joint work with: Arvind, Thomas Bourgeat, Joonwon Choi, Ian Clester, Samuel

More information

Adam Chlipala University of California, Berkeley ICFP 2006

Adam Chlipala University of California, Berkeley ICFP 2006 Modular Development of Certified Program Verifiers with a Proof Assistant Adam Chlipala University of California, Berkeley ICFP 2006 1 Who Watches the Watcher? Program Verifier Might want to ensure: Memory

More information

Transforming Programs into Recursive Functions

Transforming Programs into Recursive Functions SBMF 2008 Transforming Programs into Recursive Functions Magnus O. Myreen, Michael J. C. Gordon 1 Computer Laboratory, University of Cambridge 15 JJ Thomson Avenue, Cambridge, UK Abstract This paper presents

More information

INF672 Protocol Safety and Verification. Karthik Bhargavan Xavier Rival Thomas Clausen

INF672 Protocol Safety and Verification. Karthik Bhargavan Xavier Rival Thomas Clausen INF672 Protocol Safety and Verication Karthik Bhargavan Xavier Rival Thomas Clausen 1 Course Outline Lecture 1 [Today, Sep 15] Introduction, Motivating Examples Lectures 2-4 [Sep 22,29, Oct 6] Network

More information

Hoare Logic and Model Checking. A proof system for Separation logic. Introduction. Separation Logic

Hoare Logic and Model Checking. A proof system for Separation logic. Introduction. Separation Logic Introduction Hoare Logic and Model Checking In the previous lecture we saw the informal concepts that Separation Logic is based on. Kasper Svendsen University of Cambridge CST Part II 2016/17 This lecture

More information

Lecture 5 - Axiomatic semantics

Lecture 5 - Axiomatic semantics Program Verification March 2014 Lecture 5 - Axiomatic semantics Lecturer: Noam Rinetzky Scribes by: Nir Hemed 1.1 Axiomatic semantics The development of the theory is contributed to Robert Floyd, C.A.R

More information

6. Hoare Logic and Weakest Preconditions

6. Hoare Logic and Weakest Preconditions 6. Hoare Logic and Weakest Preconditions Program Verification ETH Zurich, Spring Semester 07 Alexander J. Summers 30 Program Correctness There are many notions of correctness properties for a given program

More information

Tradeoffs. CSE 505: Programming Languages. Lecture 15 Subtyping. Where shall we add useful completeness? Where shall we add completeness?

Tradeoffs. CSE 505: Programming Languages. Lecture 15 Subtyping. Where shall we add useful completeness? Where shall we add completeness? Tradeoffs CSE 505: Programming Languages Lecture 15 Subtyping Zach Tatlock Autumn 2017 Desirable type system properties (desiderata): soundness - exclude all programs that get stuck completeness - include

More information

! Use of formal notations. ! in software system descriptions. ! for a broad range of effects. ! and varying levels of use. !

! Use of formal notations. ! in software system descriptions. ! for a broad range of effects. ! and varying levels of use. ! What Are Formal Methods? David S. Rosenblum ICS 221 Winter 2001! Use of formal notations! first-order logic, state machines, etc.! in software system descriptions! system models, constraints, specifications,

More information

Œuf: Minimizing the Coq Extraction TCB

Œuf: Minimizing the Coq Extraction TCB Œuf: Minimizing the Coq Extraction TCB Eric Mullen University of Washington, USA USA Abstract Zachary Tatlock University of Washington, USA USA Verifying systems by implementing them in the programming

More information

Proving Properties on Programs From the Coq Tutorial at ITP 2015

Proving Properties on Programs From the Coq Tutorial at ITP 2015 Proving Properties on Programs From the Coq Tutorial at ITP 2015 Reynald Affeldt August 29, 2015 Hoare logic is a proof system to verify imperative programs. It consists of a language of Hoare triples

More information

Compositional Cutpoint Verification

Compositional Cutpoint Verification Compositional Cutpoint Verification Eric Smith (Stanford University) Collaborators: David Dill (Stanford University) David Hardin (Rockwell Collins) Contact ewsmith@stanford.edu Background Based on A Symbolic

More information

Introduction to Axiomatic Semantics

Introduction to Axiomatic Semantics Introduction to Axiomatic Semantics Meeting 10, CSCI 5535, Spring 2009 Announcements Homework 3 due tonight Homework 2 is graded 13 (mean), 14 (median), out of 21 total, but Graduate class: final project

