How does a router know where to send a packet next?

Size: px
Start display at page:

Download "How does a router know where to send a packet next?"

Transcription

1 How does a router know where to send a packet next?

2 The Problem Which path should packets take from A to B? A B R2 R R4 R3 C D 2

3 The Internet forwards packets hop-by-hop Data IP Address Next-hop A R B R4 C R4 D R4 B A B R2 IP Address Next-hop A A B R2 C R3 D R3 R R4 R3 C IP Address Next-hop A R3 B B C R3 D R3 D 3

4 It s not always obvious Which path should packets take from A to B? A R5 R2 B R6 5 5 R R4 R3 C D 4

5 How do the routers know how to populate the forwarding table? 5

6 Here are four common ways. Flooding: Every router sends every arriving packet to every neighbor 2. Source Routing: End host adds a list of routers to visit along the way 3. Static Entries: If the network owner knows, then simply write the entries into the table. 4. Routers talk to each other and construct forwarding tables using a clever algorithm 6

7 Find the shortest path from to

8 What if each link has a cost? 8

9 Cost = = Cost = 4+9 = A B C D E Expensive link : It might be very long. e.g. a link from Europe to USA. Or it might be very busy. e.g. it connects to Google or CNN. Or it may be very slow. e.g. Mb/s instead of Gb/s. F G 2 H 9

10 A distributed algorithm to find the lowest cost spanning tree CS44, Stanford University 0

11 Find lowest cost path from A to H 4 4 A B C D 4 5 E 9 2 F 5 9 G 5 H 2 2 Remember the lowest cost we have heard, and the next hop to reach H. Tell our neighbors the lowest cost we know to reach H. Round #

12 Find lowest cost path from A to H F G A B C D E H 2 2 Round #2 2

13 Find lowest cost path from A to H F G A B C D E H 2 2 Round #3 3

14 Find lowest cost path from A to H F G A B C D E H 2 2 Round #3 4

15 Find lowest cost path from A to H F G A B C D E H 2 2 Round #3 5

16 Find lowest cost path from A to H F G A B C D E H 2 2 Round #4 6

17 Find lowest cost path from A to H F G A B C D E H 2 2 Round #5 7

18 Find lowest cost path from A to H F G A B C D E H 2 2 Round #5 8

19 Find lowest cost path from A to H Known as the Bellman-Ford Distance Vector Algorithm 6 5 A B C 2 D E F 9 G 2 H 2 Questions. How do we know we finished? 2. In general, what is the maximum number of steps the algorithm needs to complete? 3. How do we turn this into a distributed algorithm between the routers? 4. What happens when the topology changes? 9

20 A more complicated topology CS44, Stanford University 20

21 Find the lowest cost path from to Router 4 tells its neighbors: I can reach 2 with a cost of 5 2

22 Solution Cost = 22 and so on! 22

23 A second algorithm 23

24 Dijkstra s shortest path first algorithm (An example of a Link State Algorithm ). Exchange link state: A router floods to every other router the state of links connected to it. - Periodically - When link state changes 2. Run Dijkstra s algorithm: Each router independently runs Dijkstra s shortest path first algorithm. Each router runs an algorithm to find the lowest cost spanning tree to reach every other router. CS44, Stanford University 24

25 Find lowest cost path from H to every router 4 4 A B C D 4 5 E 2 F 9 G 5 H 2 Every router learns the topology from the flooded link-state 25

26 Find lowest cost path from H to every router 4 4 A B C D 4 5 E 2 F 9 G 5 H 2 Add path of cost Add path of cost 2 Add path of cost 2 D C D G H G H G H 26

27 Find lowest cost path from H to every router 4 4 A B C D 4 5 E 2 F 9 G 5 H 2 C Add path of cost 4 D B Add path of cost 5 C D F G H F G H.. 27

28 How to find the lowest cost tree manually 4 4 A B C D 4 5 E 2 F 9 G 5 H Shortest Path Set Candidate Set Add H DEFG G 28

29 Dijkstra s Algorithm Questions:. How long does the algorithm take to run? 2. What happens when link costs change, or when routers/links fail? CS44, Stanford University 29

30 Dijkstra s algorithm in practice Dijkstra s algorithm is an example of a Link State algorithm. - Link state is known by every router. - Each router finds the shortest path spanning tree to every other router. It is the basis of OSPF (Open Shortest Path First), a very widely used routing protocol. CS44, Stanford University 30

