AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies

Size: px
Start display at page:

Download "AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies"

Transcription

1 AS Connectedness Based on Multiple Vantage Points and the Resulting Topologies Steven Fisher University of Nevada, Reno CS 765 Steven Fisher (UNR) CS 765 CS / 28

2 Table of Contents 1 Introduction 2 Methods 3 Issues 4 Related Works DIMES: Let the Internet Measure Itself Characterizing the Internet Hierarchy from Multiple Vantage Points 10 Lessons from 10 Years of Measuring and Modeling the Internet s Autonomous Systems Heuristics for Internet Map Discovery 5 Proposed Project 6 Conclusion Steven Fisher (UNR) CS 765 CS / 28

3 Introduction The internet is the largest man made network in existence, which is always evolving. There are various reasons for wishing to investigate the properties of this network. These could aide in the following: New Deployments Cyber-security Find problems/issues Protocol Design Determine how it has changed Steven Fisher (UNR) CS 765 CS / 28

4 Introduction Definition Vantage Point(VP): A vantage point is a device or node that we are using in order to connect to an ingress of an Autonomous System(AS) Definition Autonomous System(AS): a connected group of one or more IP prefixes run by one or more network operators which has a single and clearly defined routing policy. Each AS has a unique number for identification purposes in inter-domain routing amoung ASes. Steven Fisher (UNR) CS 765 CS / 28

5 Introduction Definition Border Gateway Protocol(BGP): routing protocol used in the internet to exchange reachability information amoung ASes and interconnect them. 1 Steven Fisher (UNR) CS 765 CS / 28

6 Introduction Definition Ingress: An ingress is the device that is at the edge of a network, which is the point to which traffic enters the network. 1 TCPIPRouteTracingUtilitytraceroutetracerttracerout-2.htm Steven Fisher (UNR) CS 765 CS / 28

7 Methods There are two prominent techniques used today to create Internet maps. The first is active probing and the second is AS Path inference. Steven Fisher (UNR) CS 765 CS / 28

8 Active Probing Active Probing: Works on the data plane of the Internet. It is used to infer Internet topology based on router adjacencies. It uses traceroute-like probing on the IP address space. These probes report back IP forwarding paths to the destination address. This method is likely to find peering links between ISPs. Advantage: paths returned by probes constitute the actual forwarding path that data takes through networks. Disadvantage: redundancy of using edges, could be considered possible DDoS attack, possible issues with the same router having multiple alias and load balancing, which could lead to false topologies. 1 Wikipedia. Network mapping Steven Fisher (UNR) CS 765 CS / 28

9 AS Path Inference AS Path Inference: works on the control plane and infers autonomous system connectivity based on BGP data. Advantage: paths can be used to infer AS-level connectivity and thus be used to help build AS topology graphs. Disadvantage: paths do not necessarily reflect how data is actually forwarded. A single AS link can in reality be several router links. Also it is harder to infer peerings between ASes, as these peering relationships are only propagated to an ISP s customer networks 1 Wikipedia. Network mapping Steven Fisher (UNR) CS 765 CS / 28

10 Issues Sampling Bias[1]: Since, there are a limited number of vantage points and a large number of destinations, there could be a bias towards particular vantage points. Load Balancing[1]: Load balancing by ISPs could result in the traceroute returning IP addresses that do not correspond to a real end-to-end path in the network. Probing Overhead[1]: The volume of active probing can cause redundancy. It is important to minimize redundant probing. Steven Fisher (UNR) CS 765 CS / 28

11 Issues Cont. Unresponsive Routers Resolution[1]: Routers that passive to measurement nodes. These routers may appear as a * in traceroute outputs; therefore, we need to identify * s that belong to the same router. IP Alias Resolution[1]: Routers have multiple interfaces, each interface has a unique IP address. A router may appear on multiple path traces with different IP addresses. Subnet Resolution[1]: Routers are connected to each other over sub networks and subnet resolution helps in identifying the underlying subnets Steven Fisher (UNR) CS 765 CS / 28

12 DIMES: Let the Internet Measure Itself[2] Distributed Internet Measurements and Simulations (DIMES) measurements by software agents downloaded by volunteers and installed on their privately owned machines agent operates at a very low rate so as to have minimal impact on the machine performance and on its network connection DIMES focuses on PoP(point of presence) level topology mapping, which is often the best information that an ISP makes available studied the structure and topology of the Internet to obtain map and annotate it with delay, loss and link capacity Steven Fisher (UNR) CS 765 CS / 28

13 Characterizing the Internet Hierarchy from Multiple Vantage Points[3] This paper focused on the topological structure of the Interent in terms of customer-provider and peer-peer realtionships between ASes, as manifested in the BGP routing policies. Focused on the type-of-relationship problem which was as follows: undirected graph G vertex set V edge set E and a set of paths P label E -1,0, or 1 to maximize valid paths in P G represents entire topology where nodes are an AS and each edge represents a relationship between ASes P consists of all paths seen from various vantage points Speculated that type-of-realtionship is NP-complete, did not prove Steven Fisher (UNR) CS 765 CS / 28

