Delivering Time and Phase for LTE Networks

Size: px
Start display at page:

Download "Delivering Time and Phase for LTE Networks"

Transcription

1 Delivering Time and Phase for LTE Networks Simon Butcher 2016 Microsemi Corporation. Company Proprietary.

2 Small Cell Deployments - And LTE-Advanced (LTE-A) at the Mobile Edge LTE-FDD requires frequency sync LTE-TDD requires phase sync to UTC LTE-A Can be deployed on LTE-FDD or TDD networks LTE-A services are designed to enhance network RF performance, Improve spectrum availability and reach, Avoid interference between the enb, Enable more users onto the network, Dynamically allocate bandwidth etc Most LTE-A services such as eicic, CoMP, embms, MBSFN require inter cell phase sync

3 Mobile Wireless Synchronization Requirements Mobile RF GSM, WCDMA LTE-FDD Input into Base Station 16 ppb Inter Cell Alignment 50ppb LTE-TDD LTE-A e.g. CoMP, eicic, embms, MBSFN ± 1.1µs ± 1.5µs (phase) Not all LTE-A functions require phase, Carrier Aggregation for example does not

4 ITU-T Synchronization Standards Frequency Time/Phase Basic aspects Network Limits Clocks Methods Profiles G.8261 Timing & Sync: Frequency G.8271 Timing & Sync: Time & Phase G Network Limits: Frequency G Network Limits: Full On Path Support G Network Limits : Partial On Path Support G.8262 SyncE clock EEC G.8272 Primary Time Reference Clock - G.8263 PTP Clocks: Frequency (PEC) G.8273 G PTP Clocks: Time & Phase (T-BC, T-TC, T-SC) Assisted Partial Time Support G.8265 Architecture: Frequency G.8275 Architecture: Time & Phase G Telecom Profile G Time Profile : Full On path support G, Time Profile : Partial On Path Support consented consented not yet consented

5 PTP Delivery Packet Network Timing System PRC PTP GM PTP GM PTP Timing Flows AG1 Aggregation router PTP Slave Base Station PTP Slave GPON OLT AG1 PTP Slave Edge Router Asymmetric Data Path PTP Slave Microwave End Equipment

6 Time/Phase : The Time Error Budget PRC GPS ±100 ns ± 1000 nsec ± 400 nsec Transport, Noise, & Network Asymmetry enb SOURCE OF TIME TRANSPORT OF TIME USE OF TIME & Holdover Network Error Budget +/- 1 µsec Total enb Inter Cell Time Error +/- 1.5 µsec from UTC

7 G Time Profile: Full On Path Support GNSS Packet Network with Embedded Boundary Clocks Time Slave Clock GM T-BC T-BC T-BC T-BC T-SC PRC End Equipment Attributes PTP Multicast over Layer 2 network Time Boundary Clock (T-BC) on every network element Physical layer frequency support from synce (needs a PRC) Max Hops: 10 (20 is currently theoretical) Provides hop by hop engineering guideline for time/phase as per SEC/EEC

8 G Time Profile: Partial On Path Support Unicast Segment 1 Unicast Segment 2 GNSS Time Slave Clock GM BC T-SC PRC Asynchronous Packet Network End Equipment In G we place a Boundary Clock at the most effective point on the transport path Boundary Clocks cannot remove Asymmetry.. They can only reduce it.

9 Removing Asymmetry G Assisted Partial Timing Support (APTS) Unicast Segment 1 Unicast Segment 2 GNSS APTS Node T-SC PRC Frequency ref Asynchronous Packet Network Time Slave Clock End Equipment GPS to calibrate out PTP asymmetry, and to measure its performance Provides Holdover in the event of Local GPS failure.