More information

Kami: A Framework for (RISC-V) HW Verification

Kami: A Framework for (RISC-V) HW Verification Kami: A Framework for (RISC-V) HW Verification Murali Vijayaraghavan Joonwon Choi, Adam Chlipala, (Ben Sherman), Andy Wright, Sizhuo Zhang, Thomas Bourgeat, Arvind 1 The Riscy Expedition by MIT Riscy Library

More information

Integrating Arrays into the Heap-Hop program prover

Integrating Arrays into the Heap-Hop program prover Integrating Arrays into the Heap-Hop program prover Ioana Cristescu under the supervision of Jules Villard Queen Mary University of London 7 September 2011 1 / 29 Program verification using Heap-Hop Program

More information

Implementing a Verified On-Disk Hash Table

Implementing a Verified On-Disk Hash Table Implementing a Verified On-Disk Hash Table Stephanie Wang Abstract As more and more software is written every day, so too are bugs. Software verification is a way of using formal mathematical methods to

More information

Phantom Monitors: A Simple Foundation for Modular Proofs of Fine-Grained Concurrent Programs

Phantom Monitors: A Simple Foundation for Modular Proofs of Fine-Grained Concurrent Programs Phantom Monitors: A Simple Foundation for Modular Proofs of Fine-Grained Concurrent Programs Christian J. Bell, Mohsen Lesani, Adam Chlipala, Stephan Boyer, Gregory Malecha, Peng Wang MIT CSAIL Goal: verification

More information

Shared Variables and Interference

Shared Variables and Interference Illinois Institute of Technology Lecture 24 Shared Variables and Interference CS 536: Science of Programming, Spring 2018 A. Why Parallel programs can coordinate their work using shared variables, but

More information

A Coq Framework For Verified Property-Based Testing (part of QuickChick)

A Coq Framework For Verified Property-Based Testing (part of QuickChick) A Coq Framework For Verified Property-Based Testing (part of QuickChick) Cătălin Hrițcu INRIA Paris-Rocquencourt (Prosecco team, Place d Italie office) Problem: proving in Coq is very costly My proofs

More information

Proof Carrying Code(PCC)

Proof Carrying Code(PCC) Discussion p./6 Proof Carrying Code(PCC Languaged based security policy instead of OS-based A mechanism to determine with certainity that it is safe execute a program or not Generic architecture for providing

More information

Adding GADTs to OCaml the direct approach

Adding GADTs to OCaml the direct approach Adding GADTs to OCaml the direct approach Jacques Garrigue & Jacques Le Normand Nagoya University / LexiFi (Paris) https://sites.google.com/site/ocamlgadt/ Garrigue & Le Normand Adding GADTs to OCaml 1

More information

Semantics. There is no single widely acceptable notation or formalism for describing semantics Operational Semantics

Semantics. There is no single widely acceptable notation or formalism for describing semantics Operational Semantics There is no single widely acceptable notation or formalism for describing semantics Operational Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The

More information

Push-Button Verification of File Systems

Push-Button Verification of File Systems 1 / 25 Push-Button Verification of File Systems via Crash Refinement Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, Xi Wang University of Washington October 26, 2016 2 / 25 File systems are hard

More information

: Principles of Imperative Computation, Fall Written Homework 1 Solutions

: Principles of Imperative Computation, Fall Written Homework 1 Solutions 15-122 Written Homework 1 Page 1 of 9 15-122 : Principles of Imperative Computation, Fall 2013 Written Homework 1 Solutions Name: Andrew ID: Recitation: The theory portion of this week s homework will

More information

Outline. Proof Carrying Code. Hardware Trojan Threat. Why Compromise HDL Code?

Outline. Proof Carrying Code. Hardware Trojan Threat. Why Compromise HDL Code? Outline Proof Carrying Code Mohammad Tehranipoor ECE6095: Hardware Security & Trust University of Connecticut ECE Department Hardware IP Verification Hardware PCC Background Software PCC Description Software

More information

Turning proof assistants into programming assistants

Turning proof assistants into programming assistants Turning proof assistants into programming assistants ST Winter Meeting, 3 Feb 2015 Magnus Myréen Why? Why combine proof- and programming assistants? Why proofs? Testing cannot show absence of bugs. Some

More information

Genie. Distributed Systems Synthesis and Verification. Marc Rosen. EN : Advanced Distributed Systems and Networks May 1, 2017

