No. (Betteridge's Law of Headlines)

Size: px
Start display at page:

Download "No. (Betteridge's Law of Headlines)"

Transcription

1

2

3 No. (Betteridge's Law of Headlines)

4 Is There Any Practical Theory? Roger Wattenhofer ETH Zurich Distributed Computing

5 Theory & Practice OSDI Multimedia SenSys HotNets STOC SPAA FOCS PODC ICALP IPSN Ubicomp Mobicom SIGCOMM SODA EC

6 Theory Meets Practice? Distributed HCI Systems Soft Eng Graphics Security AI/ML Algorithms No Yes [Just my personal observation]

7 Sensor Networks

8 Data Gathering Roger Wattenhofer ETH Zurich Distributed Computing

9 [PermaSense]

10 Efficiency and Reliability

11 reliable efficient [Google Trends]

12 reliable efficient [Google Trends]

13 This paper does a great job at a complete cross-layer design spanning the MAC, link, routing, and application layers to achieve very low power and high reliability for data collection. In some sense this is the first paper I'd give someone working on communication in sensor nets, since it nails down how to do it right. [Matt Welsh, Best of CS 263]

14 Dozer [Burri, von Rickenbach, W]

15 Energy Efficiency sink

16

17 Energy Efficiency sink

18 Energy Efficiency duty cycling, wake up e.g. every 10 seconds parent synchronizes children no network wide synchronization mean energy consumption: 0.066mW, 10y battery

19 Reliability sink

20 Reliability nodes send beacons to reconnect orphans collisions are explicitly accepted availability & reliability: 99% to %

21 Dozer Measurements [Burri, von Rickenbach, W, 2007] [tinynode]

22 Where s the Theory? no network wide synchronization

23 Network Synchronization is Hard

24 Network Synchronization

25 Tree Based Protocols FTSP PulseSync [Lenzen, Sommer, W, TON] Synchronization Error FTSP PulseSync Average (t > 2000s) µs 4.44 µs Maximum (t > 2000s) 249 µs 38 µs

26 Error with Distance FTSP PulseSync

27 Neighbor Synchronization

28 Neighbor Synchronization? Bad neighbor sync Tree-based Algorithms e.g. FTSP Neighborhood Algorithms e.g. GTSP

29 Theorem: Neighbor Sync is Somewhat Hard

30 Model: Drift & Jitter clock rate 1 + εε 1 1 εε t message delay bounded errors (worst-case) dd εε dd + εε

31 Reasonable Time Must Behave! no stopping no jumping

32 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1 dd + εε

33 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1

34 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1

35 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1

36 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1

37 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1

38 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1 0 dd εε

39 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1 0

40 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1 0

41 Example: Neighbor Sync is Hard sync to fastest neighbor message delay = 1 0

42 Sync To Fastest Neighbor: Local Skew Can Be Diameter

43 Average of Neighbors: Local Skew Can Be Diameter Squared

44 Better Protocol?

45 Reminder: Drift & Jitter clock rate 1 + εε 1 1 εε t message delay bounded errors (worst-case) mm εε mm + εε

46 Theorem: Neighbor Sync is Somewhat Hard neighbor sync error = log diameter lower bound: difficult proof matching upper bound: not trivial as well [Lenzen, Locher, W, JACM]

47 Speaking of Synchronization Roger Wattenhofer ETH Zurich Distributed Computing

48

49

50 The Capture Effect

51 Constructive Interference Same Data Different Data [König, W]

52 Accurate Synchronization neighbor sync error: µs transmission timing: µs [König, W]

53 RSS Gain

54 Or

55

56 [König, W]

57 [König, W]

58 Playing With Radios: Alarming Roger Wattenhofer ETH Zurich Distributed Computing

59 Just Send Waves

60 Slotos time [Flury, W, IPSN]

61 Surprisingly Reliable False Positives: 0.8% False Negatives: 0.08%

62 Alarming with Packets?

63

64 [König, W]

65 The Capture Effect

66 Protocol Layering

67 Protocol Layering -64 dbm -70 dbm -75 dbm -81 dbm Layer 4 Layer 3 Layer 2 Layer 1 [König, W]

68 Packet in Packet

69 Naïve Injecting

70 After Clock Sync

71 Symbols Descrambled

72 Measurements Nothing Symbols Sync Both [König, W]

73 Speaking of Power Control Roger Wattenhofer ETH Zurich Distributed Computing

74 Offending the Audience

75 Power Control: Theory vs. Practice trivial lacks strategy outdated old accept resubmit to STOC accept accept accept accept out of scope 10 years ago accept accept

76

77 Power control is old e.g. LTE

78 but

79 Lots of theory progress how to schedule & power wireless transmissions in a network [Moscibroda, W] [Goussevskaia, Halldórsson, W] [Kesselheim]

80 Many Variants and Extensions models on top of SINR robustness results different approximation criteria distributed algorithms etc.