10 The Time Error Budget with APTS and Asymmetry Compensation Transport Network Base Station budget ±100 ns ±200 ns ±350 ns ±50ns ±800 ns Constant time error network asymmetry is calibrated out of the system using GPS dynamic time error Slave Clock Holdover etc Network Equipment End systems Total Time Error Budget +/- 1.5 µsec

11 G APTS with Asymmetry Compensation with Unicast or Multicast at Edge unicast mode unicast or multicast mode Grandmaster ASYMMETRY CALIBRATION APTS T-SC Packet Network PTP FLOWS Mobile Edge T-SC End Equipment (Base stations)

12 Challenges for Small Cell Deployment Key Synchronization Requirements Small Cells require accurate timing Timing is dependent on GNSS GPS Antenna Critical Problems High Cost of GPS antenna cabling Roof access/rental fees Installation Costs through several floors Operators requesting less devices to deploy and manage combining functions into single device Switch NID 2014 Microsemi Corporation. COMPANY PROPRIETARY. 12

13 MSCC igm Indoor Use Device Features Integrated GPS receiver + Antenna + PTP Grand Master GPS Features Enhanced Indoor GNSS Assist Optimized for urban canyon / indoor use APTS Support SyncE / PTP Features 2014 Microsemi Corporation. COMPANY PROPRIETARY. 13

14 Thank You Simon Butcher Solutions Architect EMEA Microsemi

Phase Synchronisation the standards and beyond

Phase Synchronisation the standards and beyond Phase Synchronisation the standards and beyond Supporting Your Phase Network Chris Farrow Technical Services Manager Christian.Farrow@chronos.co.uk 3rd June 2015 Chronos Technology: COMPANY PROPRIETARY

More information

Tales from the Base Station to the Substation. Delivering Phase ITSF 2013

Tales from the Base Station to the Substation. Delivering Phase ITSF 2013 Tales from the Base Station to the Substation Delivering Phase ITSF 2013 1 Phase delivery in Telecom Networks Telecom LTE networks rely on accurate phase synchronization Efficient and reliable use of spectrum

More information

Planning for time - deploying Telecoms Boundary Clocks

Planning for time - deploying Telecoms Boundary Clocks Planning for time - deploying Telecoms Boundary Clocks ITSF 2012 Ken Hann Artwork: Tanja Hann Review of the Sync landscape Migration from Legacy Land Driven by cost and capacity Migration to Land of Phase

More information

ITU-T Q13/15activity and its relation with the leap second. Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions

ITU-T Q13/15activity and its relation with the leap second. Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions ITU-T Q13/15activity and its relation with the leap second Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions Q13/15 Network synchronization and time distribution performance Q13 has already studied

More information

Time Sync distribution via PTP

Time Sync distribution via PTP Time Sync distribution via PTP Challenges, Asymmetries, Solutions ITSF - 2011 Stefano Ruffini, Ericsson Time Synchronization via PTP, cont. The basic principle is to distribute Time sync reference by means

More information

Small and Macro Cell deployment Mobile Operator- A case Study. Anil K Reddy Director BD APAC

Small and Macro Cell deployment Mobile Operator- A case Study. Anil K Reddy Director BD APAC Small and Macro Cell deployment Mobile Operator- A case Study Anil K Reddy Director BD APAC areddy@advaoptical.com Why Small cells? While Small cells are not new to mobile world, LTE is an indispensable

More information

ZL30342 SyncE/SONET/SDH G.8262/Stratum3 & IEEE 1588 Packet G.8261 Synchronizer

ZL30342 SyncE/SONET/SDH G.8262/Stratum3 & IEEE 1588 Packet G.8261 Synchronizer SyncE/SONET/SDH G.8262/Stratum3 & IEEE 1588 Packet G.8261 Synchronizer Features Supports the requirements of ITU-T G.8262 for synchronous Ethernet Equipment slave Clocks (EEC option 1 and 2) Supports the

More information

IEEE 1914 NGFI Partial Timing Support (PTS) in NGFI

IEEE 1914 NGFI Partial Timing Support (PTS) in NGFI IEEE 1914 NGFI Partial Timing Support (PTS) in NGFI Yongfang Xu, Nokia Shanghai Bell 4-6 December 2018 Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board

More information

CALNEX PARAGON-X. Testing 1588v2 PTP

CALNEX PARAGON-X. Testing 1588v2 PTP CALNEX PARAGON-X Testing 1588v2 PTP Introducing Calnex Solutions Ltd Company founded in January 2006. Executive team with over 100 years of experience in telecom test instrumentation. Rapporteur of the

More information

G Telecom Profile

G Telecom Profile Precision Time Protocol (PTP) is a protocol for distributing precise time and frequency over packet networks. PTP is defined in the IEEE Standard 1588. It defines an exchange of timed messages PTP allows

More information

Considerations for building accurate PTP networks for now and the future. Thomas Joergensen ITSF 2013 November 2013