Genie. Distributed Systems Synthesis and Verification. Marc Rosen. EN : Advanced Distributed Systems and Networks May 1, 2017 Genie Distributed Systems Synthesis and Verification Marc Rosen EN.600.667: Advanced Distributed Systems and Networks May 1, 2017 1 / 35 Outline Introduction Problem Statement Prior Art Demo How does it

More information

K and Matching Logic

K and Matching Logic K and Matching Logic Grigore Rosu University of Illinois at Urbana-Champaign Joint work with the FSL group at UIUC (USA) and the FMSE group at UAIC (Romania) Question could it be that, after 40 years of

More information

Shared Variables and Interference

Shared Variables and Interference Solved Shared Variables and Interference CS 536: Science of Programming, Fall 2018 A. Why Parallel programs can coordinate their work using shared variables, but it s important for threads to not interfere

More information

Chapter 3. Describing Syntax and Semantics ISBN

Chapter 3. Describing Syntax and Semantics ISBN Chapter 3 Describing Syntax and Semantics ISBN 0-321-49362-1 Chapter 3 Topics Describing the Meanings of Programs: Dynamic Semantics Copyright 2015 Pearson. All rights reserved. 2 Semantics There is no

More information

Chapter 1. Introduction

Chapter 1. Introduction 1 Chapter 1 Introduction An exciting development of the 21st century is that the 20th-century vision of mechanized program verification is finally becoming practical, thanks to 30 years of advances in

More information

A CRASH COURSE IN SEMANTICS

A CRASH COURSE IN SEMANTICS LAST TIME Recdef More induction NICTA Advanced Course Well founded orders Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 Well founded recursion Calculations: also/finally {P}... {Q}

More information

Gang Tan, Boston College Andrew W. Appel, Princeton University

Gang Tan, Boston College Andrew W. Appel, Princeton University A Compositional Logic for Control Flow Gang Tan, Boston College Andrew W. Appel, Princeton University Jan 8, 2006 1 Mobile Code Security Protect trusted system against untrusted code cyberspace ce program

More information

Verification in Coq. Prof. Clarkson Fall Today s music: Check Yo Self by Ice Cube

Verification in Coq. Prof. Clarkson Fall Today s music: Check Yo Self by Ice Cube Verification in Coq Prof. Clarkson Fall 2017 Today s music: Check Yo Self by Ice Cube Review Previously in 3110: Functional programming in Coq Logic in Coq Curry-Howard correspondence (proofs are programs)

More information

Encoding Separation Logic in Coq and Its Application

Encoding Separation Logic in Coq and Its Application Encoding Separation Logic in Coq and Its Application Renald Affeldt AIST-RCIS Nicolas Marti Universit of Toko Research Project Verification of low-level software: Specialized operating sstems Device drivers

More information

Checking Program Properties with ESC/Java

Checking Program Properties with ESC/Java Checking Program Properties with ESC/Java 17-654/17-765 Analysis of Software Artifacts Jonathan Aldrich 1 ESC/Java A checker for Java programs Finds null pointers, array dereferences Checks Hoare logic

More information

Outline. software testing: search bugs black-box and white-box testing static and dynamic testing

Outline. software testing: search bugs black-box and white-box testing static and dynamic testing Outline 1 Verification Techniques software testing: search bugs black-box and white-box testing static and dynamic testing 2 Programming by Contract assert statements in Python using preconditions and

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 19 Tuesday, April 3, 2018 1 Introduction to axiomatic semantics The idea in axiomatic semantics is to give specifications

More information

Behavioral Equivalence

Behavioral Equivalence Behavioral Equivalence Prof. Clarkson Fall 2015 Today s music: Soul Bossa Nova by Quincy Jones Review Previously in 3110: Functional programming Modular programming Interpreters Imperative and concurrent

More information

Push-Button Verification of File Systems

Push-Button Verification of File Systems 1 / 24 Push-Button Verification of File Systems via Crash Refinement Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, Xi Wang University of Washington 2 / 24 File systems are hard to get right Complex

More information

Static Lock Capabilities for Deadlock-Freedom

Static Lock Capabilities for Deadlock-Freedom Static Lock Capabilities for Deadlock-Freedom Colin S. Gordon csgordon@cs.washington.edu University of Washington TLDI, January 28, 2012 Joint work with Michael D. Ernst and Dan Grossman Colin S. Gordon