14 Characterizing the Internet Hierarchy from Multiple Vantage Points[3] categorized the ASes in three communities: dense core, transit core, and outer core outer core consists of ASes that belong to smaller ISPs and have a small customer based dense core contains the larger ASes present in the internet. This community is defined that if one AS is in the core then its neighbours are also in the core transit core was determined to contain ASes that could peer into the dense core; however, these AS s do not connect to many of the dense core ASes only utilized 10 vantage points, in determining the AS hierarchy. Steven Fisher (UNR) CS 765 CS / 28

15 10 Lessons from 10 Years of Measuring and Modeling the Internet s Autonomous Systems[4] This paper focuses on issues that have arose based on what they learned from a decade of published research on AS-level Internet. The issues that they focused on where: inter-domain topolgoy of the Internet needs a more precise definition abstracting ASes to generic atomic nodes without internal structure is an oversimplification that limits ability to capture features of real-world ASes BGP routing data have practical value for network operators, wasn t meant for inferring or mapping AS-level connectivity. BGP s purpose is to enable ASes to express and realize routing policies without revealing internal features. Steven Fisher (UNR) CS 765 CS / 28

16 10 Lessons from 10 Years of Measuring and Modeling the Internet s Autonomous Systems[4] Traceroute data from ARK, DIMES, or iplane are publicly available, but limited for faithfully inferring or mapping the AS-level connectivity of the Internet. Traceroute was not designed for Internet topology discovery/mapping; it was designed as a diagnostic tool for tracking the route or path of packet s to some host. Significant efforts are required before current models of the Internet s inter-domain topology derived from publicly available data can be used to study the performance of routing protocols and/or perform meaningful studies. Steven Fisher (UNR) CS 765 CS / 28

17 10 Lessons from 10 Years of Measuring and Modeling the Internet s Autonomous Systems[4] Examining the vulnerability of the Internet to various real-world threats or studying the Internet as a critical infrastructure, it is in general inappropriate to equate the Internet with a measures AS topology. Vulnerability aspects require a more holistic approach to Internet connectivity. Results of observational studies of ASes in general are hard to interpret. Steven Fisher (UNR) CS 765 CS / 28

18 10 Lessons from 10 Years of Measuring and Modeling the Internet s Autonomous Systems[4] Studies starting with a definite application and collect best data available for that application have higher success rate than studies that target datasets collected by third-parties Internet experiences high-variability phenomena; need to apply data-analytic methods that have a strong robustness properties to the known deficiencies in observations and account for the presence of extreme values in the data. Steven Fisher (UNR) CS 765 CS / 28

19 Heuristics for Internet Map Discovery[5] In this paper the authors focused on Mercator, which is a program that uses hop-limited probes to infer an Internet map. It utilizes informed random address robing to explore the IP address space when determining router adjacencies. They also employ mechanisms for resolving aliases. Steven Fisher (UNR) CS 765 CS / 28

20 Heuristics for Internet Map Discovery[5] Use a single, arbitrary, location Use only hop-limited probes Mercator instance might discover more that one interface belonging to same router. Steven Fisher (UNR) CS 765 CS / 28

21 Heuristics for Internet Map Discovery[5] Solution: suppose a host S addresses a UDP packet to interface A of a router. Suppose further the packet is addressed to a non-existent port. The corresponding ICMP port unreachable response to this packet will contain, as its source address, the address of the outgoing interface for the unicast route towards S. Simple heuristic for alias resolution: Send alias probe to X. If the source address on the resulting ICMP message is Y, then X and Y are aliases for the same router. Steven Fisher (UNR) CS 765 CS / 28

22 Heuristics for Internet Map Discovery[5] Mercator cannot discover all interface addresses belonging to a router; instead, discovers only those interfaces through which paths fro Mercator hosts enter the router. Use source-routed path probing to help increase number of interfaces discovered. Mercator does not implement heuristics for discovering shared media. To do this, it would have to infer the subnet mask assigned to router interfaces. Mercator is designed to reduce overhead, takes several weeks to discover the map of the Internet. Mercator discovers time-averaged routed topology Steven Fisher (UNR) CS 765 CS / 28

23 Proposed Project My project will consist of the following ideas/concepts: VP Characteristics and Edge detection: how different VP s contribute to edge discovery characteristics of an effective vp AS topologies how they differ and determine the characteristics of the AS topologies Determine if map is power law try to determine completeness of map Steven Fisher (UNR) CS 765 CS / 28

24 Proposed Project Ingress to AS compare AS ingress to other ingress s reachability of the ingress through differing vantage points mulitple AS vs. one AS play a role in the determine the topology of the internet Steven Fisher (UNR) CS 765 CS / 28