Considerations for building accurate PTP networks for now and the future. Thomas Joergensen ITSF 2013 November 2013 Considerations for building accurate PTP networks for now and the future Thomas Joergensen ITSF 2013 November 2013 Why Timing Is So Important Poor Phase Synchronization has severe impact on TD-LTE and

More information

EPoC System Level Synchronization Transport 802.3bn Interim meeting - Phoenix

EPoC System Level Synchronization Transport 802.3bn Interim meeting - Phoenix EPoC System Level Synchronization Transport 802.3bn Interim meeting - Phoenix Bill Powell 23-25 January, 2013 1 Agenda Mobile BackHaul (MBH) & Circuit Emulation Services (CES) sync requirements EPON &

More information

G Telecom Profile

G Telecom Profile This document provides information on the support for G.8275.2 telecom profile and how to configure Cisco cbr series routers to avail the support. Finding Feature Information Your software release may

More information

G Telecom Profile

G Telecom Profile Why G.8275.1? More About G.8275.1 First Published: March 29, 2016 Precision Time Protocol (PTP) is a protocol for distributing precise time and frequency over packet networks. PTP is defined in the IEEE

More information

IEEE-1588 Frequency and Time & Phase Profiles at ITU

IEEE-1588 Frequency and Time & Phase Profiles at ITU IEEE-1588 Frequency and Time & Phase Profiles at ITU Silvana Rodrigues, IDT (silvana.rodrigues@idt.com) Presentation to ITSF 2011, Edinburgh, November 2011 2009 Integrated Device Technology, Inc. Agenda

More information

ITSF 2007 overview of future sync applications and architecture challenges

ITSF 2007 overview of future sync applications and architecture challenges ITSF 2007 overview of future sync applications and architecture challenges Orange Labs Sébastien JOBERT, Research & Development 14/11/2007, presentation to ITSF 2007, London agenda section 1 section 2

More information

Challenges in profiles and architectures

Challenges in profiles and architectures Challenges in profiles and architectures Michael Mayer, Editor G.8275 ITSF-2014 Budapest 1 Challenges in profiles and architectures Outline The architecture recommendations Relation to other Recommendations

More information

Differences between Financial and Telecom Network Environment. Kamatchi Gopalakrishnan Distinguished Engineer

Differences between Financial and Telecom Network Environment. Kamatchi Gopalakrishnan Distinguished Engineer Differences between Financial and Telecom Network Environment Kamatchi Gopalakrishnan Distinguished Engineer Agenda Network Time-sync Telecom versus Financial Network Time-sync Profile comparison Summary

More information

Status of ITU Q13/15 sync standards ITSF Jean-Loup Ferrant, ITU-T Q13/15 rapporteur

Status of ITU Q13/15 sync standards ITSF Jean-Loup Ferrant, ITU-T Q13/15 rapporteur Status of ITU Q13/15 sync standards ITSF-2013 Jean-Loup Ferrant, ITU-T Q13/15 rapporteur Agenda 1-Overview of recommendations 2-History 3-transport of frequency in packet networks 4-transport of time and

More information

ITU-T Q13/15, Network synchronization and time distribution performance Supporting 5G mobile transport and fronthaul

ITU-T Q13/15, Network synchronization and time distribution performance Supporting 5G mobile transport and fronthaul ITU-T Q13/15, Network synchronization and time distribution performance Supporting 5G mobile transport and fronthaul Stefano Ruffini, Q13 Rapporteur Geneva, 27 January 2018 Contents Q13 Introduction Current

More information

Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER

Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) Grandmaster Hardware Redundancy

More information

ITU-T Q13/15 Updates TICTOC / IETF-83. Jean-Loup Ferrant, Calnex, Q13/15 Rapporteur Stefano RUffini, Ericsson, Q13/15 Associate Rapporteur

ITU-T Q13/15 Updates TICTOC / IETF-83. Jean-Loup Ferrant, Calnex, Q13/15 Rapporteur Stefano RUffini, Ericsson, Q13/15 Associate Rapporteur ITU-T Q13/15 Updates TICTOC / IETF-83 Jean-Loup Ferrant, Calnex, Q13/15 Rapporteur Stefano RUffini, Ericsson, Q13/15 Associate Rapporteur Introduction Q13/15 met at the SG15 in December and held Interim