More information

Hoare triples. Floyd-Hoare Logic, Separation Logic

Hoare triples. Floyd-Hoare Logic, Separation Logic Hoare triples Floyd-Hoare Logic, Separation Logic 1. Floyd-Hoare Logic 1969 Reasoning about control Hoare triples {A} p {B} a Hoare triple partial correctness: if the initial state satisfies assertion

More information

Basic Verification Strategy

Basic Verification Strategy ormal Verification Basic Verification Strategy compare behavior to intent System Model of system behavior intent Verifier results Intent Usually, originates with requirements, refined through design and

More information

Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity

Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee IMDEA Software Institute, Spain ilya.sergey, aleks.nanevski, anindya.banerjee@imdea.org

More information

Deterministic Process Groups in

Deterministic Process Groups in Deterministic Process Groups in Tom Bergan Nicholas Hunt, Luis Ceze, Steven D. Gribble University of Washington A Nondeterministic Program global x=0 Thread 1 Thread 2 t := x x := t + 1 t := x x := t +

More information

Semantics-Based Program Verifiers for All Languages

Semantics-Based Program Verifiers for All Languages Language-independent Semantics-Based Program Verifiers for All Languages Andrei Stefanescu Daejun Park Shijiao Yuwen Yilong Li Grigore Rosu Nov 2, 2016 @ OOPSLA 16 Problems with state-of-the-art verifiers

More information

Reminder of the last lecture. Aliasing Issues: Call by reference, Pointer programs. Introducing Aliasing Issues. Home Work from previous lecture

Reminder of the last lecture. Aliasing Issues: Call by reference, Pointer programs. Introducing Aliasing Issues. Home Work from previous lecture Reminder of the last lecture Aliasing Issues: Call by reference, Pointer programs Claude Marché Cours MPRI 2-36-1 Preuve de Programme 18 janvier 2017 Additional features of the specification language Abstract

More information

Arguing for program correctness and writing correct programs

Arguing for program correctness and writing correct programs Arguing for program correctness and writing correct programs Saying things about states, programs Program state s1: x=4, y=-1.5, A={ me, you, he Assertions about program states x=3 False in s1 (y=x) x>=0

More information

Runtime Checking for Program Verification Systems

Runtime Checking for Program Verification Systems Runtime Checking for Program Verification Systems Karen Zee, Viktor Kuncak, and Martin Rinard MIT CSAIL Tuesday, March 13, 2007 Workshop on Runtime Verification 1 Background Jahob program verification

More information

Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 6

Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 6 Trying to deal with something big all at once is normally much harder than dealing with a series of smaller things Separate people can work on each part. An individual software engineer can specialize.

More information

Hyperkernel: Push-Button Verification of an OS Kernel

Hyperkernel: Push-Button Verification of an OS Kernel Hyperkernel: Push-Button Verification of an OS Kernel Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina Torlak, and Xi Wang The OS Kernel is a critical component Essential

More information

Formal Syntax and Semantics of Programming Languages

Formal Syntax and Semantics of Programming Languages Formal Syntax and Semantics of Programming Languages Mooly Sagiv Reference: Semantics with Applications Chapter 2 H. Nielson and F. Nielson http://www.daimi.au.dk/~bra8130/wiley_book/wiley.html axioms

More information

An Extensible Programming Language for Verified Systems Software. Adam Chlipala MIT CSAIL WG 2.16 meeting, 2012

An Extensible Programming Language for Verified Systems Software. Adam Chlipala MIT CSAIL WG 2.16 meeting, 2012 An Extensible Programming Language for Verified Systems Software Adam Chlipala MIT CSAIL WG 2.16 meeting, 2012 The status quo in computer system design DOM JS API Web page Network JS API CPU Timer interrupts

More information

Building firmware update: The devil is in the details

Building firmware update: The devil is in the details Building firmware update: The devil is in the details Atsushi Haruta, IoT Services Group, Arm Arm Tech Symposia Japan 2017 Arm Mbed: Secure device management Application Cloud Mbed Cloud Secure, scalable,

More information

High-Level Small-Step Operational Semantics for Software Transactions

High-Level Small-Step Operational Semantics for Software Transactions High-Level Small-Step Operational Semantics for Software Transactions Katherine F. Moore Dan Grossman The University of Washington Motivating Our Approach Operational Semantics Model key programming-language

More information

Introduction to Medical Computing

Introduction to Medical Computing CS 2125 Introduction to Medical Computing Stephen M. Watt Embedded Software Embedded software is computer software that makes a device perform its function without presenting it as a general purpose computer.

