TELCOM 2130 Queueing Theory. David Tipper Associate Professor Graduate Telecommunications and Networking Program. University of Pittsburgh

Size: px
Start display at page:

Download "TELCOM 2130 Queueing Theory. David Tipper Associate Professor Graduate Telecommunications and Networking Program. University of Pittsburgh"

Transcription

1 TELCOM 2130 Queueing Theory David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Learning Objective To develop the modeling and mathematical skills to analytically determine computer systems and communication network performance. Students should be able to read and understand the current performance analysis and queueing theory literature upon completion of the course. Understand strengths and weaknesses of Queueing Models 2 1

2 Texts and Reading Assignments System Modeling and Analysis: Foundations of System Performance Evaluation, H. Kobayashi and B. Mark Similar book is Performance Analysis of Communications Networks and Systems, Piet Van Mieghem Classic Texts are Queueing Systems, Theory, Volumes I and II, L. Kleinrock, 1976 Fundamentals of Queueing Theory, 4 th edition, D. Gross, J. Shortle, J. Thompson, and C. Harris, Free Reference ITU-D Teletraffic Handbook For Background suggest Probability, Statistics, and Random Processes For Electrical Engineering (3rd Edition) by Alberto Leon-Garcia (Jan 7, 2008) Matrices: Methods and Applications, Stephen Barnett, Course Outline Course Organization, Reading : KM 1 Review of Background Material Reading : ALG, SB, KM 5.1 Birth-Death Queues Reading: KM 2 Loss Models Reading : KM 3 Non-Markovian Queues Reading : KM 4, 5 Queueing Networks Reading : KM 6-8 Phase Type Queues Reading : KM 10 Discrete Time Queues Reading : KM 11 Time Dependent Solution of Queues Reading : KM 15 2

3 Grading Grading Homework 25% 6-7Assignments Midterm Exam 20% Final exam 25% Term project 30% 5-8 pages IEEE Two Column Paper Format List of possible projects will be provided or topic can be proposed by students in mutual agreement with Professor Individual project based around research papers in the literature Past projects Backbone Buffer Sizing Performance analysis of hybrid optical switching Markov models of WLAN VoIP capacity Survey of Queues with Negative Customers 5 Queueing Theory Queueing theory : Mathematical analysis of waiting lines Queueing Theory is the primary tool for evaluating performance in the initial stage of system design. Analytical Model of the system based on stochastic process and probability theory Approximates real system by focusing on contention at shared resources. Examples: shared medium router, window flow controlled session, time shared computer system 6 3

4 History of Queueing Orginated with A.K. Erlang in 1917, Dutch mathematician - hired by Copenhagen Phone company Determine how many operators to keep call blocking at reasonable level Results still used today Queueing Theory often called Teletraffic Theory until the 1950 s when applications to service systems, manufacturing systems and transportation systems developed. L. Kleinrock in dissertation at MIT first to apply queueing theory to data networks in early 60 s basic packet switching and delay analysis Sauer, Chandy applied queueing theory to computer systems in 60 s Studied how disk drives interact with computer processing power, time sharing strategies 7 Model of Router 8 4

5 Model of Time Shared Computer Systems 9 Flow Controlled Session Router A Router B Source 2 3 Data Data Data Destination 1 Router C Router D 4 ACK 6 5 ACK ACK 5

6 Nomenclature of a Queueing System The input process how customers arrive The system structure waiting space number of servers, etc. The service process Kendall s Notation 1/2/3/4/5/6 A Shorthand notation to describe a queueing system containing a queueing system. 1 : Customer arrival pattern (Interarrival times distribution). 2 : Service pattern (Service-times distribution). 3 : Number of parallel servers. 4 : System capacity. 5 : Queueing discipline. 6: Customer Population 11 Characteristics of the Input Process (1) Arrival pattern or Arrival Process Customers may arrive at a queueing system either in some regular pattern or in a random fashion. When customers arrive regularly at a fixed interval, the arrival pattern can be easily described by a single number the rate of arrival When customers arrive according to some random fashion, the arrival pattern is described by a probability distribution. Arrival process characterized by interarrival distribution 12 6

7 Characteristics of the Input Process (2) Probability distribution that are commonly used to describe the interarrival process are: M : Markovian (or memoryless) same as exponentially distributed interarrivals - same as Poisson arrival process (number of customers arrive over an interval has a Poisson distribution) D : Deterministic, fixed interarrival times E k : Erlang distribution of order k PH phase type distribution Geo Geometric distribution G : General probability distribution GI: General and independent (inter-arrival time) distribution. 13 Characteristics of the Input Process (3) Behavior of the arriving customers Customer arriving at a queueing system may behave differently when the system is full (due to finite waiting queue) or when all servers are busy. Blocking System : The arriving customers when system is full are considered lost dropped from systems Non-Blocking System : The arriving customers are placed in queues of infinite size. Balking or Discouraged arrivals : customers refuse to join queue when line too long or the arrival rate decreases with line length 14 7