More information

G Telecom Profile

G Telecom Profile Precision Time Protocol (PTP) is a protocol for distributing precise time and frequency over packet networks. PTP is defined in the IEEE Standard 588. It defines an exchange of timed messages. PTP allows

More information

ETHERNET TIME & SYNC. In Telecoms, Power, Finance, Cars,... ITSF Budapest, Nov 2014

ETHERNET TIME & SYNC. In Telecoms, Power, Finance, Cars,... ITSF Budapest, Nov 2014 ETHERNET TIME & SYNC In Telecoms, Power, Finance, Cars,... ITSF Budapest, Nov 2014 PTP Profiles IEEE 1588 states in clause 19.3.1.1: "The purpose of a PTP profile is to allow organizations to specify specific

More information

Packet Networks. Tim Frost, Symmetricom, Inc. ITSF 2008

Packet Networks. Tim Frost, Symmetricom, Inc. ITSF 2008 The Distribution of Precise Time over Packet Networks Tim Frost, Symmetricom, Inc. tfrost@symmetricom.com ITSF 2008 Contents Applications for Precise Time over Packet Networks Issues with Distribution

More information

CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS

CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS 1 Agenda Sync 101: Frequency and phase synchronization basics Legacy sync : GPS and SDH/Sonet overview

More information

Synchronization Standards

Synchronization Standards Synchronization Standards Silvana Rodrigues IDT (silvana.rodrigues@idt.com) WSTS San Jose, June 2018 1 Agenda Standard Bodies ITU-T Frequency Profile ITU-T Time/phase Profiles IEEE 1588 SONET/PDH Standards

More information

Understanding PTP. A network device physically attached to the primary time source. All clocks are synchronized to the grandmaster clock.

Understanding PTP. A network device physically attached to the primary time source. All clocks are synchronized to the grandmaster clock. The Precision Time Protocol (PTP), as defined in the IEEE 1588 standard, synchronizes with nanosecond accuracy the real-time clocks of the devices in a network. The clocks in are organized into a master-slave

More information

Implementation Agreement MEF Mobile Backhaul Phase 3 - Amendment 1: Time Synchronization. November, 2016

Implementation Agreement MEF Mobile Backhaul Phase 3 - Amendment 1: Time Synchronization. November, 2016 Implementation Agreement Mobile Backhaul Phase 3 - Amendment 1: Time Synchronization November, 2016 Page i Disclaimer Mobile Backhaul Implementation Agreement Phase 3, Amendment 1 The information in this

More information

Double Migration of Packet Clocks

Double Migration of Packet Clocks Double Migration of Packet Clocks Kenneth Hann Principal Engineer Artwork:Tanja Hann November 1, 2011 1 Packet Clocks... the first migration Land of Phase Data Com Republic Legacy Land Packet Clocks...

More information

Evaluating 1588v2 Performance

Evaluating 1588v2 Performance Evaluating 1588v2 Performance Rev 2 How to evaluate the performance of both 1588v2 Boundary clocks (BCs) and 1588v2 Transparent clocks (TCs) based on solutions from Calnex and Xena Networks. APPLICATION

More information

IEEE1588 profile development in ITU-T

IEEE1588 profile development in ITU-T IEEE1588 profile development in ITU-T Michael Mayer Ciena Corporation March, 2012 Ciena 2011 Outline -General approach to Profile development in ITU-T -Review of IEEE1588 -Telecom architecture: how it

More information

LTE Stretches Synchronization to New Limits

LTE Stretches Synchronization to New Limits WHITE PAPER LTE Stretches Synchronization to New Limits This paper uses the term syntonization to refer to frequency alignment of network clocks. This functionality is also commonly called timing synchronization

More information

ZL DPLL0/NCO0 Select Loop band., Phase slope limit. DPLL1/NCO1 Select Loop band., Phase slope limit. Configuration and Status GPIO SPI / I 2 C

ZL DPLL0/NCO0 Select Loop band., Phase slope limit. DPLL1/NCO1 Select Loop band., Phase slope limit. Configuration and Status GPIO SPI / I 2 C IEEE 1588 and Synchronous Ethernet Packet Clock Network Synchronizer Features Two independent clock channels Frequency and Phase Sync over Packet Networks Frequency accuracy performance for WCDMA- FDD,