25 Conclusion We have discussed different methods that have been utilized with trying to determine the topology of the Internet. Some, have considered the inter-domain structure of the ASes. In going forward we will be trying to possibly build on some of these ideas and in addition find ways to work around some of the problems that have resulted in some of these studies. Steven Fisher (UNR) CS 765 CS / 28

26 Questions? Steven Fisher (UNR) CS 765 CS / 28

27 References I H. Kardes, M. Gunes, and T. Oz, Cheleby: A subnet-level internet topology mapping system. Y. Shavitt and E. Shir, Dimes: Let the internet measure itself, ACM SIGCOMM Computer Communication Review, vol. 35, no. 5, pp , L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, Characterizing the internet hierarchy from multiple vantage points. M. Roughan, W. Willinger, O. Maennel, and D. P. R. Bush, 10 lessons from 10 years of measuring and modeling the internet s autonomous systems. Steven Fisher (UNR) CS 765 CS / 28

28 References II R. Govindan and H. Tangmunarunkit, Heuristics for internet map discovery, in INFOCOM Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3. IEEE, 2000, pp Steven Fisher (UNR) CS 765 CS / 28

AS Router Connectedness Based on Multiple Vantage Points and the Resulting Topologies

AS Router Connectedness Based on Multiple Vantage Points and the Resulting Topologies AS Router Connectedness Based on Multiple Vantage Points and the Resulting Topologies Steven Fisher University of Nevada, Reno CS 765 Steven Fisher (UNR) CS 765 CS 765 1 / 62 Table of Contents 1 Introduction

More information

Achieving scale: Large scale active measurements from PlanetLab

Achieving scale: Large scale active measurements from PlanetLab Achieving scale: Large scale active measurements from PlanetLab Marc-Olivier Buob, Jordan Augé (UPMC) 4th PhD School on Traffic Monitoring and Analysis (TMA) April 15th, 2014 London, UK OneLab FUTURE INTERNET

More information

Internet Measurements. Motivation

Internet Measurements. Motivation Internet Measurements Arvind Krishnamurthy Fall 2004 Motivation Types of measurements Understand the topology of the Internet Measure performance characteristics Tools: BGP Tables Traceroute measurements

More information

Virtual Multi-homing: On the Feasibility of Combining Overlay Routing with BGP Routing

Virtual Multi-homing: On the Feasibility of Combining Overlay Routing with BGP Routing Virtual Multi-homing: On the Feasibility of Combining Overlay Routing with BGP Routing Zhi Li, Prasant Mohapatra, and Chen-Nee Chuah University of California, Davis, CA 95616, USA {lizhi, prasant}@cs.ucdavis.edu,

More information

Routing Basics ISP/IXP Workshops

Routing Basics ISP/IXP Workshops Routing Basics ISP/IXP Workshops 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 addresses are 32 bits long range from 1.0.0.0 to

More information

Internet measurements: topology discovery and dynamics. Renata Teixeira MUSE Team Inria Paris-Rocquencourt

Internet measurements: topology discovery and dynamics. Renata Teixeira MUSE Team Inria Paris-Rocquencourt Internet measurements: topology discovery and dynamics Renata Teixeira MUSE Team Inria Paris-Rocquencourt Why measure the Internet topology? Network operators Assist in network management, fault diagnosis

More information

Routing Basics. Routing Concepts. IPv4. IPv4 address format. A day in a life of a router. What does a router do? IPv4 Routing

Routing Basics. Routing Concepts. IPv4. IPv4 address format. A day in a life of a router. What does a router do? IPv4 Routing Routing Concepts IPv4 Routing Routing Basics ISP/IXP Workshops Forwarding Some definitions Policy options Routing Protocols 1 2 IPv4 IPv4 address format Internet uses IPv4 addresses are 32 bits long range

More information

Routing Basics ISP/IXP Workshops

Routing Basics ISP/IXP Workshops Routing Basics ISP/IXP Workshops 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 addresses are 32 bits long range from 1.0.0.0 to

More information

Cheleby: Subnet Level Internet Topology

Cheleby: Subnet Level Internet Topology Cheleby: Subnet Level Internet Topology Mehmet Hadi Gunes with Hakan Kardes and Mehmet B. Akgun Department of Computer Science and Engineering University of Nevada, Reno Subnet Resolution A B C D genuine

More information

Routing Concepts. IPv4 Routing Forwarding Some definitions Policy options Routing Protocols

Routing Concepts. IPv4 Routing Forwarding Some definitions Policy options Routing Protocols Routing Basics 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 Addresses are 32 bits long Range from 1.0.0.0 to 223.255.255.255 0.0.0.0

More information

Cheleby: Subnet-level Internet Mapper

Cheleby: Subnet-level Internet Mapper Cheleby: Subnet-level Internet Mapper ISM 2010 IMS-2 Workshop on ctive Internet Measurements Talha Oz, Hakan Kardes, Mehmet Gunes University of Nevada, Reno 02/09/10 San Diego Supercomputer Center, UCSD,