31 Another view of Dijkstra CS44, Stanford University 3

32 R 3 A R 4 2 R 2 R 3 R B 2 CS44, Stanford University 32

33 A R R 4 R 2 R 3 R 5 B CS44, Stanford University 33

34 A R R 2 R 3 R 4 R CS44, Stanford University B 34

35 Routing between Autonomous Systems The Border Gateway Protocol (BGP) CS44, Stanford University 35

36 All organizations (Autonomous Systems) use the same algorithm to talk to each other CENIC Internet2 Stanford University Cambridge University 36

37 AS (Autonomous System) numbers nickm> traceroute -q nickm> whois -h whois.cymru.com traceroute to ( ), 30 hops max, 40 byte packets csmx-west-rtr.sunet ( ) ms 2 dc-svl-rtr-vl8.sunet ( ) ms 3 dc-svl-agg4--stanford-00ge.cenic.net ( ).04 ms 7 et sdn-sw.lasv.net.internet2.edu ( ) ms 4 internet2.mx.lon.uk.geant.net ( ) ms 5 janet-gw.mx.lon.uk.geant.net ( ) ms 24 primary.admin.cam.ac.uk ( ) ms [Querying whois.cymru.com] [whois.cymru.com] AS IP AS Name GEANT The GEANT IP Service, GB GEANT_IAS_VRF, EU CS44, Stanford University 37

38 38

39 Border Gateway Protocol (BGP) BGP neighbors ( peers ) establish a TCP connection. BGP is not a link-state or a distance-vector routing protocol. Instead, BGP uses what is called a Path vector. For each prefix, a BGP router advertises a path of AS s to reach it. This is the path vector Example of path vector advertisement: The network 7.64/6 can be reached via the path {AS, AS5, AS3} When a link/router fails, the path vector is withdrawn 39

40 Border Gateway Protocol (BGP) The network 7.64/6 can be reached via the path {AS, AS5, AS3} Paths with loops are detected locally and ignored. Local policies pick the preferred path among all advertised paths. 40

41 Current Version BGP Version 4 or BGP-4 Described in RFC 427 (2006) Used by the Internet since 994 Used to connect all Border Gateways in the Internet Used internally in some very large private networks, such as data-centers 4

42 Customers and Providers provider provider customer IP traffic customer Customer pays provider to carry its packets. 42

43 Customer-Provider Hierarchy provider customer IP traffic 43

44 The Peering Relationship peer provider traffic allowed peer customer traffic NOT allowed Peers provide transit between their respective customers Peers do not provide transit between peers Peers (typically) do not exchange $$$ So how does traffic from the left side reach the right side? 44

45 Tier Providers A tier network is a transit-free network that peers with every other tier network Tier Tier Tier Tier Examples: AT&T, CenturyLink, Level 3, Deutsche Telekom, Tata, Verizon, CS44, Stanford University 45

46 Tier Tier Tier peer provider traffic allowed peer customer traffic NOT allowed Peers provide transit between their respective customers Peers do not provide transit between peers Peers (typically) do not exchange $$$ 46

47 BGP Messages Open : Establish a BGP session. Keep Alive : Handshake at regular intervals. Notification : Shuts down a peering session. Update : Announcing new routes or withdrawing previously announced routes. BGP announcement = prefix + path attributes Path attributes Include: next hop, AS Path, local preference, Multi-exit discriminator, Used to select among multiple options for paths. 47

48 BGP Route Selection Summary Highest Local Preference Enforce relationships E.g. prefer customer routes over peer routes Shortest ASPATH Lowest MED i-bgp < e-bgp Lowest IGP cost to BGP egress Lowest router ID Traffic Engineering Throw up hands and break ties 48

49 AS Path Selection AS 29 AS 755 AS 239 AS 2654 AS 708 AS /6 AS 3549 Prefix Originated 49

50 AS Path Selection /6 AS Path = AS /6 AS Path = AS /6 AS Path = AS /6 AS Path = Pick preferred AS path AS /6 AS Path = 634 AS /6 AS /6 AS Path = /6 AS Path = AS 3549 Prefix Originated 50

51 So Many Choices peer provider peer customer AS 4 Frank s Internet Barn AS 3 AS 2 Which route should Frank pick to /6? AS /6 5

52 Summary of BGP All AS s in the Internet must connect using BGP-4. BGP-4 is a path vector algorithm, allowing loops to be detected easily. BGP-4 has a rich and complex interface to let AS s choose a local, private policy. Each AS decides a local policy for traffic engineering, security and any private preferences. CS44, Stanford University 52