More information

Abstract Interpretation

Abstract Interpretation Abstract Interpretation Ranjit Jhala, UC San Diego April 22, 2013 Fundamental Challenge of Program Analysis How to infer (loop) invariants? Fundamental Challenge of Program Analysis Key issue for any analysis

More information

The Case for Simple Object-Orientation in VDM++ Erik Ernst Aarhus University, Denmark

The Case for Simple Object-Orientation in VDM++ Erik Ernst Aarhus University, Denmark The Case for Simple Object-Orientation in VDM++ Erik Ernst Aarhus University, Denmark An outsider.. My research area is OO language design, implementation, formalization, esp. type systems (virtual classes,

More information

Design by Contract: An Overview

Design by Contract: An Overview : An Overview CSCI 5828 Michael M. Vitousek University of Colorado at Boulder michael.vitousek@colorado.edu March 21, 2012 1 / 35 Outline 1 Introduction Motivation and Introduction Simple Example Contract

More information

A VERIFICATION TECHNIQUE FOR DETERMINISTIC PARALLEL PROGRAMS

A VERIFICATION TECHNIQUE FOR DETERMINISTIC PARALLEL PROGRAMS A VERIFICATION TECHNIQUE FOR DETERMINISTIC PARALLEL PROGRAMS MARIEKE HUISMAN UNIVERSITY OF TWENTE, NETHERLANDS JOINT WORK WITH SAEED DARABI AND STEFAN BLOM THE CHALLENGE OF RELIABLE SOFTWARE ICT problems

More information

Verification Condition Generation

Verification Condition Generation Verification Condition Generation Jorge Sousa Pinto Departamento de Informática / Universidade do Minho jsp@di.uminho.pt www.di.uminho.pt/~jsp Outline (1) - From Hoare Logic to VCGen algorithms: an architecture

More information

AXIOMS OF AN IMPERATIVE LANGUAGE PARTIAL CORRECTNESS WEAK AND STRONG CONDITIONS. THE AXIOM FOR nop

AXIOMS OF AN IMPERATIVE LANGUAGE PARTIAL CORRECTNESS WEAK AND STRONG CONDITIONS. THE AXIOM FOR nop AXIOMS OF AN IMPERATIVE LANGUAGE We will use the same language, with the same abstract syntax that we used for operational semantics. However, we will only be concerned with the commands, since the language

More information

Coq. LASER 2011 Summerschool Elba Island, Italy. Christine Paulin-Mohring

Coq. LASER 2011 Summerschool Elba Island, Italy. Christine Paulin-Mohring Coq LASER 2011 Summerschool Elba Island, Italy Christine Paulin-Mohring http://www.lri.fr/~paulin/laser Université Paris Sud & INRIA Saclay - Île-de-France September 2011 Lecture 4 : Advanced functional

More information

Featherweight Firefox

Featherweight Firefox Featherweight Firefox Formalizing the Core of a Web Browser Aaron Bohannon Benjamin Pierce University of Pennsylvania June 24, 2010 1 / 27 Pop Quiz! 2 / 27 Question 1 Assume d is a Document object. var

More information

Functional Programming in Coq. Nate Foster Spring 2018

Functional Programming in Coq. Nate Foster Spring 2018 Functional Programming in Coq Nate Foster Spring 2018 Review Previously in 3110: Functional programming Modular programming Data structures Interpreters Next unit of course: formal methods Today: Proof

More information

Software Security: Vulnerability Analysis

Software Security: Vulnerability Analysis Computer Security Course. Software Security: Vulnerability Analysis Program Verification Program Verification How to prove a program free of buffer overflows? Precondition Postcondition Loop invariants

More information

Failboxes: Provably Safe Exception Handling

Failboxes: Provably Safe Exception Handling Failboxes: Provably Safe Exception Handling Bart Jacobs and Frank Piessens Department of Computer Science, Katholieke Universiteit Leuven, Belgium {bart.jacobs,frank.piessens@cs.kuleuven.be Abstract. The

More information

Lecture 10 Design by Contract

Lecture 10 Design by Contract CS 5959 Writing Solid Code Fall 2015 Nov-23 Lecture 10 Design by Contract Zvonimir Rakamarić University of Utah Design by Contract Also called assume-guarantee reasoning Developers annotate software components

