MAC Research Highlight

Size: px
Start display at page:

Download "MAC Research Highlight"

Transcription

1 MAC Research Highlight Y.C. Tseng

2 Outline: 3 Main Research Issues Analysis: G. Bianchi, Performance Analysis of the IEEE Distributed Coordination Function, IEEE J-SAC, K. Kanodia et al., Ordered Packet Scheduling in Wireless Ad Hoc Networks: Mechanisms and Performance Analysis, ACM MobileHoc Protocols: R. Garces and J. J. Garcia-Luna-Aceves, "Collision Avoidance and Resolution Multiple Access with Transmission Groups", INFOCOM B. P. Crow, J. G. Kim, & P. Sakai, "Investigation of the IEEE Medium Access Control (MAC) Sublayer Functions", INFOCOM'97. R. O. Baldwin, N. Davis, and S. F. Midkiff, "A Real-time Medium Access Control Protocol for Ad Hoc Wireless Local Area Networks", ACM MC2R, Vol. 3, No. 2, 1999, pp

3 Handover latency reduction: H. Kim, S. Park, C. Park, J. Kim, and S. Ko, Selective Channel Scanning for Fast Handoff in Wireless LAN using Neighbor Graph, ITC-CSCC 2004, July S. Shin, A. S. Rawat, H. Schulzrinne, "Reducing MAC Layer HandoffLatency in IEEE Wireless LANs", ACM MobiWac'04, Oct, C.C. Tseng, K.H. Chi, M.D. Hsieh, and H.H. Chang, Location-based fast handoff for networks, IEEE Communications letters, vol. 9, issue 4, pp , April 2005.

4 Research Highlight: DCF Performance Analysis Ref: G. Bianchi, Performance Analysis of the IEEE Distributed Coordination Function, IEEE J-SAC, Assuming saturation situation (stations always have packets to transmit), the work analyze the DCF performance. state of a station: (s(t), b(t)) s(t): backoff stage (0, 1,, m) of the station CW max = 2 m W min Let W i = 2 i W. b(t): backoff counter value p: colliding probability (a constant)

5 State Transition Diagram of Backoff

6 Some Important Transitions start backoff backoff 1 step failure, next stage failure, max stage 國立交通大學資訊工程系 資訊工程系曾煜棋 曾煜棋教授 successful trans.

7 Research Highlight: Unfair Access Ref: K. Kanodia et al., Ordered Packet Scheduling in Wireless Ad Hoc Networks: Mechanisms and Performance Analysis, ACM MobileHoc As there are multiple wireless links coexisting, some unfairness problem may arise. Scenario 1: Asymmetric Information throughputs ratio of A to B = 5% : 95% reason: B knows more information than A does A B

8 A B C Scenario 2: Perceived Collision throughputs of A : B : C = 36% : 28% : 36% reason: Due to spatial reuse, flow A and C can capture the channel simultaneously, thus causing flow B to reserve consecutive NAVs. Proposed solution: Distributed Wireless Ordering Protocol an ordered distributed packet scheduling for MAC can be based on any reference scheduler, such as FIFI, Virtual Clock, Earliest Deadline First.

9 Research Highlight: Collision Avoidance and Resolution Multiple Access with Transmission Groups R. Garces and J. J. Garcia-Luna-Aceves INFOCOM 97

10 Abstract a CARMA-NTG protocol for accessing wireless media CARMA-NTG = Collision Avoidance and Resolution Multiple Access Protocol with Non-persisitent Trees and transmission Group Based on transmission group Once obtaining the medium, a station will have its right to keep on sending. based on RTS/CTS messages

11 Concept of Cycles Dynamically divide the channel into cycles of variable length. Each cycle contains a contention period and a grouptransmission period. The group-transmission period is a train of packets sent by users already in the group. New users contend to join transmission group by contending during the contention period. media A, B, C Y, A, B, C Z, Y, A, B, C X, Z, Y, A, B, C X Y Z : contention period : group trans. period

12 Each STA Needs to Keep Track of To send in the transmission period, each station must know the following environment parameters: the number of members in the transmission group its position within the group the beginning of the each group-transmission period the successful RTS/CTS exchange of new users in the previous contention period

13 Group-Transmission Period A station transmits once the previous station s packet is received. The spacing is twice the propagation delay. If this is not heard during this period, assume that the previous station fails its membership is removed from the group the failed station has to contend to join the group later. B s transmission exceeds propagation delay A B C A C A C B contend later

14 Contention Period Contending based on RTS/CTS exchange. The contention period terminates once the first station successfully join the group. Each station runs the NTG scheme (non-persistent tree and transmission group) Each station keeps the following variables: a unique ID LowID and HiID: to denote the current contention window in the current contention period contention window: the allowable ID s that can contend an ID not within this range can not contend a stack: the future potential contention windows