More information

Dig into MPLS: Transit Tunnel Diversity

Dig into MPLS: Transit Tunnel Diversity January 2015 Dig into MPLS: Transit Tunnel Diversity Yves VANAUBEL Pascal MÉRINDOL Jean-Jacques PANSIOT Benoit DONNET Summary Motivations MPLS Background Measurement Campaign Label Pattern Recognition

More information

Measured Impact of Tracing Straight. Matthew Luckie, David Murrell WAND Network Research Group Department of Computer Science University of Waikato

Measured Impact of Tracing Straight. Matthew Luckie, David Murrell WAND Network Research Group Department of Computer Science University of Waikato Measured Impact of Tracing Straight Matthew Luckie, David Murrell WAND Network Research Group Department of Computer Science University of Waikato 7 February 2010 The Problem Until recently, load balancing

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

Internet Topology Research

Internet Topology Research Internet Topology Research Matthew Luckie WAND Network Research Group Department of Computer Science University of Waikato Internet Topology Why should we care? Impacts on the design and operation of routing

More information

PoP Level Mapping And Peering Deals

PoP Level Mapping And Peering Deals PoP Level Mapping And Peering Deals Mapping Internet Methodology Data Collection IP Classification to PoP PoP Geolocation PoP locations on Peering estimations Outline Internet Service Providers ISPs are

More information

Routing Basics. ISP Workshops. Last updated 10 th December 2015

Routing Basics. ISP Workshops. Last updated 10 th December 2015 Routing Basics ISP Workshops Last updated 10 th December 2015 1 Routing Concepts p IPv4 & IPv6 p Routing p Forwarding p Some definitions p Policy options p Routing Protocols 2 IPv4 p Internet still uses

More information

RealNet: A Topology Generator Based on Real Internet Topology

RealNet: A Topology Generator Based on Real Internet Topology RealNet: A Topology Generator Based on Real Internet Topology Lechang Cheng Norm C. Hutchinson Mabo R. Ito University of British Columbia (lechangc@ece, norm@cs, mito@ece).ubc.ca Abstract One of the challenges

More information

Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization

Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization Robert Beverly, Arthur Berger, Geoffrey Xie Naval Postgraduate School MIT/Akamai February 9, 2011 CAIDA Workshop

More information

Validity of router responses for IP aliases resolution

Validity of router responses for IP aliases resolution Validity of router responses for IP aliases resolution Santiago Garcia-Jimenez, Eduardo Magaña, Mikel Izal and Daniel Morató Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain santiago.garcia@unavarra.es

More information

Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers

Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers Toward Topology Dualism: Improving the ccuracy of S nnotations for Routers radley Huffaker, mogh Dhamdhere, Marina Fomenkov, kc claffy {bradley,amogh,marina,kc}@caida.org CID, University of California,

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea CS 640 2 Internet Structure Today CS 640 3 Route Propagation in the Internet Autonomous System (AS) corresponds to

More information

CSC 4900 Computer Networks: Routing Protocols

CSC 4900 Computer Networks: Routing Protocols CSC 4900 Computer Networks: Routing Protocols Professor Henry Carter Fall 2017 Last Time Link State (LS) versus Distance Vector (DV) algorithms: What are some of the differences? What is an AS? Why do

More information

CS4450. Computer Networks: Architecture and Protocols. Lecture 20 Pu+ng ALL the Pieces Together. Spring 2018 Rachit Agarwal

CS4450. Computer Networks: Architecture and Protocols. Lecture 20 Pu+ng ALL the Pieces Together. Spring 2018 Rachit Agarwal CS4450 Computer Networks: Architecture and Protocols Lecture 20 Pu+ng ALL the Pieces Together Spring 2018 Rachit Agarwal What is a computer network? A set of network elements connected together, that implement

More information

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011 Lecture 4: Intradomain Routing CS 598: Advanced Internetworking Matthew Caesar February 1, 011 1 Robert. How can routers find paths? Robert s local DNS server 10.1.8.7 A 10.1.0.0/16 10.1.0.1 Routing Table

More information

Internet-Scale IP Alias Resolution Techniques

Internet-Scale IP Alias Resolution Techniques Internet-Scale IP Alias Resolution Techniques Ken Keys Cooperative Association for Internet Data Analysis (CAIDA) University of California, San Diego kkeys@caida.org This article is an editorial note submitted

More information

Introduction to IP Routing. Geoff Huston

Introduction to IP Routing. Geoff Huston Introduction to IP Routing Geoff Huston Routing How do packets get from A to B in the Internet? A Internet B Connectionless Forwarding Each router (switch) makes a LOCAL decision to forward the packet

More information

1 University of Würzburg. Institute of Computer Science Research Report Series

1 University of Würzburg. Institute of Computer Science Research Report Series University of Würzburg Institute of Computer Science Research Report Series Measurement-based Topology and Performance Investigations of D-A-CH Research Networks Dominik Klein 1, Kurt Tutschku 2, Thomas

More information

The Impact of Router Outages on the AS-Level Internet

The Impact of Router Outages on the AS-Level Internet The Impact of Router Outages on the AS-Level Internet Matthew Luckie* - University of Waikato Robert Beverly - Naval Postgraduate School *work started while at CAIDA, UC San Diego SIGCOMM 2017, August

More information

Why dynamic route? (1)

Why dynamic route? (1) Routing Why dynamic route? (1) Static route is ok only when Network is small There is a single connection point to other network No redundant route 2 Why dynamic route? (2) Dynamic Routing Routers update

More information

CS118 Discussion 1A, Week 7. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m.