8 Characteristics of the Service Process Service distribution describe the time take by a server to process a customer. Can be deterministic or probabilitistic In fashion similar to interarrival process use abbreviations to describe common cases M : Markovian (or memoryless), implies the exponentially distributed service times. D : Deterministic, constant service times E k : Erlang distribution of order k service time distribution PH phase type distribution G : General service time distribution 15 Characteristics of the System Structure (1) Physical number and layout of servers Default assumption of parallel and identical servers Integer number of serviers A customer at the head of the waiting queue can go to any server who is free, and leave the system after receiving service from that server. The system capacity The system capacity is the maximum number of customers that a queueing system can accommodate, inclusive of those customers at the service facility Finite (integer value) - maximum number of customers in the systems Infinite (default value) 16 8

9 Characteristics of the Service Process Queueing discipline how customers are selected for service from the line First-Come-First-Served (FCFS/FIFO) Last-Come-First-Served (LCFS) Priority Process sharing Random Longest Queue First Etc. The size of the customer population Infinite : the number of potential customers from external sources is very large as compared to those in the system. Finite : the arrival process (rate) is affected by the number of customers already in the system. 17 Example Consider a link modeled as the superposition of S traffic streams as a multiple Poisson streams each with mean rate i,, and exponentially distributed service times with mean rate C, one server, infinite waiting space, first in first out service and an infinite population of customers M 1 + M 2 + M S / C/1/inf/FIFO/inf 18 9

10 Example of Notation M/D/2/50/FIFO/ 1. Exponentially distributed interarrival times 2. Deterministic service times 3. Two parallel servers 4. Waiting space for 48 customers + 2 in service 5. First in First Out processing from the queue 6. Infinite population of customers 19 Nomenclature Standard notation mean arrival rate of customers/time unit mean service rate in customers/time unit n(t) number of customers in the system at time t π i = lim t P{n(t) = i} is server utilization remember for stability L Average number of customers in systems L q - Average number of customers in the queues know L = L q + W Average delay in system (includes server + queue) W q Average delay in queue know W = W q + 1/ Little s Law L = W 10

11 Nomenclature Standard notation - relationships Mathematical Background for Queueing Queueing Theory draws on results from Probability Theory Discrete and continuous random variables PDF, CDF, etc. Joint random variables Moments and functions of RVs, etc. Transform Techniques Z transform, Laplace transform, Fourier transform, etc. Moment generating functions Linear Algebra - matrix based methods and analysis Matrix Inversion, Eigenvalues/eigenvectors spectral decomposition, Kronecker Products 22 11

12 Summary Overview of Course Queueing Theory and Performance Modeling Notation and Nomenclature 23 12

EP2200 Queueing theory and teletraffic systems

EP2200 Queueing theory and teletraffic systems EP2200 Queueing theory and teletraffic systems Viktoria Fodor Laboratory of Communication Networks School of Electrical Engineering Lecture 1 If you want to model networks Or a complex data flow A queue's

More information

EP2200 Queueing theory and teletraffic systems

EP2200 Queueing theory and teletraffic systems EP2200 Queueing theory and teletraffic systems Viktoria Fodor Laboratory of Communication Networks School of Electrical Engineering Lecture 1 If you want to model networks Or a complex data flow A queue's

More information

Teletraffic theory I: Queuing theory

Teletraffic theory I: Queuing theory Teletraffic theory I: Queuing theory Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2716/ 1. Place of the course TLT-2716 is a part of Teletraffic theory five

More information

Introduction to the course

Introduction to the course Introduction to the course Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/ moltchan/modsim/ http://www.cs.tut.fi/kurssit/tlt-2706/ 1. What is the teletraffic theory? Multidisciplinary

More information

Queuing Systems. 1 Lecturer: Hawraa Sh. Modeling & Simulation- Lecture -4-21/10/2012

Queuing Systems. 1 Lecturer: Hawraa Sh. Modeling & Simulation- Lecture -4-21/10/2012 Queuing Systems Queuing theory establishes a powerful tool in modeling and performance analysis of many complex systems, such as computer networks, telecommunication systems, call centers, manufacturing

More information

Lecture 5: Performance Analysis I

Lecture 5: Performance Analysis I CS 6323 : Modeling and Inference Lecture 5: Performance Analysis I Prof. Gregory Provan Department of Computer Science University College Cork Slides: Based on M. Yin (Performability Analysis) Overview

More information

Introduction to Queuing Systems

Introduction to Queuing Systems Introduction to Queuing Systems Queuing Theory View network as collections of queues FIFO data-structures Queuing theory provides probabilistic analysis of these queues Examples: Average length Probability

More information

Fundamentals of Queueing Models

Fundamentals of Queueing Models Fundamentals of Queueing Models Michela Meo Maurizio M. Munafò Michela.Meo@polito.it Maurizio.Munafo@polito.it TLC Network Group - Politecnico di Torino 1 Modeling a TLC network Modelization and simulation

More information

Data Network Protocol Analysis & Simulation

Data Network Protocol Analysis & Simulation Module Details Title: Long Title: Data Network PENDING APPROVAL Data Network Module Code: EE509 Credits: 7.5 NFQ Level: 9 Field of Study: Electronic Engineering Valid From: 2017/18 (Sep 2017) Module Delivered