15 NTG Scheme Initially, LowID=1 and HiID=(max. ID in the system) On RTS conflict, all stations divide (LowID, HiID) into (LowID, (LowID+HiID)/2) ((LowID+HiID)/2 + 1, HiID) // i.e., binary split PUSH the first part into STACK Contend if its ID is within the latter part. If no RTS is heard after channel delay, POP the stack and repeat recursively. ONLY stations in the RTS state can persist in trying. new stations: backoff and wait until the next period already-in-group stations: not until they leave the group

16 Contention Example A system with 4 stations: n00, n01, n10, n11. n00 and n01 are contending. (a) (b) (d) (c) n11 idle n10 idle n01 RTS n00 RTS (a) before 1st collision after 1st collision (b) after idle (c) after 2nd collision (d) after n01 success (00, 01) (00, 00) allowed interval (00, 11) (10, 11) (00, 01) (01, 01) (00, 11) packets n01 RTS n00 RTS n01 RTS

17 Short Summary propose the concept of group transmission Only one RTS/CTS exchange is used for transmitting a train of packets better fairness than IEEE NTG (non-persistent tree group) keeps the contention cost low. Performance: on high load, similar to TDMA on low load, better than TDMA by getting rid of empty slots

18 Research Highlight: Polling Issue in IEEE Investigation of the IEEE Medium Access Control (MAC) Sublayer Functions, B. P. Crow, J. G. Kim, & P. Sakai, INFOCOM 97.

19 Problem Statement In the PCF function of IEEE , it is NOT specified how to poll STAs. Problem: how to do voice communication using PCF? Assuming that all voice packets have the same priority. Voice stream characteristic: ON-and-OFF process ON = talking; OFF = listening talk low probability low probability silent

20 A Round Robin Approach AP keeps track of the list of STAs to be polled. When CFP begins, the AP polls the STAs sequentially. If the AP has an MPDU to send, the poll and MPDU are combined in one frame to be sent. O/w, a sole CF-Poll is sent. When CFP ends, the AP keeps track of the location where the polling stops. Then resume at the same place in the next CFP.

21 (cont.) Within a CFP_Repetition_Interval, if an STA sends no payload in k polls, the STA is dropped from the polling list. k is an tunable parameter In the next CFP, the STA will be added back to the list again. Basic Idea: to avoid useless polling.

22 Simulation results: Smaller k gives better data throughput (Fig. 14). k = 1~5 does not affect the voice delay (Fig. 15).

23 Short Summary An interesting polling mechanism based on specific applications. Future directions: how to support other types of media.

24 A Real-Time Medium Access Control Protocol for Ad Hoc Wireless Local Area Networks In ACM Mobile Computing and Communication Review, 1999, Vol. 3, No. 2, pp , by R. O. Baldwin, N. Davis, and S. Midkiff.

25 Goal An enhancement of IEEE for real-time communication. less mean delay less misses of deadline less packet collisions In RT applications, each packet has a deadline. After the deadline, sending this packet is useless. Ex: Military personnel in the field communicate with their weapons remotely and wirelessly.

26 Review of IEEE The CW (contention window) is initially CWmin, and is doubled after each failure, until CWmax is reached. BV (backoff value) randomly in [0..CW-1]. The BV is decreased after each idle slot.

27 Drawback of IEEE Can not meet the requirements of realtime communication. When a packet has missed its deadline, the packet will still be buffered and sent. Thus, this causes more contention, collisions,... more packets may miss their deadlines.

28 Basic Idea of RT-MAC (Real-Time MAC) Each packet is associated with a deadline when passed to the MAC layer. Note: The deadline value does not need to be sent along with the packet. After the deadline, the packet will not be sent. There are 4 rules (next few pages).

29 Rule 1: Enhanced Collision Avoidance Announcing the next BV: When a packet is transmitted, the next BV to be used is placed in a field of the packet. Stations who hear this packet will avoid selecting this BV as their next backoff timer. BV is a random number in [0..CW-1].

30 Details: Prior to transmitting a packet, a station will select its next BV from the range of [0..CW-1], excluding those BV s already chosen by other stations. A station will indicate in its data packet the next BV value to be used. A station should keep a table of BV values used by other stations. After an idle slot, a station should decrease its own BV, as well as others BVs in its table.

31 Example: A: B: C: 5 2 (collides with B s, changed to 3) B(6) A(1) A(8) C(3) B(...) C(...)

32 Rule 2: Transmission Control A station must send when its BV value has expired. If the packet experiences transmission failure, it will be reexamined to see if its deadline has been missed. Note: another backoff still has to be taken.

33 Rule 3: Contention Window Size CW is set to 8N, where N is the estimated number of real-time stations. N: can be estimated by counting the number of unique addresses for a period of time. [alternative] N: a function of current channel load. 8 is chosen by instinct. Note: CW is thus not doubled after a transmission failure (compared the original IEEE of doubling each time).