81 84

82

83

84 Is the Theory Practical? about 30% more throughput more reliable communication links (but still too much overhead)

85 Dutch Propositions

86 Proposition In sensor systems, theory practice.* *There are exceptions. Unfortunately, practical research does not seem to believe that these exceptions exist.

87 Sensor Network Theory How many lines of pseudo code Can you implement on a sensor node? My advice: invest your research s in... impossibility results and lower bounds!

88 Summary

89 Professor ETH Zurich Embedded Information Systems

Let s get Physical! ETH Zurich Distributed Computing ICALP 2010 Roger Wattenhofer

Let s get Physical! ETH Zurich Distributed Computing   ICALP 2010 Roger Wattenhofer Let s get Physical! ETH Zurich Distributed Computing www.disco.ethz.ch ICALP 2010 Roger Wattenhofer Spot the Differences Too Many! Spot the Differences Still Many! Spot the Differences Better Screen Bigger

More information

Slotted Programming for Sensor Networks

Slotted Programming for Sensor Networks Slotted Programming for Sensor Networks Roland Flury Roger Wattenhofer Distributed Computing Group ETH Zurich, Switzerland DISTRIBUTED COMPUTING Energy Efficient Communication A Radio off Radio on Radio

More information

The Complexity of Connectivity in Wireless Networks. Roger WISARD

The Complexity of Connectivity in Wireless Networks. Roger WISARD The Complexity of Connectivity in Wireless Networks Roger Wattenhofer @ WISARD 2008 1 The paper Joint work with Thomas Moscibroda Former PhD student of mine Now researcher at Microsoft Research, Redmond

More information

Sensor Networks. Get Together to Gather Data. Roger ICDCN

Sensor Networks. Get Together to Gather Data. Roger ICDCN Sensor Networks Distributed ib t Computing and Networking Get Together to Gather Data Roger Wattenhofer @ ICDCN 2008 1 General Trend in Information Technology Centralized Networked Large-scale Systems

More information

Gradient Clock Synchronization in Wireless Sensor Networks

Gradient Clock Synchronization in Wireless Sensor Networks Gradient Clock Synchronization in Wireless Sensor Networks Philipp Sommer Computer Engineering and Networks Laboratory ETH Zurich, Switzerland sommer@tik.ee.ethz.ch ABSTRACT Accurately synchronized clocks

More information

Optimal Beacon Interval for TDMA-based MAC in Wireless Sensor Networks

Optimal Beacon Interval for TDMA-based MAC in Wireless Sensor Networks Optimal Beacon Interval for TDMA-based MAC in Wireless Sensor Networks Abstract An energy-efficient Medium Access Control (MAC) protocol can significantly elongate the lifetime of wireless sensor networks

More information

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 7: TIME SYNCHRONIZATION Anna Förster

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 7: TIME SYNCHRONIZATION Anna Förster INTRODUCTION TO WIRELESS SENSOR NETWORKS CHAPTER 7: TIME SYNCHRONIZATION Anna Förster OVERVIEW 1. Clocks and Delay Sources 2. Requirements and Challenges 3. Time Synchronization Protocols 1. Lightweight

More information

Algorithms for and against the Cloud

Algorithms for and against the Cloud ETH Zurich Distributed Computing Group Algorithms for and against the Cloud Roger Wattenhofer Disclaimer OSDI SenSys AAAI HotNets STOC SPAA FOCS PODC ICALP Mobicom SIGCOMM SODA EC Algorithms for the Cloud

More information

A synchronizer generates sequences of clock pulses at each node of the network satisfying the condition given by the following definition.

A synchronizer generates sequences of clock pulses at each node of the network satisfying the condition given by the following definition. Chapter 10 Synchronization So far, we have mainly studied synchronous algorithms. Generally, asynchronous algorithms are more difficult to obtain. Also it is substantially harder to reason about asynchronous

More information

Multi Hop Send Protocol Tool for TinyNodes Semesterthesis

Multi Hop Send Protocol Tool for TinyNodes Semesterthesis Multi Hop Send Protocol Tool for TinyNodes Semesterthesis Author: Supervisor: Tutor: Remo Niedermann Prof. Dr. Roger Wattenhofer Roland Flury Zurich, February 19, 2009 Acknowledgment At first I want to

More information

Thomas Moscibroda Roger Wattenhofer MASS Efficient Computation of Maximal Independent Sets in Unstructured Multi-Hop Radio Networks

Thomas Moscibroda Roger Wattenhofer MASS Efficient Computation of Maximal Independent Sets in Unstructured Multi-Hop Radio Networks Efficient Computation of Maximal Independent Sets in Unstructured Multi-Hop Radio Networks Thomas Moscibroda Roger Wattenhofer Distributed Computing Group MASS 2004 Algorithms for Ad Hoc and Sensor Networks...