CS118 Discussion 1A, Week 7. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. CS118 Discussion 1A, Week 7 Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. 1 Outline Network control plane Routing Link state routing (OSPF) Distance vector routing (RIP) BGP ICMP Midterm/Project 2

More information

Table of Contents. Cisco Introduction to EIGRP

Table of Contents. Cisco Introduction to EIGRP Table of Contents Introduction to EIGRP...1 Introduction...1 Before You Begin...1 Conventions...1 Prerequisites...1 Components Used...1 What is IGRP?...2 What is EIGRP?...2 How Does EIGRP Work?...2 EIGRP

More information

Flooding Attacks by Exploiting Persistent Forwarding Loops

Flooding Attacks by Exploiting Persistent Forwarding Loops Flooding Attacks by Exploiting Persistent Forwarding Jianhong Xia, Lixin Gao, Teng Fei University of Massachusetts at Amherst {jxia, lgao, tfei}@ecs.umass.edu ABSTRACT In this paper, we present flooding

More information

CS 457 Networking and the Internet. The Global Internet (Then) The Global Internet (And Now) 10/4/16. Fall 2016

CS 457 Networking and the Internet. The Global Internet (Then) The Global Internet (And Now) 10/4/16. Fall 2016 CS 457 Networking and the Internet Fall 2016 The Global Internet (Then) The tree structure of the Internet in 1990 The Global Internet (And Now) A simple multi-provider Internet 1 The Global Internet Some

More information

Impact of Multi-Access Links on the Internet Topology Modeling

Impact of Multi-Access Links on the Internet Topology Modeling Impact of Multi-Access Links on the Internet Topology Modeling Mehmet Burak Akgun, Mehmet Hadi Gunes Department of Computer Science and Engineering University of Nevada, Reno Email: {makgun, mgunes}@cse.unr.edu

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 16, 2017 1 Hierarchical routing Our routing study thus far - idealization all routers identical network flat not true in

More information

CS 268: Computer Networking. Next Lecture: Interdomain Routing

CS 268: Computer Networking. Next Lecture: Interdomain Routing CS 268: Computer Networking L-3 BGP Next Lecture: Interdomain Routing BGP Assigned Reading MIT BGP Class Notes [Gao00] On Inferring Autonomous System Relationships in the Internet 2 Outline Need for hierarchical

More information

Routing Basics. ISP Workshops

Routing Basics. ISP Workshops Routing Basics ISP Workshops These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/) Last updated 26

More information

Importance of IP Alias Resolution in Sampling Internet Topologies

Importance of IP Alias Resolution in Sampling Internet Topologies Importance of IP Alias Resolution in Sampling Internet Topologies Mehmet H. Gunes and Kamil Sarac Global Internet Symposium 007, Anchorage, AK Introduction: Internet Mapping Topology measurement studies

More information

Network Forensics Prefix Hijacking Theory Prefix Hijacking Forensics Concluding Remarks. Network Forensics:

Network Forensics Prefix Hijacking Theory Prefix Hijacking Forensics Concluding Remarks. Network Forensics: Network Forensics: Network OS Fingerprinting Prefix Hijacking Analysis Scott Hand September 30 th, 2011 Outline 1 Network Forensics Introduction OS Fingerprinting 2 Prefix Hijacking Theory BGP Background

More information

CS459 Internet Measurements

CS459 Internet Measurements CS459 Internet Measurements Introduction to Traceroute and iplane Spring 2015 Traceroute Tool used to trace the path from source to destination host. TCP/IP not designed for traceroute, so it is sometimes

More information

Introduction. Keith Barker, CCIE #6783. YouTube - Keith6783.

Introduction. Keith Barker, CCIE #6783. YouTube - Keith6783. Understanding, Implementing and troubleshooting BGP 01 Introduction http:// Instructor Introduction Keith Barker, CCIE #6783 CCIE Routing and Switching 2001 CCIE Security 2003 kbarker@ine.com YouTube -

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

Small additions by Dr. Enis Karaarslan, Purdue - Aaron Jarvis (Network Engineer)

Small additions by Dr. Enis Karaarslan, Purdue - Aaron Jarvis (Network Engineer) Routing Basics 1 Small additions by Dr. Enis Karaarslan, 2014 Purdue - Aaron Jarvis (Network Engineer) Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 3 IPv4