34 Rule 4: Collision of BV Due to mobility, transmission error, and collisions, a station may receive a packet indicating a BV equal to its own BV. The station must select another BV value; otherwise, collision will occur. To avoid the station being unduly penalized, the new BV should be selected from [0..CBV-1]. CBV = its current BV. I.e., the station is given higher priority. If all values in [0..CBV-1] are chosen, then we double it (i.e., [0..2*CBV-1]).

35 Collision Ratio RT-MAC is quite stable in collision prob. with respect to the number of stations.

36 Short Summary A new RT-MAC protocol. broadcasting the next BV value BV depends on the current number of stations Results: The network behavior is quite stable in terms of mean delay, missed deadline ratio, and collision ratio. The mean delay is quite independent of the number of stations.

37 Research Highlights How to reduce handover time?

38 How to reduce handover time? Channel scanning in is very time-consuming if all channels need to be scanned. If scanning one channel takes 30 ms, the toally ms is needed.

39 Research Highlight: Fast Channel Scanning by Neighbor Graph Ref: H. Kim, S. Park, C. Park, J. Kim, and S. Ko, Selective Channel Scanning for Fast Handoff in Wireless LAN using Neighbor Graph, ITC-CSCC 2004, July Method: A concept called neighbor graph (NG) is proposed. From the NG provided by an external server, a MH only needs to scan the channels that are used by its current AP s neighbors. About 10 ms are needed to scan a specific neighbor.

40 Research Highlight: Fast Channel Scanning by Caching Ref: S. Shin, A. S. Rawat, H. Schulzrinne, "Reducing MAC Layer HandoffLatency in IEEE Wireless LANs", ACM MobiWac'04, Oct, Method: MH maintains a cache which contains a list of APs adjacent to its current AP. The cached data was established from its previous scanning. Only the two APs with the best RSSI were cached. During handoff, the cached APs are searched first. If this fails, scanning is still inevitable.

41 Research Highlight: Fast Channel Scanning by Location Information Ref: C.C. Tseng, K.H. Chi, M.D. Hsieh, and H.H. Chang, Location-based fast handoff for networks, IEEE Communications letters, vol. 9, issue 4, pp , April Method: MH can predict its movement path and select the potential AP. A location server is needed to provide information of APs. So a MH can re-associate with its new AP directly without going through the probe procedure. However, this scheme relies on a precise localization method.

42 Other Readings Medium Access Control R. Garces and J.J. Garcia-Luna Luna-Aceves, Floor Acquisition Multiple Access with Collision Resolution, Proc. ACM/IEEE MobiCom 96, Rye, New York, November 11-12, 12, Z. Tang and J.J. Garcia-Luna Luna-Aceves, Hop-Reservation Multiple Access (HRMA) for Ad-Hoc Networks, Proc. IEEE INFOCOM '99, New York, New York, March , V. Bharghavan,, A. Demers, S. Shenker and Lixia Zhang, MACAW: A Media Access Protocol for Wireless LAN's, Proceedings of SIGCOMM 94, pp P. Karn, MACA - A New Channel Access Method for Packet Radio, ARRL/CRRL Amateur Radio 9th Computer Networking Conference, April 1990, pp Romit Roy Choudhury, Xue Yang, Ram Ramanathan,, and Nitin Vaidya, Using Directional Antennas for Medium Access Control in Ad Hoc Networks, ACM International Conference on Mobile Computing and Networking (MobiCom( MobiCom), September 2002.

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a time/space problem Who transmits when?

More information

/99/$10.00 (c) 1999 IEEE

/99/$10.00 (c) 1999 IEEE COLLISION-FREE MEDIUM ACCESS CONTROL SCHEME FOR AD-HOC NETWORKS Zygmunt J. Haas and Jing Deng School of Electrical Engineering Cornell University Ithaca, NY 14853 haas@ee.cornell.edu Siamak Tabrizi US

More information

IEEE Medium Access Control. Medium Access Control

IEEE Medium Access Control. Medium Access Control IEEE 802.11 Medium Access Control EECS3214 3 April 2018 Medium Access Control reliable data delivery access control MAC layer covers three functional areas: security 2 1 MAC Requirements To avoid interference

More information

Tarek Sheltami. CCSE COE 3/8/2008 1

Tarek Sheltami. CCSE COE  3/8/2008 1 Mobile Ad hoc Networks COE 549 Random Access I Tarek Sheltami KFUPM CCSE COE http://faculty.kfupm.edu.sa/coe/tarek/coe549.htm 3/8/2008 1 Outline Medium Access Control Protocols ALOHA BTMA CSMA Some simulation

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

Media Access Control in Ad Hoc Networks

Media Access Control in Ad Hoc Networks Media Access Control in Ad Hoc Networks The Wireless Medium is a scarce precious resource. Furthermore, the access medium is broadcast in nature. It is necessary to share this resource efficiently and