53 Thank you! CS44, Stanford University 53

54 If there is time. CS44, Stanford University 54

55 Multicast routing in the Internet 55

56 Multicast A B C D R R 2 R 4 R 6 R 5 R 7 R 3 R 8 E X 56

57 Multicast A B C D R R 2 R 4 R 6 R 5 R 7 R 3 R 8 E X 57

58 Techniques and Principles Multicast - Reverse Path Broadcast (RPB) and Pruning - One versus multiple trees Practice - IGMP group management - DVMRP the first multicast routing protocol - PIM protocol independent multicast CS44, Stanford University 58

59 Reverse Path Broadcast (RPB) aka Reverse Path Forwarding (RPF) A B C D R R 2 R 4 R 6 R 5 R 7 R 3 R 8 E X CS44, Stanford University 59

60 RPB + Pruning. Packets delivered loop-free to every end host. 2. Routers with no interested hosts send prune messages towards source. 3. Resulting tree is the minimum cost spanning tree from source to the set of interested hosts. CS44, Stanford University 60

61 One tree versus several trees? A B C D R R 2 R 4 R 6 R 5 R 7 R 3 R 8 E X 6

62 Addresses and joining a group IPv4: Class D addresses are set aside for multicast. IGMP (Internet group management protocol) - Between host and directly attached router. - Hosts ask to receive packets belonging to a particular multicast group. - Routers periodically poll hosts to ask which groups they want. - If no reply, membership times out (soft-state). CS44, Stanford University 62

63 Multicast in practice Multicast used less than originally expected - Most communication is individualized (e.g. time shifting) - Early implementations were inefficient - Today, used for some IP TV and fast dissemination - Some application-layer multicast routing used Some interesting questions - How to make multicast reliable? - How to implement flow-control? - How to support different rates for different end users? - How to secure a multicast conversation? 63

An overview of how packets are routed in the Internet

An overview of how packets are routed in the Internet An overview of how packets are routed in the Internet 1 Dijkstra s shortest path first algorithm (example of a Link State Algorithm ) 1. Exchange link state: A router floods to every other router the state

More information

Internet Protocols Fall Lectures Inter-domain routing, mobility support, multicast routing Andreas Terzis

Internet Protocols Fall Lectures Inter-domain routing, mobility support, multicast routing Andreas Terzis Internet Protocols Fall 2006 Lectures 11-12 Inter-domain routing, mobility support, multicast routing Andreas Terzis Outline Inter-domain Internet Routing BGP Routing for mobile nodes Multicast routing

More information

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella CS 640: Introduction to Computer Networks Aditya Akella Lecture 11 - Inter-Domain Routing - BGP (Border Gateway Protocol) Intra-domain routing The Story So Far Routing protocols generate the forwarding

More information

Important Lessons From Last Lecture Computer Networking. Outline. Routing Review. Routing hierarchy. Internet structure. External BGP (E-BGP)

Important Lessons From Last Lecture Computer Networking. Outline. Routing Review. Routing hierarchy. Internet structure. External BGP (E-BGP) Important Lessons From Last Lecture 15-441 Computer Networking Inter-Domain outing BGP (Border Gateway Protocol) Every router needs to be able to forward towards any destination Forwarding table must be

More information

CS BGP v4. Fall 2014

CS BGP v4. Fall 2014 CS 457 - BGP v4 Fall 2014 Autonomous Systems What is an AS? a set of routers under a single technical administration uses an interior gateway protocol (IGP) and common metrics to route packets within the

More information

Professor Yashar Ganjali Department of Computer Science University of Toronto.

Professor Yashar Ganjali Department of Computer Science University of Toronto. Professor Yashar Ganjali Department of Computer Science University of Toronto yganjali@cs.toronto.edu http://www.cs.toronto.edu/~yganjali Announcements Don t forget the programming assignment Due: Friday

More information

Internet Routing Protocols Lecture 01 & 02

Internet Routing Protocols Lecture 01 & 02 Internet Routing Protocols Lecture 01 & 02 Advanced Systems Topics Lent Term, 2010 Timothy G. Griffin Computer Lab Cambridge UK Internet Routing Outline Lecture 1 : Inter-domain routing architecture, the

More information

Advanced Computer Networks. Lecture 4 Internetworking and Routing

Advanced Computer Networks. Lecture 4 Internetworking and Routing Advanced Computer Networks Lecture 4 Internetworking and Routing 1 Techniques Naïve: Flooding Outline Distance vector: Distributed Bellman Ford Algorithm Link state: Dijkstra s Shortest Path First-based

More information

TELE 301 Network Management

TELE 301 Network Management TELE 301 Network Management Lecture 24: Exterior Routing and BGP Haibo Zhang Computer Science, University of Otago TELE301 Lecture 16: Remote Terminal Services 1 Today s Focus How routing between different