More information

The Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol The Flooding Time Synchronization Protocol Miklos Maroti, Branislav Kusy, Gyula Simon and Akos Ledeczi Vanderbilt University Contributions Better understanding of the uncertainties of radio message delivery

More information

Time Synchronization in Wireless Sensor Networks: CCTS

Time Synchronization in Wireless Sensor Networks: CCTS Time Synchronization in Wireless Sensor Networks: CCTS 1 Nerin Thomas, 2 Smita C Thomas 1, 2 M.G University, Mount Zion College of Engineering, Pathanamthitta, India Abstract: A time synchronization algorithm

More information

Slotted Programming for Sensor Networks

Slotted Programming for Sensor Networks Slotted Programming for Sensor Networks Roland Flury Computer Engineering and Networks Laboratory ETH Zurich, Switzerland rflury@tik.ee.ethz.ch Roger Wattenhofer Computer Engineering and Networks Laboratory

More information

X-Sense. Sensing in Extreme Environments. Jan Beutel, Bernhard Buchli, Federico Ferrari, Matthias Keller, Lothar Thiele, Marco Zimmerling

X-Sense. Sensing in Extreme Environments. Jan Beutel, Bernhard Buchli, Federico Ferrari, Matthias Keller, Lothar Thiele, Marco Zimmerling X-Sense Sensing in Extreme Environments Jan Beutel, Bernhard Buchli, Federico Ferrari, Matthias Keller, Lothar Thiele, Marco Zimmerling Main Objectives Investigation of fundamentals of the mountain cryosphere

More information

Think Global Act Local

Think Global Act Local Think Global Act Local Roger Wattenhofer ETH Zurich Distributed Computing www.disco.ethz.ch Town Planning Patrick Geddes Architecture Buckminster Fuller Computer Architecture Caching Robot Gathering e.g.,

More information

Symmetric Clock Synchronization in Sensor Networks

Symmetric Clock Synchronization in Sensor Networks Symmetric Clock Synchronization in Sensor Networks Philipp Sommer Computer Engineering and Networks Laboratory ETH Zurich 892 Zurich, Switzerland sommer@tik.ee.ethz.ch Roger Wattenhofer Computer Engineering

More information

Does Topology Control Reduce Interference? Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger

Does Topology Control Reduce Interference? Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger Does Topology Control Reduce Interference? Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger Overview What is Topology Control? Context related work Explicit interference model Interference

More information

A Tale of Two Synchronizing Clocks

A Tale of Two Synchronizing Clocks A Tale of Two Synchronizing Clocks Jinkyu Koo*, Rajesh K. Panta*, Saurabh Bagchi*, and Luis Montestruque** * Dependable Computing Systems Lab (DCSL) School of Electrical and Computer Engineering Purdue

More information

Exam Ad Hoc and Sensor Networks HS 2007

Exam Ad Hoc and Sensor Networks HS 2007 1 February 2008 Nicolas Burri, Pascal von Rickenbach, Roger Wattenhofer Exam Ad Hoc and Sensor Networks HS 2007 Please write your Name and Legi-Number on all sheets you hand in You have 60 minutes There

More information

Scalable Distributed Diagnosis Algorithm for Wireless Sensor Networks

Scalable Distributed Diagnosis Algorithm for Wireless Sensor Networks Scalable Distributed Diagnosis Algorithm for Wireless Sensor Networks Arunanshu Mahapatro and Pabitra Mohan Khilar Department of CSE, National Institute of Technology, Rourkela, India arun227@gmail.com,

More information

Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization

Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization Maurizio Bocca, M.Sc. Control Engineering Research Group Automation and Systems Technology Department maurizio.bocca@tkk.fi

More information

Presented by: Murad Kaplan

Presented by: Murad Kaplan Presented by: Murad Kaplan Introduction. Design of SCP-MAC. Lower Bound of Energy Performance with Periodic Traffic. Protocol Implementation. Experimental Evaluation. Related Work. 2 Energy is a critical

More information

RT-Link: A global time-synchronized link protocol for sensor networks Anthony Rowe, Rahul Mangharam, Raj Rajkumar

RT-Link: A global time-synchronized link protocol for sensor networks Anthony Rowe, Rahul Mangharam, Raj Rajkumar RT-Link: A global time-synchronized link protocol for sensor networks Anthony Rowe, Rahul Mangharam, Raj Rajkumar Papa Alioune Ly, Joel Alloh, Carl Hedari, Tom Reynaert Outline Introduction Design of the

More information

The Power of Locality

The Power of Locality GIAN Course on Distributed Network Algorithms The Power of Locality Case Study: Graph Coloring Stefan Schmid @ T-Labs, 2011 Case Study: Graph Coloring Case Study: Graph Coloring Assign colors to nodes.