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access

More information

AN ANALYSIS OF THE MODIFIED BACKOFF MECHANISM FOR IEEE NETWORKS

AN ANALYSIS OF THE MODIFIED BACKOFF MECHANISM FOR IEEE NETWORKS AN ANALYSIS OF THE MODIFIED BACKOFF MECHANISM FOR IEEE 802.11 NETWORKS Marek Natkaniec, Andrzej R. Pach Department of Telecommunications University of Mining and Metallurgy al. Mickiewicza 30, 30-059 Cracow

More information

Improving IEEE Power Saving Mechanism

Improving IEEE Power Saving Mechanism 1 Improving IEEE 82.11 Power Saving Mechanism Eun-Sun Jung 1 and Nitin H. Vaidya 2 1 Dept. of Computer Science, Texas A&M University, College Station, TX 77843, USA Email: esjung@cs.tamu.edu 2 Dept. of

More information

MAC in /20/06

MAC in /20/06 MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to

More information

A Backoff Algorithm for Improving Saturation Throughput in IEEE DCF

A Backoff Algorithm for Improving Saturation Throughput in IEEE DCF A Backoff Algorithm for Improving Saturation Throughput in IEEE 80.11 DCF Kiyoshi Takahashi and Toshinori Tsuboi School of Computer Science, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo,

More information

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information

/$10.00 (c) 1998 IEEE

/$10.00 (c) 1998 IEEE Dual Busy Tone Multiple Access (DBTMA) - Performance Results Zygmunt J. Haas and Jing Deng School of Electrical Engineering Frank Rhodes Hall Cornell University Ithaca, NY 85 E-mail: haas, jing@ee.cornell.edu

More information

A Performance Analysis of IEEE Networks in the Presence of Hidden Stations

A Performance Analysis of IEEE Networks in the Presence of Hidden Stations A Performance Analysis of IEEE 802.11 Networks in the Presence of Hidden Stations Marek Natkaniec, Andrzej R. Pach University of Mining and Metallurgy, Department of Telecommunications, Cracow, Poland

More information

Unit 7 Media Access Control (MAC)

Unit 7 Media Access Control (MAC) Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC

More information

A Survey on Modified RTS/CTS Mechanism

A Survey on Modified RTS/CTS Mechanism A Survey on Modified RTS/CTS Mechanism Prachi Srivastava Computer Science and Engineering, MMMEC, Gorakhpur prachi.srivastava.itm@gmail.com Dayashankar Singh Computer Science and Engineering, MMMEC, Gorakhpur

More information

Round. Stations {A,B,C,D,E} {A,B} 6 {C,D,E} {A,B} {C} 13 {E} 12 {D}

Round. Stations {A,B,C,D,E} {A,B} 6 {C,D,E} {A,B} {C} 13 {E} 12 {D} A Priority MAC Protocol to Support Real-time Multimedia Traffic in Ad Hoc Networks Λ Jang-Ping Sheu Λ, Chi-Hsun Liu Λ, Shih-Lin Wu ΛΛ, and Yu-Chee Tseng y Λ Dept. of Computer Sci. and Info. Eng., National

More information

A Multi-channel MAC Protocol for Ad Hoc Wireless Networks

A Multi-channel MAC Protocol for Ad Hoc Wireless Networks A Multi-channel MAC Protocol for Ad Hoc Wireless Networks Jungmin So Dept. of Computer Science, and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Email: jso1@uiuc.edu Nitin

More information

A Directional MAC Protocol with the DATA-frame Fragmentation and Short Busy Advertisement Signal for Mitigating the Directional Hidden Node Problem

A Directional MAC Protocol with the DATA-frame Fragmentation and Short Busy Advertisement Signal for Mitigating the Directional Hidden Node Problem 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC) A Directional MAC Protocol with the DATA-frame Fragmentation and Short Busy Advertisement Signal for

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

MAC protocols. Lecturer: Dmitri A. Moltchanov

MAC protocols. Lecturer: Dmitri A. Moltchanov MAC protocols Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ OUTLINE: Problems for MAC to deal with; Design goals; Classification of MAC protocols Contention-based

More information

MAC. OSI Layer 2 (Data Link) OSI Layer 1 (Physical)

MAC. OSI Layer 2 (Data Link) OSI Layer 1 (Physical) 教育部資通訊科技人才培育先導型計畫 無線區域網路媒體存取控 制層協定 任課老師 : 陳懷恩 助理教授兼任資訊工程研究所所長電算中心資訊網路組組長 國立宜蘭大學 Email: wechen@niu.edu.tw 1 Outline Introduction ti to IEEE 802.11 Frame Format Medium Access Control Protocol MAC Access

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Wireless Networks (CSC-7602) Lecture 6 (08 Oct. 2007) Seung-Jong Park (Jay) Wireless MAC