More information

BGP. Autonomous system (AS) BGP version 4

BGP. Autonomous system (AS) BGP version 4 BGP Border Gateway Protocol (an introduction) dr. C. P. J. Koymans Informatics Institute University of Amsterdam March 11, 2008 General ideas behind BGP Background Providers, Customers and Peers External

More information

Internet Routing Protocols Lecture 03 Inter-domain Routing

Internet Routing Protocols Lecture 03 Inter-domain Routing Internet Routing Protocols Lecture 03 Inter-domain Routing Advanced Systems Topics Lent Term, 2008 Timothy G. Griffin Computer Lab Cambridge UK Autonomous Routing Domains A collection of physical networks

More information

CS 268: Computer Networking. Next Lecture: Interdomain Routing

CS 268: Computer Networking. Next Lecture: Interdomain Routing CS 268: Computer Networking L-3 BGP Next Lecture: Interdomain Routing BGP Assigned Reading MIT BGP Class Notes [Gao00] On Inferring Autonomous System Relationships in the Internet 2 Outline Need for hierarchical

More information

BGP. Autonomous system (AS) BGP version 4

BGP. Autonomous system (AS) BGP version 4 BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 1.5, 2011/03/06 13:35:28) Monday, March 7, 2011 General ideas behind BGP Background Providers,

More information

Outline Computer Networking. Inter and Intra-Domain Routing. Internet s Area Hierarchy Routing hierarchy. Internet structure

Outline Computer Networking. Inter and Intra-Domain Routing. Internet s Area Hierarchy Routing hierarchy. Internet structure Outline 15-441 15-441 Computer Networking 15-641 Lecture 10: Inter-Domain outing Border Gateway Protocol -BGP Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 outing hierarchy Internet structure

More information

BGP. Autonomous system (AS) BGP version 4

BGP. Autonomous system (AS) BGP version 4 BGP Border Gateway Protocol (an introduction) dr. C. P. J. Koymans Informatics Institute University of Amsterdam (version 1.3, 2010/03/10 20:05:02) Monday, March 8, 2010 General ideas behind BGP Background

More information

Interdomain Routing Reading: Sections P&D 4.3.{3,4}

Interdomain Routing Reading: Sections P&D 4.3.{3,4} Interdomain Routing Reading: Sections P&D 4.3.{3,4} EE122: Intro to Communication Networks Fall 2006 (MW 4:00-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/

More information

Lecture 16: Interdomain Routing. CSE 123: Computer Networks Stefan Savage

Lecture 16: Interdomain Routing. CSE 123: Computer Networks Stefan Savage Lecture 16: Interdomain Routing CSE 123: Computer Networks Stefan Savage Overview Autonomous Systems Each network on the Internet has its own goals Path-vector Routing Allows scalable, informed route selection

More information

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System)

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System) BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 1.9, 2012/03/14 10:21:22) Monday, March 12, 2012 General ideas behind BGP Background Providers,

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Next Lecture: Interdomain Routing : Computer Networking. Outline. Routing Hierarchies BGP

Next Lecture: Interdomain Routing : Computer Networking. Outline. Routing Hierarchies BGP Next Lecture: Interdomain Routing BGP 15-744: Computer Networking L-3 BGP Assigned Reading MIT BGP Class Notes [Gao00] On Inferring Autonomous System Relationships in the Internet Ooops 2 Outline Need

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System)

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System) BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 310, 2014/03/11 10:50:06) Monday, March 10, 2014 General ideas behind BGP Background Providers,

More information

PART III. Implementing Inter-Network Relationships with BGP

PART III. Implementing Inter-Network Relationships with BGP PART III Implementing Inter-Network Relationships with BGP ICNP 2002 Routing Protocols Autonomous System BGP-4 BGP = Border Gateway Protocol Is a Policy-Based routing protocol Is the de facto EGP of today

More information

COMP/ELEC 429 Introduction to Computer Networks

COMP/ELEC 429 Introduction to Computer Networks COMP/ELEC 429 Introduction to Computer Networks Lecture 11: Inter-domain routing Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene Ng eugeneng at

More information

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Autumn 03/04 John Kristoff - DePaul University 1 IPv4 unicast routing All Internet hosts perform basic routing for local net destinations, forward to local host for non-local

More information

Routing. Jens A Andersson Communication Systems

Routing. Jens A Andersson Communication Systems Routing Jens A Andersson Communication Systems R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 R5 10 Router A router is a type of internetworking device that passes data

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 12: Inter-domain routing Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information

Inter-Domain Routing: BGP II

Inter-Domain Routing: BGP II Inter-Domain Routing: BGP II Mark Handley UCL Computer Science CS 3035/GZ01 BGP Protocol (cont d) BGP doesn t chiefly aim to compute shortest paths (or minimize other metric, as do DV, LS) Chief purpose

More information

Routing Protocols. Autonomous System (AS)

Routing Protocols. Autonomous System (AS) Routing Protocols Two classes of protocols: 1. Interior Routing Information Protocol (RIP) Open Shortest Path First (OSPF) 2. Exterior Border Gateway Protocol (BGP) Autonomous System (AS) What is an AS?