More information

Carrier Ethernet Synchronization. Technologies and Standards

Carrier Ethernet Synchronization. Technologies and Standards Carrier Ethernet Synchronization Technologies and Standards DataEdge, Dublin, May 19, 2010 Overview What and Where of Synchronization Synchronization Delivery Strategies o Synchronous Ethernet o IEEE 1588-2008

More information

OSA 5410 Series. PTP grandmaster, GNSS receiver and sync probe. Your benefits

OSA 5410 Series. PTP grandmaster, GNSS receiver and sync probe. Your benefits OSA 5410 Series PTP grandmaster, GNSS receiver and sync probe Radio access network (RAN) technology is evolving. Reliable and highly precise delivery of phase, frequency and time-of-day synchronization

More information

Timing in Packet Networks. Stefano RUffini 9 March 2015

Timing in Packet Networks. Stefano RUffini 9 March 2015 Timing in Packet Networks Stefano RUffini 9 March 2015 Giulio Bottari Contents Background Frequency sync via packets Two-Way Time Transfer NTP/PTP Details Impairments, Packet-based Metrics for frequency

More information

Synchronization Standards

Synchronization Standards Synchronization Standards Silvana Rodrigues IDT (silvana.rodrigues@idt.com) WSTS San Jose, April 3-6, 2017 1 Agenda Standard Bodies SyncE/1588 Standards ITU-T Frequency Profile ITU-T Time/phase Profiles

More information

PERFORMANCE AND SCALABILITY OF NETWORKS SYSTEMS WITH (EMBEDDED) BOUNDARY CLOCKS

PERFORMANCE AND SCALABILITY OF NETWORKS SYSTEMS WITH (EMBEDDED) BOUNDARY CLOCKS PERFORMANCE AND SCALABILITY OF NETWORKS SYSTEMS WITH (EMBEDDED) BOUNDARY CLOCKS Anurag Gupta angupta@juniper.net November 1 st to 3 rd, ITSF 2011- Edinburg Introduction Cont The Time aware/ capable networks

More information

Synchronous Ethernet based mobile backhaul integrated transport and synchronization management

Synchronous Ethernet based mobile backhaul integrated transport and synchronization management Synchronous Ethernet based mobile backhaul integrated transport and synchronization management ITSF 2012 Jon Baldry Transmode Chris Roberts Chronos Technology Clock Synchronization Is Critical Synchronization

More information

Synchronization Network Migration with focus on coherent network Primary Reference Time Clocks (cnprtc)

Synchronization Network Migration with focus on coherent network Primary Reference Time Clocks (cnprtc) Deutsche Telekom @ITSF2014 hronization Network Migration with focus on coherent network Primary Reference Time Clocks (cnprtc) Helmut Imlau, 4.11.2014 ITSF 2014: hronization Network Migration Steps with

More information

Why Synchronization Is Important to 5G

Why Synchronization Is Important to 5G Why Synchronization Is Important to 5G Greg Armstrong Principal System Architect - Precision Time Synchronization June 19, 2018 1 Introduction Source: The METIS 5G Architecture: A Summary of METIS Work

More information

ITU-T G /Y

ITU-T G /Y I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8271.1/Y.1366.1 (10/2017) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL

More information

Status of ITU Q13/15 sync standards and relationship with IEEE 1588 ITSF-2014

Status of ITU Q13/15 sync standards and relationship with IEEE 1588 ITSF-2014 Status of ITU Q13/15 sync standards and relationship with IEEE 1588 ITSF-2014 Jean-Loup Ferrant, ITU-T Q13/15 rapporteur (With support of Silvana Rodrigues for the IEEE1588 section) ITU T Q13 Summary I-Synchronization

More information

DPLL0/NCO0 Select Loop band., Phase slope limit. DPLL1/NCO1 Select Loop band., Phase slope limit. DPLL2/NCO2 Select Loop band., Phase slope limit

DPLL0/NCO0 Select Loop band., Phase slope limit. DPLL1/NCO1 Select Loop band., Phase slope limit. DPLL2/NCO2 Select Loop band., Phase slope limit Triple Channel IEEE 1588 & Synchronous Ethernet Packet Clock Network Synchronizer Features Three independent clock channels Frequency and Phase Sync over Packet Networks Frequency accuracy performance