Wireless Networks (CSC-7602) Lecture 6 (08 Oct. 2007) Seung-Jong Park (Jay)  Wireless MAC Wireless Networks (CSC-7602) Lecture 6 (08 Oct. 2007) Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark 1 Wireless MAC 2 1 Wireless MAC CSMA as wireless MAC? Hidden and exposed terminal problems make

More information

Simulation Based Analysis of the Impact of Hidden Terminal to the TCP Performance in Mobile Ad Hoc Networks

Simulation Based Analysis of the Impact of Hidden Terminal to the TCP Performance in Mobile Ad Hoc Networks Simulation Based Analysis of the Impact of Hidden Terminal to the TCP Performance in Mobile Ad Hoc Networks Abstract The hidden terminal is classified as the sending hidden terminal and receiving hidden

More information

EVALUATION OF EDCF MECHANISM FOR QoS IN IEEE WIRELESS NETWORKS

EVALUATION OF EDCF MECHANISM FOR QoS IN IEEE WIRELESS NETWORKS MERL A MITSUBISHI ELECTRIC RESEARCH LABORATORY http://www.merl.com EVALUATION OF EDCF MECHANISM FOR QoS IN IEEE802.11 WIRELESS NETWORKS Daqing Gu and Jinyun Zhang TR-2003-51 May 2003 Abstract In this paper,

More information

Wireless Local Area Network (IEEE )

Wireless Local Area Network (IEEE ) Wireless Local Area Network (IEEE 802.11) -IEEE 802.11 Specifies a single Medium Access Control (MAC) sublayer and 3 Physical Layer Specifications. Stations can operate in two configurations : Ad-hoc mode

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University

More information

Wireless Networked Systems

Wireless Networked Systems Wireless Networked Systems CS 795/895 - Spring 2013 Lec #6: Medium Access Control QoS and Service Differentiation, and Power Management Tamer Nadeem Dept. of Computer Science Quality of Service (802.11e)

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 4 1 Announcements Project proposals. Due April 17 th. Submit by e-mail to katia@soe.ucsc.edu.

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 An Analytical Approach: Bianchi Model 2 Real Experimentations HoE on IEEE 802.11b Analytical Models Bianchi s Model Simulations ns-2 3 N links with the

More information

IEEE e QoS for Wireless LAN:

IEEE e QoS for Wireless LAN: IEEE 802.11e QoS for Wireless LAN: A Research Direction James Yu 12/09/2003 TDC Network Seminar 1 IEEE 802.11 MAC Layer Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) Different from CAMA/CD

More information

Directional Antenna based Time Division Scheduling in Wireless Ad hoc Networks

Directional Antenna based Time Division Scheduling in Wireless Ad hoc Networks Directional Antenna based Time Division Scheduling in Wireless Ad hoc Networks Li Shaohua and Dong-Ho Cho School of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology

More information

Two-phase Collision Avoidance to Improve Scalability in Wireless LANs

Two-phase Collision Avoidance to Improve Scalability in Wireless LANs Two-phase Collision Avoidance to Improve Scalability in Wireless LANs Seongil Han, Yongsub Nam, Yongho Seok, Taekyoung Kwon and Yanghee Choi School of Computer Science and Engineering Seoul National University,

More information

A Comparative Analysis on Backoff Algorithms to Optimize Mobile Network

A Comparative Analysis on Backoff Algorithms to Optimize Mobile Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 7, July 2014, pg.771

More information

Collision Avoidance and Resolution Multiple Access: First-Success Protocols

Collision Avoidance and Resolution Multiple Access: First-Success Protocols Collision Avoidance and Resolution Multiple Access: First-uccess Protocols Rodrigo Garcés and J.J. Garcia-Luna-Aceves Baskin Center for Computer Engineering and Information ciences University of California

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

IBM Research Report. MACA-P : A MAC Protocol to Improve Parallelism in Multi-Hop Wireless Networks

IBM Research Report. MACA-P : A MAC Protocol to Improve Parallelism in Multi-Hop Wireless Networks RC22325 (W0202-014) February 5, 2002 Computer Science IBM Research Report MACA-P : A MAC Protocol to Improve Parallelism in Multi-Hop Wireless Networks Arup Acharya, Archan Misra IBM Research Division

More information

Analysis of Throughput and Energy Efficiency in the IEEE Wireless Local Area Networks using Constant backoff Window Algorithm

Analysis of Throughput and Energy Efficiency in the IEEE Wireless Local Area Networks using Constant backoff Window Algorithm International Journal of Computer Applications (975 8887) Volume 6 No.8, July Analysis of Throughput and Energy Efficiency in the IEEE 8. Wireless Local Area Networks using Constant backoff Window Algorithm

More information

Can Multiple Subchannels Improve the Delay Performance of RTS/CTS-based MAC Schemes?