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea CS 640 2 Internet Structure Today CS 640 3 Route Propagation in the Internet Autonomous System (AS) corresponds to

More information

Inter-Domain Routing: BGP

Inter-Domain Routing: BGP Inter-Domain Routing: BGP Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Inter-Domain Routing Internet is a network of networks Hierarchy

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Routing Unicast routing protocols

Routing Unicast routing protocols Routing Unicast routing protocols Jens A Andersson Electrical and Information Technology R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 10 R5 1 Router A router is a type

More information

ETSF10 Internet Protocols Routing on the Internet

ETSF10 Internet Protocols Routing on the Internet ETSF10 Internet Protocols Routing on the Internet 2013, Part 2, Lecture 1.2 Jens Andersson (Kaan Bür) Routing on the Internet Unicast routing protocols (part 2) [ed.5 ch.20.3] Multicast routing, IGMP [ed.5

More information

Border Gateway Protocol (an introduction) Karst Koymans. Monday, March 10, 2014

Border Gateway Protocol (an introduction) Karst Koymans. Monday, March 10, 2014 .. BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 3.10, 2014/03/11 10:50:06) Monday, March 10, 2014 Karst Koymans (UvA) BGP Monday, March

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer V Dmitri Loguinov Texas A&M University April 17, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross Chapter 4:

More information

Chapter 4: outline. Network Layer 4-1

Chapter 4: outline. Network Layer 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Winter 2002 John Kristoff - DePaul University 1 IP routing Performed by routers Table (information base) driven Forwarding decision on a hop-by-hop basis Route determined

More information

Introduction to IP Routing. Geoff Huston

Introduction to IP Routing. Geoff Huston Introduction to IP Routing Geoff Huston Routing How do packets get from A to B in the Internet? A Internet B Connectionless Forwarding Each router (switch) makes a LOCAL decision to forward the packet

More information

Internet Routing : Fundamentals of Computer Networks Bill Nace

Internet Routing : Fundamentals of Computer Networks Bill Nace Internet Routing 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Looking Ahead Lab #2 just due Quiz #2

More information

CSc 450/550 Computer Networks Internet Routing

CSc 450/550 Computer Networks Internet Routing CSc 450/550 Computer Networks Internet Routing Jianping Pan Summer 2007 7/12/07 CSc 450/550 1 Review Internet Protocol (IP) IP header addressing class-based, classless, hierarchical, NAT routing algorithms

More information

Interdomain routing CSCI 466: Networks Keith Vertanen Fall 2011

Interdomain routing CSCI 466: Networks Keith Vertanen Fall 2011 Interdomain routing CSCI 466: Networks Keith Vertanen Fall 2011 Overview Business relationships between ASes Interdomain routing using BGP Advertisements Routing policy Integration with intradomain routing

More information

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala October 9, 2018 (a) October 18 October 9,

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala October 9, 2018 (a) October 18 October 9, CMSC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala October 9, 2018 (a) October 18 October 9, 2018 1 host Message, Segment, Packet, and Frame host HTTP HTTP message HTTP TCP TCP segment

More information

Lecture 17: Border Gateway Protocol

Lecture 17: Border Gateway Protocol Lecture 17: Border Gateway Protocol CSE 123: Computer Networks Alex C. Snoeren Some figures courtesy Mike Freedman Lecture 18 Overview Border Gateway Protocol (BGP) The canonical path vector protocol How

More information

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal CS4450 Computer Networks: Architecture and Protocols Lecture 15 BGP Spring 2018 Rachit Agarwal Autonomous System (AS) or Domain Region of a network under a single administrative entity Border Routers Interior

More information

CS321: Computer Networks Unicast Routing

CS321: Computer Networks Unicast Routing CS321: Computer Networks Unicast Routing Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Introduction The goal of the network layer is deliver a datagram from

More information

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Inter-AS routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Chapter 4:

More information

Interdomain Routing Reading: Sections K&R EE122: Intro to Communication Networks Fall 2007 (WF 4:00-5:30 in Cory 277)

Interdomain Routing Reading: Sections K&R EE122: Intro to Communication Networks Fall 2007 (WF 4:00-5:30 in Cory 277) Interdomain Routing Reading: Sections K&R 4.6.3 EE122: Intro to Communication Networks Fall 2007 (WF 4:00-5:30 in Cory 277) Guest Lecture by Brighten Godfrey Instructor: Vern Paxson TAs: Lisa Fowler, Daniel

More information

Computer Networks. Routing

Computer Networks. Routing Computer Networks Routing Topics Link State Routing (Continued) Hierarchical Routing Broadcast Routing Sending distinct packets Flooding Multi-destination routing Using spanning tree Reverse path forwarding

More information

CS 268: Computer Networking

CS 268: Computer Networking CS 268: Computer Networking L-3 BGP Outline BGP ASes, Policies BGP Attributes BGP Path Selection ibgp 2 1 Autonomous Systems (ASes) Autonomous Routing Domain Glued together by a common administration,

More information

ITEC310 Computer Networks II

ITEC310 Computer Networks II ITEC310 Computer Networks II Chapter 22 Network Layer:, and Routing Department of Information Technology Eastern Mediterranean University Objectives 2/131 After completing this chapter you should be able

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

Lecture 18: Border Gateway Protocol

Lecture 18: Border Gateway Protocol Lecture 18: Border Gateway Protocol CSE 123: Computer Networks Alex C. Snoeren HW 3 due Wednesday Some figures courtesy Mike Freedman & Craig Labovitz Lecture 18 Overview Path-vector Routing Allows scalable,

More information

ETSF10 Internet Protocols Routing on the Internet

ETSF10 Internet Protocols Routing on the Internet ETSF10 Internet Protocols Routing on the Internet 2012, Part 2, Lecture 1.2 Kaan Bür, Jens Andersson Routing on the Internet Unicast routing protocols (part 2) [ed.4 ch.22.4] [ed.5 ch.20.3] Forwarding

More information

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services: NET 331 Computer Networks Lecture 12 Internet Routing Protocols Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson Education

More information

CSC 4900 Computer Networks: Routing Protocols

CSC 4900 Computer Networks: Routing Protocols CSC 4900 Computer Networks: Routing Protocols Professor Henry Carter Fall 2017 Last Time Link State (LS) versus Distance Vector (DV) algorithms: What are some of the differences? What is an AS? Why do

More information

Multicast Communications

Multicast Communications Multicast Communications Multicast communications refers to one-to-many or many-tomany communications. Unicast Broadcast Multicast Dragkedja IP Multicasting refers to the implementation of multicast communication

More information

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa Multicast Communications Slide Set were original prepared by Dr. Tatsuya Susa Outline 1. Advantages of multicast 2. Multicast addressing 3. Multicast Routing Protocols 4. Multicast in the Internet 5. IGMP

More information

ICS 351: Today's plan. distance-vector routing game link-state routing OSPF

ICS 351: Today's plan. distance-vector routing game link-state routing OSPF ICS 351: Today's plan distance-vector routing game link-state routing OSPF distance-vector routing game 1. prepare a list of all neighbors and the links to them, and the metric for each link 2. create

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks More on BGP Jianping Pan Summer 2007 7/4/07 csc485b/586b/seng480b 1 Review: BGP Border Gateway Protocol path vector routing prefix: AS-path policy-based routing import/export

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Network Layer Derek Leonard Hendrix College November 17, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 4: Roadmap 4.1 Introduction

More information

Topic: Multicast routing

Topic: Multicast routing Topic: Multicast routing What you will learn Broadcast routing algorithms Multicasting IGMP Multicast routing algorithms Multicast routing in the Internet Multicasting 1/21 Unicasting One source node and

More information

Link State Routing & Inter-Domain Routing

Link State Routing & Inter-Domain Routing Link State Routing & Inter-Domain Routing CS640, 2015-02-26 Announcements Assignment #2 is due Tuesday Overview Link state routing Internet structure Border Gateway Protocol (BGP) Path vector routing Inter

More information

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System)

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System) BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 16.4, 2017/03/13 13:32:49) Tuesday, March 14, 2017 General ideas behind BGP Background

More information

Inter-Domain Routing: BGP II

Inter-Domain Routing: BGP II Inter-Domain Routing: BGP II Brad Karp UCL Computer Science (drawn mostly from lecture notes by Hari Balakrishnan and Nick Feamster, MIT) CS 05/GZ01 4 th December 2014 BGP Protocol (cont d) BGP doesn t