More information

Teletraffic theory (for beginners)

Teletraffic theory (for beginners) Teletraffic theory (for beginners) samuli.aalto@hut.fi teletraf.ppt S-38.8 - The Principles of Telecommunications Technology - Fall 000 Contents Purpose of Teletraffic Theory Network level: switching principles

More information

Using Queuing theory the performance measures of cloud with infinite servers

Using Queuing theory the performance measures of cloud with infinite servers Using Queuing theory the performance measures of cloud with infinite servers A.Anupama Department of Information Technology GMR Institute of Technology Rajam, India anupama.a@gmrit.org G.Satya Keerthi

More information

M/G/c/K PERFORMANCE MODELS

M/G/c/K PERFORMANCE MODELS M/G/c/K PERFORMANCE MODELS J. MacGregor Smith Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Massachusetts 01003 e-mail: jmsmith@ecs.umass.edu Abstract Multi-server

More information

Queuing Networks Modeling Virtual Laboratory

Queuing Networks Modeling Virtual Laboratory Queuing Networks Modeling Virtual Laboratory Dr. S. Dharmaraja Department of Mathematics IIT Delhi http://web.iitd.ac.in/~dharmar Queues Notes 1 1 Outline Introduction Simple Queues Performance Measures

More information

Network Traffic Characterisation

Network Traffic Characterisation Modeling Modeling Theory Outline 1 2 The Problem Assumptions 3 Standard Car Model The Packet Train Model The Self - Similar Model 4 Random Variables and Stochastic Processes The Poisson and Exponential

More information

Read Chapter 4 of Kurose-Ross

Read Chapter 4 of Kurose-Ross CSE 422 Notes, Set 4 These slides contain materials provided with the text: Computer Networking: A Top Down Approach,5th edition, by Jim Kurose and Keith Ross, Addison-Wesley, April 2009. Additional figures

More information

UNIT 4: QUEUEING MODELS

UNIT 4: QUEUEING MODELS UNIT 4: QUEUEING MODELS 4.1 Characteristics of Queueing System The key element s of queuing system are the customer and servers. Term Customer: Can refer to people, trucks, mechanics, airplanes or anything

More information

Motivation: Wireless Packet-Based Transport

Motivation: Wireless Packet-Based Transport Wireless Networks I: Protocols & Architectures Hans-Peter Schwefel, Haibo Wang, Petar Popovski Mm1 IP Mobility Support (hps) Mm2 Wireless Multicast (hw) Mm3 Ad-hoc networks (pp) Mm4 Introduction to performance

More information

Queueing Networks. Lund University /

Queueing Networks. Lund University / Queueing Networks Queueing Networks - Definition A queueing network is a network of nodes in which each node is a queue The output of one queue is connected to the input of another queue We will only consider

More information

Advanced Internet Technologies

Advanced Internet Technologies Advanced Internet Technologies Chapter 3 Performance Modeling Dr.-Ing. Falko Dressler Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

More information

Introduction to Performance Engineering and Modeling

Introduction to Performance Engineering and Modeling Introduction to Performance Engineering and Modeling Dr. Michele Mazzucco Software Engineering Group Michele.Mazzucco@ut.ee http://math.ut.ee/~mazzucco What is Performance Engineering? Whether you design,

More information

QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR TEACHING QUEUEING THEORY

QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR TEACHING QUEUEING THEORY QSOLVE : AN OBJECT-ORIENTED SOFTWARE TOOL FOR TEACHING QUEUEING THEORY Fernando C. Castaño Mariño e Paulo R. L. Gondim System Engineering Department - Instituto Militar de Engenharia - IME (Rio de Janeiro

More information

Program Changes Communications Engineering

Program Changes Communications Engineering Department of Systems & Computer Engineering 1/12 Program Changes Communications Engineering Department of Systems and Computer Engineering, Carleton University, Canada Why Are We Here? Substantial changes

More information

Traffic Modeling of Communication Networks

Traffic Modeling of Communication Networks EÖTVÖS LORÁND UNIVERSITY, BUDAPEST Traffic Modeling of Communication Networks PÉTER VADERNA THESES OF PHD DISSERTATION Doctoral School: Physics Director: Prof. Zalán Horváth Doctoral Program: Statistical

More information

ROORKEE COLLEGE OF ENGINEERING

ROORKEE COLLEGE OF ENGINEERING ROORKEE COLLEGE OF ENGINEERING OPERATIONS RESEARCH LECTURE NOTES RAHUL BHARTI Assistant Professor RCE, ROORKEE Introduction The mathematical models which tells to optimise (minimize or maximise) the objective

More information

On Generalized Processor Sharing with Regulated Traffic for MPLS Traffic Engineering

On Generalized Processor Sharing with Regulated Traffic for MPLS Traffic Engineering On Generalized Processor Sharing with Regulated Traffic for MPLS Traffic Engineering Shivendra S. Panwar New York State Center for Advanced Technology in Telecommunications (CATT) Department of Electrical