More information

ITU-T. G.8271/Y.1366 Amendment 1 (08/2013) Time and phase synchronization aspects of packet networks Amendment 1

ITU-T. G.8271/Y.1366 Amendment 1 (08/2013) Time and phase synchronization aspects of packet networks Amendment 1 International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8271/Y.1366 Amendment 1 (08/2013) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Packet

More information

IEEE 1588v2 Technology White Paper

IEEE 1588v2 Technology White Paper IEEE 1588v2 Technology White Paper Issue 02 Date 2016-09-30 HUAWEI TECHNOLOGIES CO., LTD. 2016. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means

More information

Synchronization for Mobile Backhaul

Synchronization for Mobile Backhaul Synchronization for Mobile Backhaul A Formula for Deploying Packet Synchronization: Investigate Test - Deploy December, 8 2010 December, 8 2010 Page 1 of 34 Doc Num December, 8 2010 Page 2 of 34 Doc Num

More information

PTP650 Synchronous Ethernet and IEEE1588 Primer

PTP650 Synchronous Ethernet and IEEE1588 Primer PTP650 Synchronous and IEEE1588 Primer Table of Contents 3 in Cellular Backhaul 3 Timing Options for Cellular Backhaul 4 Synchronous 4 What is Synchronous? 4 Synchronous on PTP 650 5 Precision Time Protocol

More information

Evaluating the performance of Network Equipment. Presenter: Tommy Cook, CEO Calnex Solutions Ltd

Evaluating the performance of Network Equipment. Presenter: Tommy Cook, CEO Calnex Solutions Ltd Evaluating the performance of Network Equipment Presenter: Tommy Cook, CEO Calnex Solutions Ltd Presentation overview Proving performance of; EEC Synchronous Ethernet Devices. 1588v2 Boundary s. 1588v2

More information

White Paper. Best Engineering Practices for Cable Timing Architecture A Study of DOCSIS 3.1

White Paper. Best Engineering Practices for Cable Timing Architecture A Study of DOCSIS 3.1 White Paper Best Engineering Practices for Cable Timing Architecture A Study of DOCSIS 3.1 Introduction As high bandwidth services, such as live video and video on demand, migrate to Ethernet and OTT distribution,

More information

Timing and Synchronization Configuration Guide, Cisco IOS XE Everest (Cisco ASR 920 Routers)

Timing and Synchronization Configuration Guide, Cisco IOS XE Everest (Cisco ASR 920 Routers) Timing and Synchronization Configuration Guide, Cisco IOS XE Everest 16.5.1 (Cisco ASR 920 Routers) First Published: 2017-03-23 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose,

More information

ITU-T G.8271/Y.1366 (02/2012) Time and phase synchronization aspects of packet networks

ITU-T G.8271/Y.1366 (02/2012) Time and phase synchronization aspects of packet networks International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8271/Y.1366 (02/2012) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Packet over Transport

More information

Coriant IP/MPLS and IP-Optical MBH and FMC Solution

Coriant IP/MPLS and IP-Optical MBH and FMC Solution SOLUTION OVERVIEW Coriant IP/MPLS and IP-Optical MBH and FMC Solution Innovative Smart Router Platforms ADDRESSING THE CHALLENGES OF MOBILE AND FIXED MOBILE CONVERGED NETWORKS Network operators are facing

More information

Update: Ethernet Time Transfer through a U.S. Commercial Optical Telecommunications Network ITSF 2016

Update: Ethernet Time Transfer through a U.S. Commercial Optical Telecommunications Network ITSF 2016 Update: Ethernet Time Transfer through a U.S. Commercial Optical Telecommunications Network ITSF 2016 Marc Weiss, mweiss@nist.gov, 303-497-3261 NIST Time and Frequency Division Lee Cosart, lee.cosart@microsemi.com,

More information

ZL Input, 3-Output IEEE 1588 and SyncE Packet Clock Network Synchronizer Product Brief

ZL Input, 3-Output IEEE 1588 and SyncE Packet Clock Network Synchronizer Product Brief ZL30722 3-Input, 3-Output IEEE 1588 and SyncE Packet Clock Network Synchronizer Product Brief January 2016 Features Packet Network Frequency and Phase Sync Frequency accouracy for GSM, WCDMA-FDD, LTE-FDD

More information

G.823 and G.824. Silvana Rodrigues Phone:

G.823 and G.824. Silvana Rodrigues Phone: G.823 and G.824 Silvana Rodrigues Phone: +1 613 270-7258 silvana.rodrigues@zarlink.com http://timing.zarlink.com Agenda What is G.823 and G.824? Jitter and Wander G.823 wander limits G.824 wander limits

More information

Experiences and measurements in operational PTP synchronized mobile networks

Experiences and measurements in operational PTP synchronized mobile networks Experiences and measurements in operational PTP synchronized mobile networks Antti Pietiläinen Contributors: Georg Hein, Lasse Oka, Petter Isaksen, Joachim Eckstein, Albert Anreiter, Hannu Kallio, and

More information

Coriant IP/MPLS and IP-Optical MBH and FMC Solution

Coriant IP/MPLS and IP-Optical MBH and FMC Solution Coriant IP/MPLS and IP-Optical MBH and FMC Solution Innovative Smart Router Platforms ADDRESSING THE CHALLENGES OF MOBILE AND FIXED MOBILE CONVERGED NETWORKS Network operators are facing formidable challenges

More information

Best Practices for IEEE 1588/ PTP Network Deployment

Best Practices for IEEE 1588/ PTP Network Deployment YOUR NETWORK. OPTIMIZED. Best Practices for IEEE 1588/ PTP Deployment WHITE PAPER IEEE 1588-2008 means that precise timing and synchronization over is now a reality but the solution is only as good as

More information

Management Support for Automatic Measurement of Link Delay Asymmetry

Management Support for Automatic Measurement of Link Delay Asymmetry Management Support for Automatic Measurement of Link Delay Asymmetry 802.1 ASbt, 201111 IEEE 802 plenary Lu Huang (huanglu@chinamobile.com) Agenda Backgroud Management support for automatic measurement

More information

Packet-Based Primary Reference Source for Synchronizing Next Generation Networks

Packet-Based Primary Reference Source for Synchronizing Next Generation Networks Packet-Based Primary Reference Source for Synchronizing Next Generation Networks Responding to consumer demand, service providers are expanding and upgrading their telecommunications networks to add more

More information

Wireless Backhaul Synchronization

Wireless Backhaul Synchronization Wireless Backhaul Synchronization Abstract This paper focuses on Next Generation Backhaul Networks Synchronization and the way it is implemented by Ceragon s high capacity, LTE Ready point to point microwave

More information

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Time Synchronization Protocols - Time & Timing Core to Edge Mike Gilson Lead Technical Consultant British s Plc, UK Agenda Techniques & protocols for

More information

Sync Tested Mesh Microwave System

Sync Tested Mesh Microwave System Sync Tested Mesh Microwave System Billy Marshall Pre-sales Engineer International Telecom Sync Forum November 2013 CCSL Microwave Solution CCSL have developed a self-organising mesh microwave solution

More information

White paper. IEEE 1588 TM (PTP) in Communication Networks. Precision, Stability, Innovation, Support. Number 21 TELECOM NETWORKS

White paper. IEEE 1588 TM (PTP) in Communication Networks. Precision, Stability, Innovation, Support. Number 21 TELECOM NETWORKS IEEE 1588 TM (PTP) in Communication Networks White paper Number 21 TELECOM NETWORKS PROFESSIONAL COMMUNICATION MANUFACTURING POWER & UTILITIES DIGITAL BROADCASING TIME & FREQUENCY TIME DISTRIBUTION Precision,

More information

White Paper: New Needs for Synchronization Testing in Next Generation Networks

White Paper: New Needs for Synchronization Testing in Next Generation Networks White Paper: New Needs for Synchronization Testing in Next Generation Networks Next generation networks (NGN) combine the traditional synchronous SDH/SONET networks with packet-based (IP/Ethernet) networks

More information

Synchronization in microwave networks

Synchronization in microwave networks Synchronization in microwave networks Technology White Paper Network transformation, driven by IP services and Ethernet technologies, presents multiple challenges. Equally important to introducing a packet-transport

More information

LTE-FDD and APTS support over Existing Cable Networks

LTE-FDD and APTS support over Existing Cable Networks LTE-FDD and APTS support over Existing Cable Networks Yair Neugeboren - Director System Architecture, Network and Cloud, ARRIS Nir Laufer Senior Director PLM, Oscilloquartz WSTS 2018 Outline Mobile Backhaul