More information

ETSF10 Internet Protocols Routing on the Internet

ETSF10 Internet Protocols Routing on the Internet ETSF10 Internet Protocols Routing on the Internet 2014, Part 2, Lecture 1.2 Jens Andersson Internet Hierarchy 2014-11-10 ETSF05/ETSF05/ETSF10 - Internet Protocols 2 Hierarchical Routing aggregate routers

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

Routing part 2. Electrical and Information Technology

Routing part 2. Electrical and Information Technology Routing part 2 Jens A Andersson Electrical and Information Technology Routing Introduction Inside the Router Unicast Routing Intra Domain Routing Inter Domain Routing MANET and AdHoc routing Multicast

More information

Chapter 7 Routing Protocols

Chapter 7 Routing Protocols Chapter 7 Routing Protocols Nonroutable Protocols In the early days of networking, networks were small collections of computers linked together For the purposes of sharing information and expensive peripherals

More information

Border Gateway Protocol (an introduction) Karst Koymans. Tuesday, March 8, 2016

Border Gateway Protocol (an introduction) Karst Koymans. Tuesday, March 8, 2016 .. BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 15.6, 2016/03/15 22:30:35) Tuesday, March 8, 2016 Karst Koymans (UvA) BGP Tuesday,

More information

Multiprotocol BGP (MBGP)

Multiprotocol BGP (MBGP) Multiprotocol BGP (MBGP) Module 5 2000, Cisco Systems, Inc. 1 Copyright 1998-2000, Cisco Systems, Inc. Module5.ppt 1 Module Objectives Understand that MBGP is NOT a replacement for PIM Understand the basic

More information

BGP. Border Gateway Protocol (an introduction) Karst Koymans. Informatics Institute University of Amsterdam. (version 17.3, 2017/12/04 13:20:08)

BGP. Border Gateway Protocol (an introduction) Karst Koymans. Informatics Institute University of Amsterdam. (version 17.3, 2017/12/04 13:20:08) BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 17.3, 2017/12/04 13:20:08) Tuesday, December 5, 2017 Karst Koymans (UvA) BGP Tuesday,

More information

CS Networks and Distributed Systems. Lecture 8: Inter Domain Routing

CS Networks and Distributed Systems. Lecture 8: Inter Domain Routing CS 3700 Networks and Distributed Systems Lecture 8: Inter Domain Routing Revised 2/4/2014 Network Layer, Control Plane 2 Data Plane Application Presentation Session Transport Network Data Link Physical

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Q&A Session Rüdiger Birkner Tobias Bühler https://comm-net.ethz.ch/ ETH Zürich August 6 2018 Old exam from 2016 3 hours instead of 2.5 Topics which we did not discuss

More information

CSCD 433/533 Network Programming Fall Lecture 14 Global Address Space Autonomous Systems, BGP Protocol Routing

CSCD 433/533 Network Programming Fall Lecture 14 Global Address Space Autonomous Systems, BGP Protocol Routing CSCD 433/533 Network Programming Fall 2012 Lecture 14 Global Address Space Autonomous Systems, BGP Protocol Routing 1 Topics Interdomain Routing BGP Interdomain Routing Benefits vs. Link State Routing

More information

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System)

BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System) BGP Border Gateway Protocol A short introduction Karst Koymans Informatics Institute University of Amsterdam (version 18.3, 2018/12/03 13:53:22) Tuesday, December 4, 2018 General ideas behind BGP Background

More information

IP Addressing & Interdomain Routing. Next Topic

IP Addressing & Interdomain Routing. Next Topic IP Addressing & Interdomain Routing Next Topic IP Addressing Hierarchy (prefixes, class A, B, C, subnets) Interdomain routing Application Presentation Session Transport Network Data Link Physical Scalability

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

BGP. Border Gateway Protocol A short introduction. Karst Koymans. Informatics Institute University of Amsterdam. (version 18.3, 2018/12/03 13:53:22)

BGP. Border Gateway Protocol A short introduction. Karst Koymans. Informatics Institute University of Amsterdam. (version 18.3, 2018/12/03 13:53:22) BGP Border Gateway Protocol A short introduction Karst Koymans Informatics Institute University of Amsterdam (version 18.3, 2018/12/03 13:53:22) Tuesday, December 4, 2018 Karst Koymans (UvA) BGP Tuesday,

More information

Lecture 16: Border Gateway Protocol

Lecture 16: Border Gateway Protocol Lecture 16: Border Gateway Protocol CSE 123: Computer Networks Alex C. Snoeren Some figures courtesy Mike Freedman Lecture 16 Overview Border Gateway Protocol (BGP) The canonical path vector protocol How