More information

3. Examples. Contents. Classical model for telephone traffic (1) Classical model for telephone traffic (2)

3. Examples. Contents. Classical model for telephone traffic (1) Classical model for telephone traffic (2) Contents Model for telephone traffic Packet level model for data traffic Flow level model for elastic data traffic Flow level model for streaming data traffic lect03.ppt S-38.45 - Introduction to Teletraffic

More information

STATISTICS (STAT) Statistics (STAT) 1

STATISTICS (STAT) Statistics (STAT) 1 Statistics (STAT) 1 STATISTICS (STAT) STAT 2013 Elementary Statistics (A) Prerequisites: MATH 1483 or MATH 1513, each with a grade of "C" or better; or an acceptable placement score (see placement.okstate.edu).

More information

Analytic Performance Models for Bounded Queueing Systems

Analytic Performance Models for Bounded Queueing Systems Analytic Performance Models for Bounded Queueing Systems Praveen Krishnamurthy Roger D. Chamberlain Praveen Krishnamurthy and Roger D. Chamberlain, Analytic Performance Models for Bounded Queueing Systems,

More information

Numerical approach estimate

Numerical approach estimate Simulation Nature of simulation Numericalapproachfor investigating models of systems. Data are gathered to estimatethe true characteristics of the model. Garbage in garbage out! One of the techniques of

More information

Resource Allocation and Queuing Theory

Resource Allocation and Queuing Theory and Modeling Modeling Networks Outline 1 Introduction Why are we waiting?... 2 Packet-Switched Network Connectionless Flows Service Model Router-Centric versus Host-Centric Reservation Based versus Feedback-Based

More information

Äriprotsesside modelleerimine ja automatiseerimine Loeng 8 Järjekorrateooria ja äriprotsessid. Enn Õunapuu

Äriprotsesside modelleerimine ja automatiseerimine Loeng 8 Järjekorrateooria ja äriprotsessid. Enn Õunapuu Äriprotsesside modelleerimine ja automatiseerimine Loeng 8 Järjekorrateooria ja äriprotsessid Enn Õunapuu enn@cc.ttu.ee Kava Järjekorrateooria Näited Järeldused Küsimused Loengu eesmärk Loengu eesmärgiks

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

Web application performance

Web application performance Web application performance A Lecture for LinuxDays 2017 by Ing. Tomáš Vondra Cloud Architect at Capacity planning Marketing gives you: estimate of the number of customers and its trend > You need to translate

More information

Edge Switch. setup. reject. delay. setup. setup ack. offset. burst. burst. release. φ l. long burst. short burst. idle. p s

Edge Switch. setup. reject. delay. setup. setup ack. offset. burst. burst. release. φ l. long burst. short burst. idle. p s Performance Modeling of an Edge Optical Burst Switching ode Lisong Xu, Harry G Perros, George Rouskas Computer Science Department orth Carolina State University Raleigh, C 27695-7534 E-mail: flxu2,hp,rouskasg@cscncsuedu

More information

Performance Evaluation of Scheduling Mechanisms for Broadband Networks

Performance Evaluation of Scheduling Mechanisms for Broadband Networks Performance Evaluation of Scheduling Mechanisms for Broadband Networks Gayathri Chandrasekaran Master s Thesis Defense The University of Kansas 07.31.2003 Committee: Dr. David W. Petr (Chair) Dr. Joseph

More information

ITU / BDT regional seminar Network Planning for the CEE, CIS and Baltic

ITU / BDT regional seminar Network Planning for the CEE, CIS and Baltic ITU / BDT regional seminar Network Planning for the CEE, CIS and Baltic Belgrade, Serbia and Montenegro, 20 24 June 2005 Network Design and Dimensioning Oscar González Soto ITU Consultant Expert Strategic

More information

Stochastic Processing Networks: What, Why and How? Ruth J. Williams University of California, San Diego

Stochastic Processing Networks: What, Why and How? Ruth J. Williams University of California, San Diego Stochastic Processing Networks: What, Why and How? Ruth J. Williams University of California, San Diego http://www.math.ucsd.edu/~williams 1 OUTLINE! What is a Stochastic Processing Network?! Applications!

More information

Introduction ETSN01 Advanced Telecommunications. Emma Fitzgerald

Introduction ETSN01 Advanced Telecommunications. Emma Fitzgerald Introduction ETSN01 Advanced Telecommunications Emma Fitzgerald 2015 Course administration and overview Expected outcomes Pre-requisites Course structure Teaching team Assessment General points Socrative

More information

Network traffic engineering

Network traffic engineering University of Roma Sapienza DIET Network traffic engineering Lecturer: Andrea Baiocchi DIET - University of Roma Sapienza E-mail: andrea.baiocchi@uniroma1.it URL: http://net.infocom.uniroma1.it/corsi/ing_traffico/

More information

Introduction to CSIM. Outline

Introduction to CSIM. Outline Introduction to CSIM Turgay Korkmaz Computer Science University of Texas at San Antonio Outline Simulation (from big picture perspective) Steps in Simulation World Views in Simulation CSIM 1 Simulation