More information

Detecting Sybil Nodes in Wireless Networks. *: SIS Dept., UNC Charlotte **: ECE Dept., WPI

Detecting Sybil Nodes in Wireless Networks. *: SIS Dept., UNC Charlotte **: ECE Dept., WPI Detecting Sybil Nodes in Wireless Networks with Physical Layer Network Coding Weichao Wang*, DiPu**, and Alex Wyglinski** *: SIS Dept., UNC Charlotte **: ECE Dept., WPI Motivation Network coding technique

More information

Enhanced Timing-Sync Protocol for Sensor Networks

Enhanced Timing-Sync Protocol for Sensor Networks Enhanced Timing-Sync Protocol for Sensor Networks Shi Kyu Bae Abstract The prominent time synchronization protocol for wireless sensor networks (WSN), Timing-sync Protocol for Sensor Networks (TPSN), was

More information

Throughout this course, we use the terms vertex and node interchangeably.

Throughout this course, we use the terms vertex and node interchangeably. Chapter Vertex Coloring. Introduction Vertex coloring is an infamous graph theory problem. It is also a useful toy example to see the style of this course already in the first lecture. Vertex coloring

More information

The PermaSense Project Wireless Sensor Networks for Extreme Environments. Jan Beutel ETH Zurich

The PermaSense Project Wireless Sensor Networks for Extreme Environments. Jan Beutel ETH Zurich The PermaSense Project Wireless Sensor Networks for Extreme Environments Jan Beutel ETH Zurich 19.11.2008 16.7.2003 Photo: Bruno Jelk Foto: Bruno Jelk 16.7.2003 Rockfall release mechanisms and their connection

More information

BurstMAC An Efficient MAC Protocol for Correlated Traffic Bursts

BurstMAC An Efficient MAC Protocol for Correlated Traffic Bursts 1 BurstMAC An Efficient MAC Protocol for Correlated Traffic Bursts Matthias Ringwald, Kay Römer, Institute for Pervasive Computing, ETH Zurich, Switzerland Abstract Many sensor network applications feature

More information

Link Estimation and Tree Routing

Link Estimation and Tree Routing Network Embedded Systems Sensor Networks Link Estimation and Tree Routing 1 Marcus Chang, mchang@cs.jhu.edu Slides: Andreas Terzis Outline Link quality estimation Examples of link metrics Four-Bit Wireless

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 6: Bluetooth and 802.15.4 October 12, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Bluetooth Standard for Personal Area

More information

Time Synchronization in Wireless Networks

Time Synchronization in Wireless Networks Page 1 of 13 Time Synchronization in Wireless Networks Author: Michael Roche tke961@gmail.com Abstract: Time Synchronization in wireless networks is extremely important for basic communication, but it

More information

Research Directions in Low-Power Wireless Networks

Research Directions in Low-Power Wireless Networks Research Directions in Low-Power Wireless Networks Behnam Dezfouli [ dezfouli@ieee.org ] November 2014 1 q OBSERVING AND CHARACTERIZING THE EFFECT OF ENVIRONMENT ON WIRELESS COMMUNICATIONS For example,

More information

Analysis of Link Reversal Routing Algorithms for Mobile Ad Hoc Networks

Analysis of Link Reversal Routing Algorithms for Mobile Ad Hoc Networks Analysis of Link Reversal Routing Algorithms for Mobile Ad Hoc Networks Seminar of Distributed Computing WS 04/05 ETH Zurich, 1.2.2005 Nicolas Born nborn@student.ethz.ch Paper Analysis of Link Reversal

More information

Delay Analysis of ML-MAC Algorithm For Wireless Sensor Networks

Delay Analysis of ML-MAC Algorithm For Wireless Sensor Networks Delay Analysis of ML-MAC Algorithm For Wireless Sensor Networks Madhusmita Nandi School of Electronics Engineering, KIIT University Bhubaneswar-751024, Odisha, India ABSTRACT The present work is to evaluate

More information

Never replicate a successful experiment. -Fett's law.

Never replicate a successful experiment. -Fett's law. Never replicate a successful experiment -Fett's law. Fidelity and Yield in a Volcano Monitoring Sensor Network Authors: Geoffrey Werner-Allen, Konrad Lorincz, and Matt Welsh Harvard University Jeff Johnson

More information

Accurate Clock Models for Simulating Wireless Sensor Networks

Accurate Clock Models for Simulating Wireless Sensor Networks Accurate Clock Models for Simulating Wireless Sensor Networks F. Ferrari, A. Meier, L. Thiele TIK Institute ETH Zurich 1 Motivations: Hardware Clocks of Sensor Nodes Digital clocks A counter counts time

More information

Distributed Algorithms for Sensor Networks

Distributed Algorithms for Sensor Networks Distributed Algorithms for Sensor Networks By Christoph Lenzen 1 and Roger Wattenhofer 2 1 School of Engineering and Computer Science, Hebrew University of Jerusalem Edmond Safra Campus, Givat Ram, 91904