Can Multiple Subchannels Improve the Delay Performance of RTS/CTS-based MAC Schemes? Can Multiple Subchannels Improve the Delay Performance of RTS/CTS-based MAC Schemes? By: Jing Deng, Yunghsiang S. Han, and Sanjeev R. Kulkarni. J. Deng, Y. S. Han, and S. R. Kulkarni, "Can Multiple Subchannels

More information

Wireless Local Area Networks (WLANs) Part I

Wireless Local Area Networks (WLANs) Part I Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

A QUANTITATIVE ANALYSIS OF HANDOVER TIME AT MAC LAYER FOR WIRELESS MOBILE NETWORKS

A QUANTITATIVE ANALYSIS OF HANDOVER TIME AT MAC LAYER FOR WIRELESS MOBILE NETWORKS A QUANTITATIVE ANALYSIS OF HANDOVER TIME AT MAC LAYER FOR WIRELESS MOBILE NETWORKS Syed S. Rizvi 1, Aasia Riasat 2, and Khaled M. Elleithy 3 1 Computer Science and Engineering Department, University of

More information

Medium Access Control Protocols: scheduled schemes

Medium Access Control Protocols: scheduled schemes Medium Access Control Protocols: scheduled schemes Redes ad hoc Sem Fio Prof. Marco Aurélio Spohn DSC/UFCG 2009.1 Excerpt from presentation by Prof. Garcia-Luna-Aceves and Katia O. (CMPE 257 - Wireless

More information

Empirical Study of Mobility effect on IEEE MAC protocol for Mobile Ad- Hoc Networks

Empirical Study of Mobility effect on IEEE MAC protocol for Mobile Ad- Hoc Networks Empirical Study of Mobility effect on IEEE 802.11 MAC protocol for Mobile Ad- Hoc Networks Mojtaba Razfar and Jane Dong mrazfar, jdong2@calstatela.edu Department of Electrical and computer Engineering

More information

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4. Topics for Today More on Ethernet Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet Wireless LANs Readings 4.3 to 4.4 1 Original Ethernet Wiring Heavy coaxial cable, called thicknet,

More information

Department of Electrical and Computer Systems Engineering

Department of Electrical and Computer Systems Engineering Department of Electrical and Computer Systems Engineering Technical Report MECSE-6-2006 Medium Access Control (MAC) Schemes for Quality of Service (QoS) provision of Voice over Internet Protocol (VoIP)

More information

An Efficient Scheduling Scheme for High Speed IEEE WLANs

An Efficient Scheduling Scheme for High Speed IEEE WLANs An Efficient Scheduling Scheme for High Speed IEEE 802.11 WLANs Juki Wirawan Tantra, Chuan Heng Foh, and Bu Sung Lee Centre of Muldia and Network Technology School of Computer Engineering Nanyang Technological

More information

Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica

Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information

P B 1-P B ARRIVE ATTEMPT RETRY 2 1-(1-P RF ) 2 1-(1-P RF ) 3 1-(1-P RF ) 4. Figure 1: The state transition diagram for FBR.

P B 1-P B ARRIVE ATTEMPT RETRY 2 1-(1-P RF ) 2 1-(1-P RF ) 3 1-(1-P RF ) 4. Figure 1: The state transition diagram for FBR. 1 Analytical Model In this section, we will propose an analytical model to investigate the MAC delay of FBR. For simplicity, a frame length is normalized as a time unit (slot). 1.1 State Transition of

More information

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II

Introduction to Wireless Networking CS 490WN/ECE 401WN Winter Lecture 4: Wireless LANs and IEEE Part II Introduction to Wireless Networking CS 490WN/ECE 401WN Winter 2007 Lecture 4: Wireless LANs and IEEE 802.11 Part II This lecture continues the study of wireless LANs by looking at IEEE 802.11. I. 802.11

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Spring'15 1 Next week Announcements April 14: ICN (Spencer Sevilla) April 16: DTN

More information

Wireless Networks (MAC)

Wireless Networks (MAC) 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 2016.03.18 CSIE, NTU Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Lec #4: Medium Access Control - II Tamer Nadeem Dept. of Computer Science IEEE 802.11 Standards Page 2 Spring 2012 CS 752/852 - Wireless

More information

A Jamming-Based MAC Protocol for Wireless Multihop Ad Hoc Networks

A Jamming-Based MAC Protocol for Wireless Multihop Ad Hoc Networks A Jamming-Based MAC Protocol for Wireless Multihop Ad Hoc Networks Shiang-Rung Ye, You-Chiun Wang, and Yu-Chee Tseng Department of Computer Science and Information Engineering National Chiao Tung University

More information

Call Admission Control for IEEE Contention Access Mechanism

Call Admission Control for IEEE Contention Access Mechanism Call Admission Control for IEEE 82.11 Contention Access Mechanism Dennis Pong and Tim Moors School of Electrical Engineering and Telecommunications, The University of New South Wales, Australia Email:

More information

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017 CS 43: Computer Networks Media Access Kevin Webb Swarthmore College November 30, 2017 Multiple Access Links & Protocols Two classes of links : point-to-point dial-up access link between Ethernet switch,

More information

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW Lecture 25: 802.11 CSE 123: Computer Networks Alex C. Snoeren HW4 due NOW Lecture 25 Overview 802.11 Wireless PHY layer overview Hidden Terminals Basic wireless challenge RTS/CTS Virtual carrier sense

More information

MAC protocols for ad hoc networks

MAC protocols for ad hoc networks MAC protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2756/ OUTLINE: Problems for MAC to deal with; Design goals; Classification of

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 9: MAC Protocols for WLANs Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online:

More information

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du Chapter 6 Wireless and Mobile Networks Csci 4211 David H.C. Du Wireless LAN IEEE 802.11 a, b, g IEEE 802.15 Buletooth Hidden Terminal Effect Hidden Terminal Problem Hidden terminals A, C cannot hear each

More information

Expanding the use of CTS-to-Self mechanism to improving broadcasting on IEEE networks

Expanding the use of CTS-to-Self mechanism to improving broadcasting on IEEE networks Expanding the use of CTS-to-Self mechanism to improving broadcasting on IEEE 802.11 networks Christos Chousidis, Rajagopal Nilavalan School of Engineering and Design Brunel University London, UK {christos.chousidis,

More information

Advanced Computer Networks WLAN

Advanced Computer Networks WLAN Advanced Computer Networks 263 3501 00 WLAN Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Last week Outlook Medium Access COPE Short Range Wireless Networks:

More information

Wireless LAN MAC protocols

Wireless LAN MAC protocols Wireless LAN MAC protocols Sushant Jain sushjain@cs.washington.edu Ratul Mahajan ratul@cs.washington.edu May 10, 2000 1 Introduction The MAC (Medium Access Control) protocols can be roughly categorized

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

MAC RELIABLE BROADCAST IN AD HOC NETWORKS

MAC RELIABLE BROADCAST IN AD HOC NETWORKS MAC RELIABLE BROADCAST IN AD HOC NETWORKS KenTang,MarioGerla Computer Science Department University of California, Los Angeles {ktang, gerla}@cs.ucla.edu ABSTRACT Traditional wireless ad hoc medium access

More information

SENSOR-MAC CASE STUDY

SENSOR-MAC CASE STUDY SENSOR-MAC CASE STUDY Periodic Listen and Sleep Operations One of the S-MAC design objectives is to reduce energy consumption by avoiding idle listening. This is achieved by establishing low-duty-cycle

More information

NMA Radio Networks Network Level: Medium Access Control Roberto Verdone

NMA Radio Networks Network Level: Medium Access Control Roberto Verdone NMA Radio Networks Network Level: Medium Access Control Roberto Verdone Outline 1. Introduction 2. Fundamentals of Random MAC Aloha in Compact Networks Slotted Aloha in Compact Networks CSMA in Compact

More information

Improving Channel Scanning Procedures for WLAN Handoffs 1

Improving Channel Scanning Procedures for WLAN Handoffs 1 Improving Channel Scanning Procedures for WLAN Handoffs 1 Shiao-Li Tsao and Ya-Lien Cheng Department of Computer Science, National Chiao Tung University sltsao@cs.nctu.edu.tw Abstract. WLAN has been widely

More information

Collision Free and Energy Efficient MAC protocol for Wireless Networks

Collision Free and Energy Efficient MAC protocol for Wireless Networks 110 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 Collision Free and Energy Efficient MAC protocol for Wireless Networks Muhammad Ali Malik, Dongha Shin

More information

Comparison of pre-backoff and post-backoff procedures for IEEE distributed coordination function

Comparison of pre-backoff and post-backoff procedures for IEEE distributed coordination function Comparison of pre-backoff and post-backoff procedures for IEEE 802.11 distributed coordination function Ping Zhong, Xuemin Hong, Xiaofang Wu, Jianghong Shi a), and Huihuang Chen School of Information Science

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

Smart b MAC protocol for use with Smart Antennas

Smart b MAC protocol for use with Smart Antennas Smart-8.b MAC protocol for use with Smart Antennas Harkirat Singh and Suresh Singh Email: {harkirat, singh}@cs.pdx.edu Department of Computer Science Portland State University Portland, OR 977 Abstract

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

Optional Point Coordination Function (PCF)

Optional Point Coordination Function (PCF) Optional Point Coordination Function (PCF) Time Bounded / Async Contention Free Service PCF Optional DCF (CSMA/CA ) Async Contention Service MAC PHY Contention Free Service uses Point Coordination Function

More information

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem Medium Access Control IEEE 802.11, Token Rings Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 9/15/06 CS/ECE 438 - UIUC, Fall 2006 1 9/15/06 CS/ECE