More information

QUEUEING THEORY WITH APPLICATIONS TO PACKET TELECOMMUNICATION

QUEUEING THEORY WITH APPLICATIONS TO PACKET TELECOMMUNICATION QUEUEING THEORY WITH APPLICATIONS TO PACKET TELECOMMUNICATION QUEUEING THEORY WITH APPLICATIONS TO PACKET TELECOMMUNICATION JOHN N. DAIGLE Prof. of Electrical Engineering The University of Mississippi

More information

Model suitable for virtual circuit networks

Model suitable for virtual circuit networks . The leinrock Independence Approximation We now formulate a framework for approximation of average delay per packet in telecommunications networks. Consider a network of communication links as shown in

More information

Modeling and Simulation (An Introduction)

Modeling and Simulation (An Introduction) Modeling and Simulation (An Introduction) 1 The Nature of Simulation Conceptions Application areas Impediments 2 Conceptions Simulation course is about techniques for using computers to imitate or simulate

More information

Written exam for EE2T21 (Part B) Data Communications Networking

Written exam for EE2T21 (Part B) Data Communications Networking Written exam for EET (Part B) Data Communications Networking dr. J. Sanders MSc July 6th, 8 Friday 6th of July, 3:3 5:3. Responsible teacher: dr. Jaron Sanders MSc Material: This examination covers Chapters

More information

MAT128A: Numerical Analysis Lecture One: Course Logistics and What is Numerical Analysis?

MAT128A: Numerical Analysis Lecture One: Course Logistics and What is Numerical Analysis? MAT128A: Numerical Analysis Lecture One: Course Logistics and What is Numerical Analysis? September 26, 2018 Lecture 1 September 26, 2018 1 / 19 Course Logistics My contact information: James Bremer Email:

More information

Evolution on Network Technologies and its Impact on Traffic Engineering

Evolution on Network Technologies and its Impact on Traffic Engineering Evolution on Network Technologies and its Impact on Traffic Engineering! "#! $%'&( )*!+,-$)/. 021. 0 3 46587:9=8?A@

More information

Outline. Application examples

Outline. Application examples Outline Application examples Google page rank algorithm Aloha protocol Virtual circuit with window flow control Store-and-Forward packet-switched network Interactive system with infinite servers 1 Example1:

More information

BANK ATM QUEUEING MODEL: A CASE STUDY Ashish Upadhayay* 1

BANK ATM QUEUEING MODEL: A CASE STUDY Ashish Upadhayay* 1 ISSN 2277-2685 IJESR/May 2017/ Vol-7/Issue-5/40-45 Ashish Upadhayay / International Journal of Engineering & Science Research BANK ATM QUEUEING MODEL: A CASE STUDY Ashish Upadhayay* 1 1 Research Scholar,

More information

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS THE UNIVERSITY OF NAIROBI DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING FINAL YEAR PROJECT. PROJECT NO. 60 PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS OMARI JAPHETH N. F17/2157/2004 SUPERVISOR:

More information

Midterm II December 4 th, 2006 CS162: Operating Systems and Systems Programming

Midterm II December 4 th, 2006 CS162: Operating Systems and Systems Programming Fall 2006 University of California, Berkeley College of Engineering Computer Science Division EECS John Kubiatowicz Midterm II December 4 th, 2006 CS162: Operating Systems and Systems Programming Your

More information

Network Performance Analysis

Network Performance Analysis Network Performance Analysis Network Performance Analysis Thomas Bonald Mathieu Feuillet Series Editor Pierre-Noël Favennec First published 2011 in Great Britain and the United States by ISTE Ltd and

More information

cs144 Midterm Review Fall 2010

cs144 Midterm Review Fall 2010 cs144 Midterm Review Fall 2010 Administrivia Lab 3 in flight. Due: Thursday, Oct 28 Midterm is this Thursday, Oct 21 (during class) Remember Grading Policy: - Exam grade = max (final, (final + midterm)/2)

More information

FEC Recovery Performance for Video Streaming Services Based on H.264/SVC

FEC Recovery Performance for Video Streaming Services Based on H.264/SVC 20 FEC Recovery Performance for Video Streaming Services Based on H.264/SVC Kenji Kirihara, Hiroyuki Masuyama, Shoji Kasahara and Yutaka Takahashi Kyoto University Japan. Introduction With the recent advancement

More information

Application of QNA to analyze the Queueing Network Mobility Model of MANET

Application of QNA to analyze the Queueing Network Mobility Model of MANET 1 Application of QNA to analyze the Queueing Network Mobility Model of MANET Harsh Bhatia 200301208 Supervisor: Dr. R. B. Lenin Co-Supervisors: Prof. S. Srivastava Dr. V. Sunitha Evaluation Committee no:

More information

FLUID APPROXIMATIONS FOR A PRIORITY CALL CENTER WITH TIME-VARYING ARRIVALS. William A. Massey

FLUID APPROXIMATIONS FOR A PRIORITY CALL CENTER WITH TIME-VARYING ARRIVALS. William A. Massey Proceedings of the 003 Winter Simulation Conference S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds. FLUID APPROXIMATIONS FOR A PRIORITY CALL CENTER WITH TIME-VARYING ARRIVALS Ahmad D. Ridley