More information

ADB: An Efficient Multihop Broadcast Protocol Based on Asynchronous Duty-Cycling in Wireless Sensor Networks

ADB: An Efficient Multihop Broadcast Protocol Based on Asynchronous Duty-Cycling in Wireless Sensor Networks AD: An Efficient Multihop roadcast Protocol ased on Asynchronous Duty-Cycling in Wireless Sensor Networks Yanjun Sun* Omer Gurewitz Shu Du Lei Tang* David. Johnson* *Rice University en Gurion University

More information

Topology and Power Control

Topology and Power Control Topology and Power Control Octav Chipara Motivation Energy and capacity are limited resources in wireless sensor networks Answer: Topology and Power Control maintain a topology with certain properties

More information

Wireless Networking Graph Theory Unplugged. Distributed Computing Group Roger Wattenhofer WG 2004

Wireless Networking Graph Theory Unplugged. Distributed Computing Group Roger Wattenhofer WG 2004 Wireless Networking Graph Theory Unplugged Distributed Computing Group Roger Wattenhofer WG 2004 Overview Introduction Ad-Hoc and Sensor Networks Routing / Broadcasting Clustering Topology Control Conclusions

More information

Reliable Time Synchronization Protocol for Wireless Sensor Networks

Reliable Time Synchronization Protocol for Wireless Sensor Networks Reliable Time Synchronization Protocol for Wireless Sensor Networks Soyoung Hwang and Yunju Baek Department of Computer Science and Engineering Pusan National University, Busan 69-735, South Korea {youngox,yunju}@pnu.edu

More information

Research Article MFT-MAC: A Duty-Cycle MAC Protocol Using Multiframe Transmission for Wireless Sensor Networks

Research Article MFT-MAC: A Duty-Cycle MAC Protocol Using Multiframe Transmission for Wireless Sensor Networks Distributed Sensor Networks Volume 2013, Article ID 858765, 6 pages http://dx.doi.org/10.1155/2013/858765 Research Article MFT-MAC: A Duty-Cycle MAC Protocol Using Multiframe Transmission for Wireless

More information

MTSF: A Timing Synchronization Protocol to Support Synchronous Operations in Multihop Wireless Networks

MTSF: A Timing Synchronization Protocol to Support Synchronous Operations in Multihop Wireless Networks MTSF: A Timing Synchronization Protocol to Support Synchronous Operations in Multihop Wireless Networks Jungmin So Dept. of Computer Science, and Coordinated Science Laboratory University of Illinois at

More information

Routing. Chapter 11. Ad Hoc and Sensor Networks Roger Wattenhofer 11/1

Routing. Chapter 11. Ad Hoc and Sensor Networks Roger Wattenhofer 11/1 Routing Chapter 11 Ad Hoc and Sensor Networks Roger Wattenhofer 11/1 Application of the Week: Games / Art Uncountable possibilities, below, e.g., a beer coaster that can interact with other coasters [sentilla]

More information

Wireless Sensor Networks 8th Lecture

Wireless Sensor Networks 8th Lecture Wireless Sensor Networks 8th Lecture 21.11.2006 Christian Schindelhauer schindel@informatik.uni-freiburg.de 1 Media Access Control (MAC) Controlling when to send a packet and when to listen for a packet

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 25.1 Introduction Today we re going to spend some time discussing game

More information

Distributed Data Aggregation Scheduling in Wireless Sensor Networks

Distributed Data Aggregation Scheduling in Wireless Sensor Networks Distributed Data Aggregation Scheduling in Wireless Sensor Networks Bo Yu, Jianzhong Li, School of Computer Science and Technology, Harbin Institute of Technology, China Email: bo yu@hit.edu.cn, lijzh@hit.edu.cn

More information

Protocol Design and Optimization for

Protocol Design and Optimization for Protocol Design and Optimization for Yu Wang, Hongyi Wu*, Feng Lin, and Nian-Feng Tzeng Center for Advanced Computer Studies University of Louisiana at Lafayette Mobile Sensor Networks Applications: Air

More information

MAC Theory. Chapter 7. Ad Hoc and Sensor Networks Roger Wattenhofer

MAC Theory. Chapter 7. Ad Hoc and Sensor Networks Roger Wattenhofer MAC Theory Chapter 7 7/1 Seeing Through Walls! [Wilson, Patwari, U. Utah] Schoolboy s dream, now reality thank to sensor networks... 7/2 Rating Area maturity First steps Text book Practical importance

More information

TIME SYNCHRONIZATION USING INTELLIGENT HYBRID MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS

TIME SYNCHRONIZATION USING INTELLIGENT HYBRID MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS TIME SYNCHRONIZATION USING INTELLIGENT HYBRID MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS J. Prathibanandhi and D. Vydeki Department of Electronics and Communication Engineering, Easwari Engineering College,