More information

An energy-efficient MAC protocol for infrastructure WLAN based on modified PCF/ DCF access schemes using a bidirectional data packet exchange

An energy-efficient MAC protocol for infrastructure WLAN based on modified PCF/ DCF access schemes using a bidirectional data packet exchange An energy-efficient MAC protocol for infrastructure WLAN based on modified PCF/ DCF access schemes using a bidirectional data packet exchange Raúl Palacios, Fabrizio Granelli University of Trento Trento,

More information

Cellular Learning Automata-based Channel Assignment Algorithms in Mobile Ad Hoc Network

Cellular Learning Automata-based Channel Assignment Algorithms in Mobile Ad Hoc Network ISBN 978-1-84626-xxx-x Proceedings of 2009 International Conference on Machine Learning and Computing Perth, Australia, 10-12 July, 2009, pp. xxx-xxx Cellular Learning Automata-based Channel Assignment

More information

A STUDY ON MAC PROTOCOLS FOR WIRELESS AD HOC NETWORK

A STUDY ON MAC PROTOCOLS FOR WIRELESS AD HOC NETWORK A STUDY ON MAC PROTOCOLS FOR WIRELESS AD HOC NETWORK S.Mythili #1, Dr.N.Rajendran *2 #1 Research Scholar, Periyar University, Salem, Tamilnadu, India. *2 Principal, Vivekanandha Arts and Science College

More information

2 Related Work. 1 Introduction. 3 Background

2 Related Work. 1 Introduction. 3 Background Modeling the Performance of A Wireless Node in Multihop Ad-Hoc Networks Ping Ding, JoAnne Holliday, Aslihan Celik {pding, jholliday, acelik}@scu.edu Santa Clara University Abstract: In this paper, we model

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

A SURVEY OF QOS TECHNIQUES IN Drabu, Yasir Department of Computer Science, Kent State University

A SURVEY OF QOS TECHNIQUES IN Drabu, Yasir Department of Computer Science, Kent State University A SURVEY OF QOS TECHNIQUES IN 802.11 Drabu, Yasir Department of Computer Science, Kent State University Contents 1. Abstract 2. Introduction 3. Background 3.1. 802.11 Mac Sub layer 3.2. Distributed Coordination

More information

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - WiFi (contd.); 16 th Aug 2012 Instructor: Sridhar Iyer IIT Bombay Clicker-1: Wireless v/s wired Which of the following differences between Wireless and Wired affect a CSMA-based

More information

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018 CS 43: Computer Networks 27: Media Access Contd. December 3, 2018 Last Class The link layer provides lots of functionality: addressing, framing, media access, error checking could be used independently

More information

Logical Link Control (LLC) Medium Access Control (MAC)

Logical Link Control (LLC) Medium Access Control (MAC) Overview of IEEE 802.11 Data Link layer Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Investigating MAC-layer Schemes to Promote Doze Mode in based WLANs

Investigating MAC-layer Schemes to Promote Doze Mode in based WLANs Investigating MAC-layer Schemes to Promote Doze Mode in 802.11-based WLANs V. Baiamonte and C.-F. Chiasserini CERCOM - Dipartimento di Elettronica Politecnico di Torino Torino, Italy Email: baiamonte,chiasserini

More information

On Spatial Fairness of the DCF Protocol and the Role of Directional Antenna

On Spatial Fairness of the DCF Protocol and the Role of Directional Antenna On Spatial Fairness of the 82.11 DCF Protocol and the Role of Directional Antenna Chenxi Zhu Fujitsu Labs of America 84 Baltimore Ave., Suite 32 College Park, Maryland 274 chenxi.zhu@us.fujitsu.com Tamer

More information

ECEN 5032 Data Networks Medium Access Control Sublayer

ECEN 5032 Data Networks Medium Access Control Sublayer ECEN 5032 Data Networks Medium Access Control Sublayer Peter Mathys mathys@colorado.edu University of Colorado, Boulder c 1996 2005, P. Mathys p.1/35 Overview (Sub)networks can be divided into two categories:

More information

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW Lecture 24: 802.11 CSE 123: Computer Networks Stefan Savage HW4 due NOW About the final Similar in style to midterm Some combination of easy questions, short answer and more in-depth questions Sample final

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

Dynamic Power Control MAC Protocol in Mobile Adhoc Networks

Dynamic Power Control MAC Protocol in Mobile Adhoc Networks Dynamic Power Control MAC Protocol in Mobile Adhoc Networks Anita Yadav Y N Singh, SMIEEE R R Singh Computer Science and Engineering Electrical Engineering Computer Science and Engineering Department Department

More information

Analysis of IEEE e for QoS Support in Wireless LANs

Analysis of IEEE e for QoS Support in Wireless LANs Analysis of IEEE 802.11e for QoS Support in Wireless LANs Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein IEEE Wireless Communications, December 2003 Presented by Daeseon Park, Student No.2005-30231

More information