More information

Simulation Input Data Modeling

Simulation Input Data Modeling Introduction to Modeling and Simulation Simulation Input Data Modeling OSMAN BALCI Professor Department of Computer Science Virginia Polytechnic Institute and State University (Virginia Tech) Blacksburg,

More information

EECS 454: Modeling and Analysis of Communication Networks

EECS 454: Modeling and Analysis of Communication Networks : Modeling and Analysis of Communication Networks Spring Quarter 2008 Meeting time: 12:30-1:50 MW Instructor: Randall Berry Office: Tech, Rm. M318 Office Hours: by appointment Course Overview Primary goal

More information

ETSN01 Exam Solutions

ETSN01 Exam Solutions ETSN01 Exam Solutions March 014 Question 1 (a) See p17 of the cellular systems slides for a diagram and the full procedure. The main points here were that the HLR needs to be queried to determine the location

More information

Void-creating algorithms for fixed packet length in OPS/OBS

Void-creating algorithms for fixed packet length in OPS/OBS Void-creating algorithms for fixed packet length in OPS/OBS Kurt Van Hautegem, Wouter Rogiest & Herwig Bruneel {kurt.vanhautegem, wouter.rogiest, herwig.bruneel}@telin.ugent.be Ghent University, Belgium

More information

Simulation with Arena

Simulation with Arena Simulation with Arena Sixth Edition W. David Kelton Professor Department of Operations, Business Analytics, and Information Systems University of Cincinnati Randall P. Sadowski Retired Nancy B. Zupick

More information

Volume 5, No. 2, May -June, 2013, ISSN

Volume 5, No. 2, May -June, 2013, ISSN ABSTRACT Simulation Tool for Queuing Models: QSIM Pratiksha Saxena, Lokesh Sharma Gautam Buddha University, Department of Mathematics, School of Applied Sciences, Gautam Buddha University, Greater Noida,

More information

Multidimensional Queueing Models in Telecommunication Networks

Multidimensional Queueing Models in Telecommunication Networks Multidimensional Queueing Models in Telecommunication Networks ThiS is a FM Blank Page Agassi Melikov Leonid Ponomarenko Multidimensional Queueing Models in Telecommunication Networks Agassi Melikov Department

More information

CSC6290: Data Communication and Computer Networks. Hongwei Zhang

CSC6290: Data Communication and Computer Networks. Hongwei Zhang CSC6290: Data Communication and Computer Networks Hongwei Zhang http://www.cs.wayne.edu/~hzhang Objectives of the course Ultimate goal: To help students become deep thinkers in computer networking! Humble

More information

Introduction: Two motivating examples for the analytical approach

Introduction: Two motivating examples for the analytical approach Introduction: Two motivating examples for the analytical approach Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. D. Manjunath Outline

More information

Queuing Networks. Renato Lo Cigno. Simulation and Performance Evaluation Queuing Networks - Renato Lo Cigno 1

Queuing Networks. Renato Lo Cigno. Simulation and Performance Evaluation Queuing Networks - Renato Lo Cigno 1 Queuing Networks Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queuing Networks - Renato Lo Cigno 1 Moving between Queues Queuing Networks - Renato Lo Cigno - Interconnecting Queues 2 Moving

More information

Markov Chains and Multiaccess Protocols: An. Introduction

Markov Chains and Multiaccess Protocols: An. Introduction Markov Chains and Multiaccess Protocols: An Introduction Laila Daniel and Krishnan Narayanan April 8, 2012 Outline of the talk Introduction to Markov Chain applications in Communication and Computer Science

More information

EECS 3214 Midterm Test Winter 2017 March 2, 2017 Instructor: S. Datta. 3. You have 120 minutes to complete the exam. Use your time judiciously.

EECS 3214 Midterm Test Winter 2017 March 2, 2017 Instructor: S. Datta. 3. You have 120 minutes to complete the exam. Use your time judiciously. EECS 3214 Midterm Test Winter 2017 March 2, 2017 Instructor: S. Datta Name (LAST, FIRST): Student number: Instructions: 1. If you have not done so, put away all books, papers, and electronic communication

More information

Book Review- Computer and Communication Networks, by Nader F. Mir Published by Prentice Hall in Nov. 2006

Book Review- Computer and Communication Networks, by Nader F. Mir Published by Prentice Hall in Nov. 2006 Book Review- Computer and Communication Networks, by Nader F. Mir Published by Prentice Hall in Nov. 2006 Sarhan M. Department of Engineering Technology Prairie View A&M University, Prairie View, Texas

More information

Power Laws in ALOHA Systems

Power Laws in ALOHA Systems Power Laws in ALOHA Systems E6083: lecture 7 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA predrag@ee.columbia.edu February 28, 2007 Jelenković (Columbia