More information

Mapping PoP-Level Connectivity of Large Content Providers

Mapping PoP-Level Connectivity of Large Content Providers Mapping PoP-Level Connectivity of Large Content Providers Amir Farzad Reza Rejaie ABSTRACT Large content providers (CPs) are responsible for a large fraction of injected traffic to the Internet. They maintain

More information

Revealing the load-balancing behavior of YouTube traffic of interdomain links

Revealing the load-balancing behavior of YouTube traffic of interdomain links Revealing the load-balancing behavior of YouTube traffic of interdomain links Ricky K. P. Mok + Vaibhav Bajpai*, Amogh Dhamdhere +, kc claffy + + CAIDA/ University of California San Diego * Technical University

More information

Studying Black Holes on the Internet with Hubble

Studying Black Holes on the Internet with Hubble Studying Black Holes on the Internet with Hubble Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John, Arvind Krishnamurthy, David Wetherall, Thomas Anderson University of Washington RIPE, May 2008 This

More information

Topic 3 part 2 Traffic analysis; Routing Attacks &Traffic Redirection Fourth Stage

Topic 3 part 2 Traffic analysis; Routing Attacks &Traffic Redirection Fourth Stage 3-2 Routing attack To understand hoe the router works, click on http://www.mustbegeek.com/types-of-router-attacks/ Types of Router Attacks 1. Denial of Service attacks: The DoS attack is done by the attacker

More information

Routing Basics. Campus Network Design & Operations Workshop

Routing Basics. Campus Network Design & Operations Workshop Routing Basics Campus Network Design & Operations Workshop These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

More information

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal CS4450 Computer Networks: Architecture and Protocols Lecture 15 BGP Spring 2018 Rachit Agarwal Autonomous System (AS) or Domain Region of a network under a single administrative entity Border Routers Interior

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

CS 43: Computer Networks. 24: Internet Routing November 19, 2018

CS 43: Computer Networks. 24: Internet Routing November 19, 2018 CS 43: Computer Networks 24: Internet Routing November 19, 2018 Last Class Link State + Fast convergence (reacts to events quickly) + Small window of inconsistency Distance Vector + + Distributed (small

More information

Comparative Analysis of Internet Topology Data sets

Comparative Analysis of Internet Topology Data sets Comparative Analysis of Internet Topology Data sets M. Abdullah Canbaz, Jay Thom, and Mehmet Hadi Gunes Department of Computer Science, University of Nevada Reno, Reno, Nevada 89431 Email: {mcanbaz, jthom,

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 14, 2013 1 Reading Quiz Hierarchical routing Our routing study thus far - idealization all routers identical network flat

More information

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013 CS 5 Network Programming Languages Control Plane http://www.flickr.com/photos/rofi/0979/ Nate Foster Cornell University Spring 0 Based on lecture notes by Jennifer Rexford and Michael Freedman Announcements

More information

Introduction to OSPF

Introduction to OSPF Introduction to OSPF ISP/IXP Workshops ISP/IXP Workshops 1999, Cisco Systems, Inc. 1 Agenda OSPF Primer OSPF in Service Provider Networks OSPF BCP - Adding Networks OSPF Command Summary 2 OSPF Primer 3

More information

Internet Routing : Fundamentals of Computer Networks Bill Nace

Internet Routing : Fundamentals of Computer Networks Bill Nace Internet Routing 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Looking Ahead Lab #2 just due Quiz #2

More information

Tag Switching. Background. Tag-Switching Architecture. Forwarding Component CHAPTER

Tag Switching. Background. Tag-Switching Architecture. Forwarding Component CHAPTER CHAPTER 23 Tag Switching Background Rapid changes in the type (and quantity) of traffic handled by the Internet and the explosion in the number of Internet users is putting an unprecedented strain on the

More information

Evaluating path diversity in the Internet: from an AS-level to a PoP-level granularity

Evaluating path diversity in the Internet: from an AS-level to a PoP-level granularity Evaluating path diversity in the Internet: from an AS-level to a PoP-level granularity Evaluation de la diversité de chemins sur Internet: d une granularité au niveau des AS à une vision au niveau des

More information

Interdomain Routing Design for MobilityFirst

Interdomain Routing Design for MobilityFirst Interdomain Routing Design for MobilityFirst October 6, 2011 Z. Morley Mao, University of Michigan In collaboration with Mike Reiter s group 1 Interdomain routing design requirements Mobility support Network

More information

Unit 3: Dynamic Routing

Unit 3: Dynamic Routing Unit 3: Dynamic Routing Basic Routing The term routing refers to taking a packet from one device and sending it through the network to another device on a different network. Routers don t really care about

More information

Computer Science 461 Final Exam May 22, :30-3:30pm

Computer Science 461 Final Exam May 22, :30-3:30pm NAME: Login name: Computer Science 461 Final Exam May 22, 2012 1:30-3:30pm This test has seven (7) questions, each worth ten points. Put your name on every page, and write out and sign the Honor Code pledge