More information

Hierarchical Composition and Abstraction In Architecture Models

Hierarchical Composition and Abstraction In Architecture Models Hierarchical Composition and Abstraction In Architecture Models Pam Binns and Steve Vestal Honeywell Labs {pam.binns, steve.vestal}@honeywell.com Supported by the Air Force Office of Scientific Research

More information

The Formal Semantics of Programming Languages An Introduction. Glynn Winskel. The MIT Press Cambridge, Massachusetts London, England

The Formal Semantics of Programming Languages An Introduction. Glynn Winskel. The MIT Press Cambridge, Massachusetts London, England The Formal Semantics of Programming Languages An Introduction Glynn Winskel The MIT Press Cambridge, Massachusetts London, England Series foreword Preface xiii xv 1 Basic set theory 1 1.1 Logical notation

More information

Formal Verification of Programs and Their Transformations

Formal Verification of Programs and Their Transformations Formal Verification of Programs and Their Transformations Guodong Li Advisor : Ganesh Gopalakrishnan June 25, 2010 1 Dissertation statement Formal methods are essential for reliable software design. For

More information

JustRunIt: Experiment-Based Management with Xen

JustRunIt: Experiment-Based Management with Xen JustRunIt: Experiment-Based Management with en Wei Zheng 1 Ricardo Bianchini 1 Yoshio Turner 2 J. Renato Santos 2 G. Janakiraman 3 1 Rutgers University 2 HP Labs 3 Skytap en Summit 2009 Data Center Management

More information

Programming with dependent types: passing fad or useful tool?

Programming with dependent types: passing fad or useful tool? Programming with dependent types: passing fad or useful tool? Xavier Leroy INRIA Paris-Rocquencourt IFIP WG 2.8, 2009-06 X. Leroy (INRIA) Dependently-typed programming 2009-06 1 / 22 Dependent types In

More information

Mechanized Operational Semantics

Mechanized Operational Semantics Mechanized Operational Semantics J Strother Moore Department of Computer Sciences University of Texas at Austin Marktoberdorf Summer School 2008 (Lecture 3: Direct Proofs) 1 Fact 1 Given an operational

More information

Formal Verification. Lecture 10

Formal Verification. Lecture 10 Formal Verification Lecture 10 Formal Verification Formal verification relies on Descriptions of the properties or requirements of interest Descriptions of systems to be analyzed, and rely on underlying

More information

Reasoning about copydata

Reasoning about copydata Reasoning about copydata Yet Another Account of a Proof of Correctness of an x86 Machine-Code Program Shilpi Goel ACL2 Seminar 19th October, 2015 Quick Background This talk is about machine-code program

More information

Verification of Transactional Memories that support Non-Transactional Memory Accesses

Verification of Transactional Memories that support Non-Transactional Memory Accesses Verification of Transactional Memories that support Non-Transactional Memory Accesses Ariel Cohen 1, Amir Pnueli 1, and Lenore Zuck 2 1 New York University 2 University of Illinois at Chicago TRANSACT

More information

Secure Information Flow by Self-Composition

Secure Information Flow by Self-Composition Secure Information Flow by Self-Composition Paper by Gilles Barthe, Pedro R. D Argenio, and Tamara Rezk Slides by Isaac Sheff Background Noninterference Type Systems new features and policies require extensions

More information

Commit-On-Sharing High Level Design

Commit-On-Sharing High Level Design Commit-On-Sharing High Level Design Mike Pershin, Alexander Zam Zarochentsev 8 August 2008 1 Introduction 1.1 Definitions VBR version-based recovery transaction an atomic operation which reads and possibly

More information

The Bedrock Structured Programming System

The Bedrock Structured Programming System The Bedrock Structured Programming System Combining Generative Metaprogramming and Hoare Logic in an Extensible Program Verifier Adam Chlipala MIT CSAIL ICFP 2013 September 27, 2013 In the beginning, there

More information

Synchronizing the Asynchronous

Synchronizing the Asynchronous Synchronizing the Asynchronous Bernhard Kragl IST Austria Shaz Qadeer Microsoft Thomas A. Henzinger IST Austria Concurrency is Ubiquitous Asynchronous Concurrency is Ubiquitous Asynchronous programs are

More information

Verified Secure Routing

Verified Secure Routing Verified Secure Routing David Basin ETH Zurich EPFL, Summer Research Institute June 2017 Team Members Verification Team Information Security David Basin Tobias Klenze Ralf Sasse Christoph Sprenger Thilo

More information