More information

SIMULATION OF NETWORK CONGESTION RATE BASED ON QUEUING THEORY USING OPNET

SIMULATION OF NETWORK CONGESTION RATE BASED ON QUEUING THEORY USING OPNET SIMULATION OF NETWORK CONGESTION RATE BASED ON QUEUING THEORY USING OPNET Nitesh Kumar Singh 1, Dr. Manoj Aggrawal 2 1, 2 Computer Science, Sunriase University, (India) ABSTRACT Most University networks

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Perspectives on Network Calculus No Free Lunch but Still Good Value

Perspectives on Network Calculus No Free Lunch but Still Good Value ACM Sigcomm 2012 Perspectives on Network Calculus No Free Lunch but Still Good Value Florin Ciucu T-Labs / TU Berlin Jens Schmitt TU Kaiserslautern Outline Network Calculus (NC): A Theory for System Performance

More information

LABORATORY: TELECOMMUNICATION SYSTEMS & NETWORKS PART 2 MODELING NETWORKS WITH NCTUNS SIMULATOR

LABORATORY: TELECOMMUNICATION SYSTEMS & NETWORKS PART 2 MODELING NETWORKS WITH NCTUNS SIMULATOR LABORATORY: TELECOMMUNICATION SYSTEMS & NETWORKS PART 2 MODELING NETWORKS WITH NCTUNS SIMULATOR 1 Terms to complete the modeling part successfully The laboratory with NCTUns simulator covers three groups

More information

ETSN01 Exam. March 16th am 1pm

ETSN01 Exam. March 16th am 1pm ETSN01 Exam March 16th 2017 8am 1pm Instructions Clearly label each page you hand in with your name or identifier and the page number in the bottom right hand corner. Materials allowed: calculator, writing

More information

Dimensioning Links for IP Telephony

Dimensioning Links for IP Telephony Dimensioning Links for IP Telephony Ian Marsh (SICS/KTH) Bengt Ahlgren, Anders Andersson (SICS) Olof Hagsand (Dynarc) ianm@sics.se Columbia University, USA Monday 2nd April, 2001 http://www.sics.se/ ianm/talks/columbia.

More information

Data Networks. Lecture 1: Introduction. September 4, 2008

Data Networks. Lecture 1: Introduction. September 4, 2008 Data Networks Lecture 1: Introduction September 4, 2008 Slide 1 Learning Objectives Fundamental aspects of network Design and Analysis: Architecture: layering, topology design, switching mechanisms Protocols:

More information

Analysis of Air Transportation Network Delays Using Stochastic Modeling

Analysis of Air Transportation Network Delays Using Stochastic Modeling Arun Shankar Analysis of Air Transportation Network Delays Using Stochastic Modeling Abstract We model the air traffic of 1 airports (each w/1 gate) with a closed Jackson queuing network using various

More information

Improving Congestion Control in Data Communication Network Using Queuing Theory Model.

Improving Congestion Control in Data Communication Network Using Queuing Theory Model. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 2 Ver. I (Mar. Apr. 2016), PP 49-53 www.iosrjournals.org Improving Congestion Control

More information

Course Curriculum for Master Degree in Network Engineering and Security

Course Curriculum for Master Degree in Network Engineering and Security Course Curriculum for Master Degree in Network Engineering and Security The Master Degree in Network Engineering and Security is awarded by the Faculty of Graduate Studies at Jordan University of Science

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 21 Outline 1 Course

More information

2. Traffic. Contents. Offered vs. carried traffic. Characterisation of carried traffic

2. Traffic. Contents. Offered vs. carried traffic. Characterisation of carried traffic Contents characterisation Telephone traffic modelling Data traffic modelling at packet level Data traffic modelling at flow level lect.ppt S-8.5 - Introduction to Teletraffic Theory Spring 6 Offered vs.

More information

correlated to the Michigan High School Mathematics Content Expectations

correlated to the Michigan High School Mathematics Content Expectations correlated to the Michigan High School Mathematics Content Expectations McDougal Littell Algebra 1 Geometry Algebra 2 2007 correlated to the STRAND 1: QUANTITATIVE LITERACY AND LOGIC (L) STANDARD L1: REASONING

More information

CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12

CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12 Tool 1: Standards for Mathematical ent: Interpreting Functions CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12 Name of Reviewer School/District Date Name of Curriculum Materials:

More information

Performance Analysis of Integrated Voice and Data Systems Considering Different Service Distributions

Performance Analysis of Integrated Voice and Data Systems Considering Different Service Distributions Performance Analysis of Integrated Voice and Data Systems Considering Different Service Distributions Eser Gemikonakli University of Kyrenia, Kyrenia, Mersin 10, Turkey Abstract In this study, the aim

More information

15-744: Computer Networking. L-1 Intro to Computer Networks

15-744: Computer Networking. L-1 Intro to Computer Networks 15-744: Computer Networking L-1 Intro to Computer Networks Outline Administrivia Layering 2 Who s Who? Professor: Srinivasan Seshan http://www.cs.cmu.edu/~srini srini@cmu.edu Office hours: Friday 4:00-5:00

More information

CSC 4900 Computer Networks: Introduction

CSC 4900 Computer Networks: Introduction CSC 4900 Computer Networks: Introduction Professor Henry Carter Fall 2017 What s this all about? 2 A Modern Day Silk Road We live with nearly constant access to the most extensive system ever built by

More information

ETSN01 Exam. August 22nd am 1pm. Clearly label each page you hand in with your name and the page number in the bottom right hand corner.