More information

Outline. MAC (Medium Access Control) General MAC Requirements. Typical MAC protocols. Typical MAC protocols

Outline. MAC (Medium Access Control) General MAC Requirements. Typical MAC protocols. Typical MAC protocols Outline Medium ccess ontrol With oordinated daptive Sleeping for Wireless Sensor Networks Presented by: rik rooks Introduction to M S-M Overview S-M Evaluation ritique omparison to MW Washington University

More information

ROUTING ALGORITHMS Part 2: Data centric and hierarchical protocols

ROUTING ALGORITHMS Part 2: Data centric and hierarchical protocols ROUTING ALGORITHMS Part 2: Data centric and hierarchical protocols 1 Negative Reinforcement Time out Explicitly degrade the path by re-sending interest with lower data rate. Source Gradient New Data Path

More information

Exam Principles of Distributed Computing

Exam Principles of Distributed Computing Distributed Computing FS 2015 Prof. Dr. Roger Wattenhofer P. Bissig, P. Brandes, S. Brandt, K.T. Förster, B. Keller, M. König, L. Peer, J. Seidel, D. Stolz, J. Uitto Exam Principles of Distributed Computing

More information

Chapter 6 Time synchronization

Chapter 6 Time synchronization Chapter 6 Time synchronization Outline 6.1. The Problems of Time Synchronization 6.2. Protocols Based on Sender/Receiver Synchronization Network Time Protocol (NTP) Timing-sync Protocol for Sensor Networks

More information

Vertex Coloring. Chapter Problem & Model 6 CHAPTER 1. VERTEX COLORING. Figure 1.2: 3-colorable graph with a valid coloring.

Vertex Coloring. Chapter Problem & Model 6 CHAPTER 1. VERTEX COLORING. Figure 1.2: 3-colorable graph with a valid coloring. 6 CHAPTER 1. VERTEX COLORING 1 2 Chapter 1 Vertex Coloring Vertex coloring is an infamous graph theory problem. It is also a useful toy example to see the style of this course already in the first lecture.

More information

Synchronization in Sensor Networks

Synchronization in Sensor Networks Synchronization in Sensor Networks Blerta Bishaj Helsinki University of Technology 1. Introduction... 2 2. Characterizing Time Synchronization... 2 3. Causes of clock desynchronization... 3 4. Algorithms...

More information

A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN

A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN Albeiro Cortés Cabezas and José de Jesús Salgado Patrón Department of Electronic Engineering, Surcolombiana University, Neiva, Colombia

More information

Design and Implementation of a Multi-hop Zigbee Network

Design and Implementation of a Multi-hop Zigbee Network Design and Implementation of a Multi-hop Zigbee Network Chi-Wen Deng, Li-chun Ko, Yung-chih Liu, Hua-wei Fang Networks and Multimedia Institute Institute for Information Industry, ROC {cwdeng, lcko, ulysses,

More information

CONCLUSIONS AND SCOPE FOR FUTURE WORK

CONCLUSIONS AND SCOPE FOR FUTURE WORK Introduction CONCLUSIONS AND SCOPE FOR FUTURE WORK 7.1 Conclusions... 154 7.2 Scope for Future Work... 157 7 1 Chapter 7 150 Department of Computer Science Conclusion and scope for future work In this

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks 11th Lecture 29.11.2006 Christian Schindelhauer schindel@informatik.uni-freiburg.de 1 Bluetooth in WSN? There are several commercially available MAC protocol/products Wi-Fi Bluetooth

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Chapter 8 DOMINATING SETS Distributed Computing Group Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Pervasive and Mobile Computing

Pervasive and Mobile Computing Pervasive and Mobile Computing 5 (29) 369 384 Contents lists available at ScienceDirect Pervasive and Mobile Computing journal homepage: www.elsevier.com/locate/pmc A data collection protocol for real-time

More information

Robust Multi-Hop Time Synchronization in Sensor Networks

Robust Multi-Hop Time Synchronization in Sensor Networks Robust Multi-Hop Time Synchronization in Sensor Networks Miklos Maroti, Branislav Kusy, Gyula Simon and Akos Ledeczi {miklos.maroti,branislav.kusy,gyula.simon,akos.ledeczi}@vanderbilt.edu phone: (615)

More information

PIP: A Connection-Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High Throughput Bulk Transfer

PIP: A Connection-Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High Throughput Bulk Transfer PIP: A Connection-Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High Throughput Bulk Transfer Bhaskaran Raman Kameswari Chebrolu Sagar Bijwe br@cse.iitb.ac.in chebrolu@cse.iitb.ac.in sag.bijwe@gmail.com

More information

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks RESEARCH ARTICLE An Industrial Employee Development Application Protocol Using Wireless Sensor Networks 1 N.Roja Ramani, 2 A.Stenila 1,2 Asst.professor, Dept.of.Computer Application, Annai Vailankanni