More information

Interplay Between Routing, Forwarding

Interplay Between Routing, Forwarding Internet Routing 1 Interplay Between Routing, Forwarding routing algorithm local forwarding table header value output link 0100 0101 0111 1001 3 1 value in arriving packet s header 0111 3 1 Graph Abstraction

More information

Evaluation of Prefix Hijacking Impact Based on Hinge-Transmit Property of BGP Routing System

Evaluation of Prefix Hijacking Impact Based on Hinge-Transmit Property of BGP Routing System Evaluation of Prefix Hijacking Impact Based on Hinge-Transmit Property of BGP Routing System Evaluation of Prefix Hijacking Impact Based on Hinge-Transmit Property of BGP Routing System School of Computer,

More information

Module 14 Transit. Objective: To investigate methods for providing transit services. Prerequisites: Modules 12 and 13, and the Transit Presentation

Module 14 Transit. Objective: To investigate methods for providing transit services. Prerequisites: Modules 12 and 13, and the Transit Presentation ISP Workshop Lab Module 14 Transit Objective: To investigate methods for providing transit services. Prerequisites: Modules 12 and 13, and the Transit Presentation The following will be the common topology

More information

Routing State Distance: A Path-based Metric for Network Analysis Gonca Gürsun

Routing State Distance: A Path-based Metric for Network Analysis Gonca Gürsun Routing State Distance: A Path-based Metric for Network Analysis Gonca Gürsun joint work with Natali Ruchansky, Evimaria Terzi, Mark Crovella Distance Metrics for Analyzing Routing Shortest Path Similar

More information

Important Lessons From Last Lecture Computer Networking. Outline. Routing Review. Routing hierarchy. Internet structure. External BGP (E-BGP)

Important Lessons From Last Lecture Computer Networking. Outline. Routing Review. Routing hierarchy. Internet structure. External BGP (E-BGP) Important Lessons From Last Lecture 15-441 Computer Networking Inter-Domain outing BGP (Border Gateway Protocol) Every router needs to be able to forward towards any destination Forwarding table must be

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

Network Policy Enforcement

Network Policy Enforcement CHAPTER 6 Baseline network policy enforcement is primarily concerned with ensuring that traffic entering a network conforms to the network policy, including the IP address range and traffic types. Anomalous

More information

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 6, DECEMBER On Inferring Autonomous System Relationships in the Internet

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 6, DECEMBER On Inferring Autonomous System Relationships in the Internet IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 6, DECEMBER 2001 733 On Inferring Autonomous System Relationships in the Internet Lixin Gao, Member, IEEE Abstract The Internet consists of rapidly increasing

More information

Computer Networks II IPv4 routing

Computer Networks II IPv4 routing Dipartimento di Informatica e Sistemistica Computer Networks II IPv4 routing Luca Becchetti Luca.Becchetti@dis.uniroma1.it A.A. 2009/2010 NEXT WEEK... 2 exercise classes on topics covered so far Please

More information

R1 R2 R3 R4 R5 AS2 AS3 AS4(IXP) AS5

R1 R2 R3 R4 R5 AS2 AS3 AS4(IXP) AS5 Inferring AS-level Internet Topology from Router-Level Path Traces Hyunseok Chang Sugih Jamin Department of EECS Department of EECS University of Michigan University of Michigan Ann Arbor, MI 4809-222

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano June 14, 2005 Outline Hierarchical routing BGP Routing Routing Goal: each router u

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

MANET Architecture and address auto-configuration issue

MANET Architecture and address auto-configuration issue MANET Architecture and address auto-configuration issue Namhi Kang Catholic University E-mail: kang@catholic.ac.kr Contents Background Information Overview Common MANET misperception Multilink subnet issue

More information

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella CS 640: Introduction to Computer Networks Aditya Akella Lecture 11 - Inter-Domain Routing - BGP (Border Gateway Protocol) Intra-domain routing The Story So Far Routing protocols generate the forwarding

More information

Networking: Network layer

Networking: Network layer control Networking: Network layer Comp Sci 3600 Security Outline control 1 2 control 3 4 5 Network layer control Outline control 1 2 control 3 4 5 Network layer purpose: control Role of the network layer

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

Topics for This Week

Topics for This Week Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1 Hierarchical Routing aggregate routers into regions, autonomous

More information

Chapter 5. RIP Version 1 (RIPv1) CCNA2-1 Chapter 5

Chapter 5. RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 Chapter 5 RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 RIP Version 1 RIPv1: Distance Vector, Classful Routing Protocol CCNA2-2 Chapter 5 Background and Perspective RIP evolved from the Xerox Network System

More information

An Efficient Algorithm for AS Path Inferring

An Efficient Algorithm for AS Path Inferring An Efficient Algorithm for AS Path Inferring Yang Guoqiang and Dou Wenhua National Univernity of Defence Technololy, China yanggq@nudt.edu.cn Abstract Discovering the AS paths between two ASes are invaluable

More information

MPLS VPN--Inter-AS Option AB

MPLS VPN--Inter-AS Option AB The feature combines the best functionality of an Inter-AS Option (10) A and Inter-AS Option (10) B network to allow a Multiprotocol Label Switching (MPLS) Virtual Private Network (VPN) service provider

More information

COMP211 Chapter 5 Network Layer: The Control Plane

COMP211 Chapter 5 Network Layer: The Control Plane COMP211 Chapter 5 Network Layer: The Control Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith

More information

521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking

521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking 521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking Name Student ID Signature In this exercise we will connect our LANs made in first exercise with routers and build an internet.