More information

Module 6 Implementing BGP

Module 6 Implementing BGP Module 6 Implementing BGP Lesson 1 Explaining BGP Concepts and Terminology BGP Border Gateway Protocol Using BGP to Connect to the Internet If only one ISP, do not need BGP. If multiple ISPs, use BGP,

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology internet technologies and standards Piotr Gajowniczek BGP (Border Gateway Protocol) structure of the Internet Tier 1 ISP Tier 1 ISP Google

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Chair for Network Architectures and

More information

CSE/EE 461 Lecture 11. Inter-domain Routing. This Lecture. Structure of the Internet. Focus How do we make routing scale?

CSE/EE 461 Lecture 11. Inter-domain Routing. This Lecture. Structure of the Internet. Focus How do we make routing scale? CSE/EE 461 Lecture 11 Inter-domain Routing This Lecture Focus How do we make routing scale? Inter-domain routing ASes and BGP Application Presentation Session Transport Network Data Link Physical sdg //

More information

ICS 351: Today's plan. OSPF BGP Routing in general

ICS 351: Today's plan. OSPF BGP Routing in general ICS 351: Today's plan OSPF BGP Routing in general link-state routing in distance-vector (Bellman-Ford, Ford-Fulkerson, RIP-style) routing, each router distributes its routing table to its neighbors an

More information

2011, Sushile Tejwani

2011, Sushile Tejwani BGP (Border Gateway Protocol) By Sushil Tejwani Bobby.b. Lyle school of Engineering Southern Methodist University Smu id- 37060014 What is BGP? Index :- Path Vector Routing Message Formats Path Attributes

More information

Configuring PIM. Information About PIM. Send document comments to CHAPTER

Configuring PIM. Information About PIM. Send document comments to CHAPTER CHAPTER 3 This chapter describes how to configure the Protocol Independent Multicast (PIM) features on Cisco NX-OS switches in your IPv4 networks. This chapter includes the following sections: Information

More information

Overview. Information About Layer 3 Unicast Routing. Send document comments to CHAPTER

Overview. Information About Layer 3 Unicast Routing. Send document comments to CHAPTER CHAPTER 1 This chapter introduces the basic concepts for Layer 3 unicast routing protocols in Cisco NX-OS. This chapter includes the following sections: Information About Layer 3 Unicast Routing, page

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri Internet structure: network of networks local ISP Tier

More information

Configuring BGP community 43 Configuring a BGP route reflector 44 Configuring a BGP confederation 44 Configuring BGP GR 45 Enabling Guard route

Configuring BGP community 43 Configuring a BGP route reflector 44 Configuring a BGP confederation 44 Configuring BGP GR 45 Enabling Guard route Contents Configuring BGP 1 Overview 1 BGP speaker and BGP peer 1 BGP message types 1 BGP path attributes 2 BGP route selection 6 BGP route advertisement rules 6 BGP load balancing 6 Settlements for problems

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano June 14, 2005 Outline Hierarchical routing BGP Routing Routing Goal: each router u

More information

Internet Architecture and Experimentation

Internet Architecture and Experimentation Internet Architecture and Experimentation Today l Internet architecture l Principles l Experimentation A packet switched network Modern comm. networks are packet switched Data broken into packets, packet

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format:

More information

Connecting to a Service Provider Using External BGP

Connecting to a Service Provider Using External BGP Connecting to a Service Provider Using External BGP This module describes configuration tasks that will enable your Border Gateway Protocol (BGP) network to access peer devices in external networks such

More information

Network Layer: Routing

Network Layer: Routing Network Layer: Routing The Problem A B R 1 R 2 R 4 R 3 Goal: for each destination, compute next hop 1 Lecture 9 2 Basic Assumptions Trivial solution: Flooding Dynamic environment: links and routers unreliable:

More information

Interdomain Routing. EE122 Fall 2011 Scott Shenker

Interdomain Routing. EE122 Fall 2011 Scott Shenker Interdomain Routing EE122 Fall 2011 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues at Princeton and UC Berkeley

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

Routing Between Autonomous Systems (Example: BGP4) RFC 1771

Routing Between Autonomous Systems (Example: BGP4) RFC 1771 CS 4/55231 Internet Engineering Kent State University Dept. of Computer Science LECT-7B Routing Between Autonomous Systems (Example: BGP4) RFC 1771 52 53 BGP4 Overview Example of Operations BGP4 is a path

More information