More information

ENSC 427: COMMUNICATION NETWORKS

ENSC 427: COMMUNICATION NETWORKS ENSC 427: COMMUNICATION NETWORKS Simulation of ZigBee Wireless Sensor Networks Final Report Spring 2012 Mehran Ferdowsi Mfa6@sfu.ca Table of Contents 1. Introduction...2 2. Project Scope...2 3. ZigBee

More information

Luca Schenato Workshop on cooperative multi agent systems Pisa, 6/12/2007

Luca Schenato Workshop on cooperative multi agent systems Pisa, 6/12/2007 Distributed consensus protocols for clock synchronization in sensor networks Luca Schenato Workshop on cooperative multi agent systems Pisa, 6/12/2007 Outline Motivations Intro to consensus algorithms

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Distributed Computing Group Chapter 8 DOMINATING SETS Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Motivation and Basics Flat networks Hierarchy by dominating sets Hierarchy by clustering Adaptive node activity. Topology Control

Motivation and Basics Flat networks Hierarchy by dominating sets Hierarchy by clustering Adaptive node activity. Topology Control Topology Control Andreas Wolf (0325330) 17.01.2007 1 Motivation and Basics 2 Flat networks 3 Hierarchy by dominating sets 4 Hierarchy by clustering 5 Adaptive node activity Options for topology control

More information

R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks

R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks Peng Xie and Jun-Hong Cui UCONN CSE Technical Report: UbiNet-TR06-06 Last Update: June 2007 Abstract Underwater sensor networks are

More information

TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS

TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS Mathias Becquaert, Bart Scheers, Ben Lauwens Royal Military Academy Department CISS Renaissancelaan 30 B1000 Brussels, Belgium E-mail: mathias.becquaert@mil.be,

More information

Efficient Slot Assignment for the Many-to-One Routing Pattern in Sensor Networks

Efficient Slot Assignment for the Many-to-One Routing Pattern in Sensor Networks Efficient Slot Assignment for the Many-to-One Routing Pattern in Sensor Networks Volker Turau, Christoph Weyer, and Christian Renner Institute of Telematics Hamburg University of Technology Schwarzenbergstrasse

More information

Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings

Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings Towards a Zero-Configuration Wireless Sensor Network Architecture for Smart Buildings By Lars Schor, Philipp Sommer, Roger Wattenhofer Computer Engineering and Networks Laboratory ETH Zurich, Switzerland

More information

Comparison of Two Synchronization Protocol in Wireless Sensor Network

Comparison of Two Synchronization Protocol in Wireless Sensor Network Comparison of Two Synchronization Protocol in Wireless Sensor Network S.Rucksana 1, C. Babu 2, S.Saranyabharathi 3 P.G. Scholar, Department of ECE, Knowledge Institute of Technology, Salem, Tamil Nadu,

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University

More information

13 Sensor networks Gathering in an adversarial environment

13 Sensor networks Gathering in an adversarial environment 13 Sensor networks Wireless sensor systems have a broad range of civil and military applications such as controlling inventory in a warehouse or office complex, monitoring and disseminating traffic conditions,

More information

Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired

Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired Power-efficient Communication Protocol for Social Networking Tags for Visually Impaired Problem Social Networking Tags System for Visually Impaired is an project aims to utilize electronic id technology

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [Olympus MAC Proposal] Date Submitted: [May 2009] Source: [Gang Ding] Company [Olympus Communication Technology

More information

Networking Sensors, I

Networking Sensors, I Networking Sensors, I Sensing Networking Leonidas Guibas Stanford University Computation CS428 Networking Sensors Networking is a crucial capability for sensor networks -- networking allows: Placement

More information

Sl.No Project Title Year

Sl.No Project Title Year Sl.No Project Title Year WSN(Wireless Sensor ) 1 Distributed Topology Control With Lifetime Extension Based on Non-Cooperative Game for Wireless Sensor 2 Intercept Behavior Analysis of Industrial Wireless

More information

State-Based Synchronization Protocol in Sensor Networks

State-Based Synchronization Protocol in Sensor Networks State-Based Synchronization Protocol in Sensor Networks Shang-Chih Hsu Wei Yen 1 1 Department of Computer Science and Engineering, Tatung University, Taipei, Taiwan, ROC shanzihsu@yahoo.com.tw, wyen@ttu.edu.tw

More information

Chapter 7 TOPOLOGY CONTROL

Chapter 7 TOPOLOGY CONTROL Chapter 7 TOPOLOGY CONTROL Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Topology Control Gabriel Graph et al. XTC Interference SINR & Scheduling Complexity Distributed Computing

More information

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set Available online at www.sciencedirect.com Procedia Computer Science 6 (2011) 408 412 Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science