More information

Link State Routing & Inter-Domain Routing

Link State Routing & Inter-Domain Routing Link State Routing & Inter-Domain Routing CS640, 2015-02-26 Announcements Assignment #2 is due Tuesday Overview Link state routing Internet structure Border Gateway Protocol (BGP) Path vector routing Inter

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano December 10, 2014 Outline Hierarchical routing BGP Routing 2005 2007 Antonio Carzaniga

More information

Pamplona-traceroute: topology discovery and alias resolution to build router level Internet maps

Pamplona-traceroute: topology discovery and alias resolution to build router level Internet maps Pamplona-traceroute: topology discovery and alias resolution to build router level Internet maps Santiago Garcia-Jimenez, Eduardo Magaña, Daniel Morató and Mikel Izal Public University of Navarre, Campus

More information

Interdomain Routing. Networked Systems (H) Lecture 11

Interdomain Routing. Networked Systems (H) Lecture 11 Interdomain Routing Networked Systems (H) Lecture 11 Lecture Outline Interdomain routing Autonomous systems and the Internet AS-level topology BGP and Internet routing 2 Interdomain Unicast Routing Tier-1

More information

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Daniel Zappala CS 460 Computer Networking Brigham Young University 2/20 Scaling Routing for the Internet scale 200 million destinations - can t store all destinations or all prefixes in routing tables

More information

Computer Networks ICS 651. IP Routing RIP OSPF BGP MPLS Internet Control Message Protocol IP Path MTU Discovery

Computer Networks ICS 651. IP Routing RIP OSPF BGP MPLS Internet Control Message Protocol IP Path MTU Discovery Computer Networks ICS 651 IP Routing RIP OSPF BGP MPLS Internet Control Message Protocol IP Path MTU Discovery Routing Information Protocol DV modified with split horizon and poisoned reverse distance

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Measuring the Adoption of Route Origin Validation and Filtering

Measuring the Adoption of Route Origin Validation and Filtering Measuring the Adoption of Route Origin Validation and Filtering Andreas Reuter (andreas.reuter@fu-berlin.de) Joint work with Randy Bush, Ethan Katz-Bassett, Italo Cunha, Thomas C. Schmidt, and Matthias

More information

Dynamics of Hot-Potato Routing in IP Networks

Dynamics of Hot-Potato Routing in IP Networks Dynamics of Hot-Potato Routing in IP Networks Jennifer Rexford AT&T Labs Research http://www.research.att.com/~jrex Joint work with Renata Teixeira (UCSD), Aman Shaikh (AT&T), and Timothy Griffin (Intel)

More information

Overview. Information About Layer 3 Unicast Routing. Send document comments to CHAPTER

Overview. Information About Layer 3 Unicast Routing. Send document comments to CHAPTER CHAPTER 1 This chapter introduces the basic concepts for Layer 3 unicast routing protocols in Cisco NX-OS. This chapter includes the following sections: Information About Layer 3 Unicast Routing, page

More information

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet Chapter 5: outline 5.1 introduction 5.5 The SDN control 5.2 routing protocols plane link state 5.6 ICMP: The Internet distance vector Control Message 5.3 intra-as routing in Protocol the Internet t 5.7

More information

EIGRP Over the Top. Finding Feature Information. Information About EIGRP Over the Top. EIGRP Over the Top Overview

EIGRP Over the Top. Finding Feature Information. Information About EIGRP Over the Top. EIGRP Over the Top Overview The feature enables a single end-to-end routing domain between two or more Enhanced Interior Gateway Routing Protocol (EIGRP) sites that are connected using a private or a public WAN connection. This module

More information

Inferring Autonomous System Relationships in the Internet. Outline

Inferring Autonomous System Relationships in the Internet. Outline Inferring Autonomous System Relationships in the Internet Lixin Gao Dept. of Electrical and Computer Engineering University of Massachusetts, Amherst http://www-unix.ecs.umass.edu/~lgao Outline Internet

More information

On the Evaluation of AS Relationship Inferences

On the Evaluation of AS Relationship Inferences On the Evaluation of AS Relationship Inferences Jianhong Xia Department of Electrical and Computer Engineering University of Massachusetts Amherst, MA 01002 jxia@ecs.umass.edu Lixin Gao Department of Electrical

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 8: Network Routing Protocols Assistant Teacher Samraa Adnan Al-Asadi 1 Routing protocol features There are many ways to characterize routing protocols, including

More information