ETSN01 Exam. August 22nd am 1pm. Clearly label each page you hand in with your name and the page number in the bottom right hand corner. ETSN01 Exam August 22nd 2015 8am 1pm Instructions Clearly label each page you hand in with your name and the page number in the bottom right hand corner. Materials allowed: calculator, writing material.

More information

ETSN01 Advanced Telecommunication Course Outline 2016

ETSN01 Advanced Telecommunication Course Outline 2016 ETSN01 Advanced Telecommunication Course Outline 2016 1 Objectives At the end of this course, you should be able to: Evalaute wireless network systems and identify their performance goals and constraints

More information

Calculating Call Blocking and Utilization for Communication Satellites that Use Dynamic Resource Allocation

Calculating Call Blocking and Utilization for Communication Satellites that Use Dynamic Resource Allocation Calculating Call Blocking and Utilization for Communication Satellites that Use Dynamic Resource Allocation Leah Rosenbaum Mohit Agrawal Leah Birch Yacoub Kureh Nam Lee UCLA Institute for Pure and Applied

More information

Bowie State University

Bowie State University Bowie State University Department of Mathematics Master of Science in Applied and Computational Mathematics Certificate in Applied and Computational Mathematics Department of Mathematics Crawford Science

More information

Flow-Level Analysis of Load Balancing in HetNets and Dynamic TDD in LTE

Flow-Level Analysis of Load Balancing in HetNets and Dynamic TDD in LTE Flow-Level Analysis of Load Balancing in HetNets and Dynamic TDD in LTE Pasi Lassila (joint work with Samuli Aalto, Abdulfetah Khalid and Prajwal Osti) COMNET Department Aalto University, School of Electrical

More information

2. Traffic lect02.ppt S Introduction to Teletraffic Theory Spring

2. Traffic lect02.ppt S Introduction to Teletraffic Theory Spring lect02.ppt S-38.145 - Introduction to Teletraffic Theory Spring 2005 1 Contents Traffic characterisation Telephone traffic modelling Data traffic modelling at packet level Data traffic modelling at flow

More information

UNIT 2 TRANSPORT LAYER

UNIT 2 TRANSPORT LAYER Network, Transport and Application UNIT 2 TRANSPORT LAYER Structure Page No. 2.0 Introduction 34 2.1 Objective 34 2.2 Addressing 35 2.3 Reliable delivery 35 2.4 Flow control 38 2.5 Connection Management

More information

ITU-D Workshop on NGN and Regulation for India. Traffic and QoS for NGN Services

ITU-D Workshop on NGN and Regulation for India. Traffic and QoS for NGN Services ITU-D Workshop on NGN and Regulation for India Traffic and QoS for NGN Services New Delhi (India), October 2010 Oscar González Soto ITU Consultant Expert Spain oscar.gonzalez-soto@ties.itu.int New Delhi,

More information

Quality of Service in Telecommunication Networks

Quality of Service in Telecommunication Networks Quality of Service in Telecommunication Networks Åke Arvidsson, Ph.D. Ericsson Core Network Development, Sweden Main Message Traffic theory: QoS is (partly) about congestion. Congestion is partly caused

More information

Optical Communications and Networking 朱祖勍. Nov. 27, 2017

Optical Communications and Networking 朱祖勍. Nov. 27, 2017 Optical Communications and Networking Nov. 27, 2017 1 What is a Core Network? A core network is the central part of a telecommunication network that provides services to customers who are connected by

More information

Brief Literature Review of the Queuing Problem

Brief Literature Review of the Queuing Problem ISSN 2091-1521 (Print) 2091-153X (Online) International Journal of Operational Research/Nepal - IJORN - 2016, Vol. 5, Issue 1 Brief Literature Review of the Queuing Problem Yogesh Shukla 1 & Dr R.K. Shrivastav

More information

Two-Heterogeneous Server Markovian Queueing Model with Discouraged Arrivals, Reneging and Retention of Reneged Customers

Two-Heterogeneous Server Markovian Queueing Model with Discouraged Arrivals, Reneging and Retention of Reneged Customers International Journal of Operations Research International Journal of Operations Research Vol. 11, No. 2, 064 068 2014) Two-Heterogeneous Server Markovian Queueing Model with Discouraged Arrivals, Reneging

More information

A Novel Scheduling and Queue Management Scheme for Multi-band Mobile Routers

A Novel Scheduling and Queue Management Scheme for Multi-band Mobile Routers A Novel Scheduling and Queue Management Scheme for Multi-band Mobile Routers Mohammed Atiquzzaman Md. Shohrab Hossain Husnu Saner Narman Telecommunications and Networking Research Lab The University of

More information