More information

Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model

Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model Hongxing Li Department of Computer Science The University of Hong Kong Pokfulam Road, Hong Kong hxli@cs.hku.hk

More information

An Automatic Presence Service for Low Duty-Cycled Mobile Sensor Networks

An Automatic Presence Service for Low Duty-Cycled Mobile Sensor Networks Mobile Netw Appl (2011) 16:460 474 DOI 10.1007/s11036-011-0326-2 An Automatic Presence Service for Low Duty-Cycled Mobile Sensor Networks Shouwen Lai Binoy Ravindran Published online: 18 June 2011 Springer

More information

Geographical Routing Algorithms In Asynchronous Wireless Sensor Network

Geographical Routing Algorithms In Asynchronous Wireless Sensor Network Geographical Routing Algorithms In Asynchronous Wireless Sensor Network Vaishali.S.K, N.G.Palan Electronics and telecommunication, Cummins College of engineering for women Karvenagar, Pune, India Abstract-

More information

Advanced Networking Technologies

Advanced Networking Technologies Advanced Networking Technologies Chapter 4 Medium Access Control Protocols (Acknowledgement: These slides have been prepared by Prof. Dr. Holger Karl) Advanced Networking (SS 16): 04 Medium Access Control

More information

Bluetooth Core Specification v5.1

Bluetooth Core Specification v5.1 Bluetooth Core Specification v5.1 Feature Overview Bluetooth Core Specification v5.1 contains a series of updates to the Bluetooth core specification. This document summarizes and explains each change.

More information

A Survey On Interference In Wireless Ad-Hoc Networks

A Survey On Interference In Wireless Ad-Hoc Networks A Survey On Interference In Wireless Ad-Hoc Networks S.K.Manju Bargavi Research Scholar, Anna University of Technology Coimbatore, India. Dr. G.P.Rajamani Principal, King College of Technology Namakkal,

More information

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Mobile Information Systems 9 (23) 295 34 295 DOI.3233/MIS-364 IOS Press Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Keisuke Goto, Yuya Sasaki, Takahiro

More information

Analysis of S-MAC/T-MAC Protocols for Wireless Sensor Networks

Analysis of S-MAC/T-MAC Protocols for Wireless Sensor Networks Analysis of S-MAC/T-MAC Protocols for Wireless Sensor Networks WOOCHUL LEE*, YUTAE LEE*, SOONGHEE LEE**, DONGIL KIM* *Department of Information and Communications Engineering Dong-Eui University, 996 Eomgwan-no,

More information

Ad hoc and Sensor Networks Topology control

Ad hoc and Sensor Networks Topology control Ad hoc and Sensor Networks Topology control Goals of this chapter Networks can be too dense too many nodes in close (radio) vicinity This chapter looks at methods to deal with such networks by Reducing/controlling

More information

MLS An Efficient Location Service for Mobile Ad Hoc Networks Roland Flury Roger Wattenhofer

MLS An Efficient Location Service for Mobile Ad Hoc Networks Roland Flury Roger Wattenhofer MLS An Efficient Location Service for Mobile Ad Hoc Networks Roland Flury Roger Wattenhofer Distributed Computing Group Geographic Routing To each message, piggyback the position of the receiver The routing

More information

DRCS: A Distributed Routing and Channel Selection Scheme for Multi-Channel Wireless Sensor Networks

DRCS: A Distributed Routing and Channel Selection Scheme for Multi-Channel Wireless Sensor Networks DRCS: A Distributed Routing and Channel Selection Scheme for Multi-Channel Wireless Sensor Networks Amitangshu Pal and Asis Nasipuri Electrical & Computer Engineering, The University of North Carolina

More information

I/O Systems (3): Clocks and Timers. CSE 2431: Introduction to Operating Systems

I/O Systems (3): Clocks and Timers. CSE 2431: Introduction to Operating Systems I/O Systems (3): Clocks and Timers CSE 2431: Introduction to Operating Systems 1 Outline Clock Hardware Clock Software Soft Timers 2 Two Types of Clocks Simple clock: tied to the 110- or 220-volt power

More information

Information Brokerage

Information Brokerage Information Brokerage Sensing Networking Leonidas Guibas Stanford University Computation CS321 Information Brokerage Services in Dynamic Environments Information Brokerage Information providers (sources,

More information

Low-Rate Wireless Personal Area Networks IEEE Fernando Solano Warsaw University of Technology

Low-Rate Wireless Personal Area Networks IEEE Fernando Solano Warsaw University of Technology Low-Rate Wireless Personal Area Networks IEEE 802.15.4 Fernando Solano Warsaw University of Technology fs@tele.pw.edu.pl Wireless Sensor Networks and Hardware A bad example Remote bulb control Reduce Energy

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [Olympus MAC Proposal] Date Submitted: [May 2009] Source: [Gang Ding] Company [Olympus Communication Technology

More information