More information

xgenius Cutting edge Transmission & Synchronization tester

xgenius Cutting edge Transmission & Synchronization tester xgenius Cutting edge Transmission & Synchronization tester Global Manufacturer telecom nodes & instruments xgenius: transmission & synchronization Double BNC + RJ45 ports: E1 / T1 testing Double xsfp ports:

More information

Examples of Time Transport

Examples of Time Transport Joint ITU-T/IEEE Workshop on The Future of Ethernet Transport (Geneva, 28 ay 2010) Examples of Time Transport ichel Ouellette Technical Advisor Huawei Technologies Co., Ltd. Geneva, 28 ay 2010 Outline

More information

ITU-T G /Y

ITU-T G /Y I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8271.1/Y.1366.1 (08/2013) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL

More information

ITU-T G.8271/Y.1366 (08/2017) Time and phase synchronization aspects of telecommunication networks

ITU-T G.8271/Y.1366 (08/2017) Time and phase synchronization aspects of telecommunication networks I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8271/Y.1366 (08/2017) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS

More information

TIMING; The Key To Unlocking The Benefits Of LTE-A Timing & Security Considerations for Evolved IP Backhaul

TIMING; The Key To Unlocking The Benefits Of LTE-A Timing & Security Considerations for Evolved IP Backhaul TIMING; The Key To Unlocking The Benefits Of LTE-A Timing & Security Considerations for Evolved IP Backhaul Ian Goetz, Juniper Networks November, 2016 Market Trends & The Network Environment Mobile Market

More information

IEEE 1588 Hardware Assist

IEEE 1588 Hardware Assist Freescale Technology Forum, June 2007 IEEE 1588 Hardware Assist Session ID: AZ317 Satoshi Iida Applications Engineering Manager Agenda IEEE 1588 Protocol Overview Synchronization Overview Why Create Another

More information

Synchronization in Packet-based Networks Dennis Hagarty, Technical Marketing Engineer BRKSPG-2170

Synchronization in Packet-based Networks Dennis Hagarty, Technical Marketing Engineer BRKSPG-2170 Synchronization in Packet-based Networks Dennis Hagarty, Technical Marketing Engineer BRKSPG-2170 Agenda Introduction: What Is Synchronization? Overview of Synchronization and Timing Distributing Timing

More information

Options for Mitigating Potential GPS Vulnerabilities

Options for Mitigating Potential GPS Vulnerabilities Options for Mitigating Potential GPS Vulnerabilities GPS receivers have been widely used in communications infrastructure to provide precise time and frequency required to synchronize wireless base stations

More information

Testing Timing Over Packet With The Ixia Anue 3500

Testing Timing Over Packet With The Ixia Anue 3500 Testing Timing Over Packet With The Ixia Anue 3500 Testing according to ITU-T G.8261-2008 Appendix VI 1 Table of Contents Overview... 3 ITU-T G.8261... 3 MEF 18... 4 Acronyms and Definitions... 7 Test

More information

TimeProvider 4100 Precise Timing Gateway Clock

TimeProvider 4100 Precise Timing Gateway Clock Features IEEE 1588v2 Precision Time Protocol (PTP) grandmaster GNSS (GPS, GLONASS, BeiDou, and Galileo) QZSS ready, SBAS support Primary reference time clock (PRTC) Oscillator options mini OCXO, OCXO,

More information

GPS Vulnerability Report

GPS Vulnerability Report GPS Vulnerability Report Prepared by Alliance of Telecommunications Industry Solutions Synchronization Committee March 19 th 2016 Table of Contents About ATIS Report Objective Timing Performance Requirements

More information

NGN Standards. The 5th International Telecom Sync Forum, ITSF London, November Stefano Ruffini Ericsson

NGN Standards. The 5th International Telecom Sync Forum, ITSF London, November Stefano Ruffini Ericsson NGN Standards The 5th International Telecom Sync Forum, ITSF London, November - 2007 Stefano Ruffini Ericsson stefano.ruffini@ericsson.com Presentation outline Synchronization in the Standards: from Traditional

More information

GPS Vulnerability Report

GPS Vulnerability Report GPS Vulnerability Report Prepared by Alliance of Telecommunications Industry Solutions Synchronization Committee April 2018 1 The Alliance for Telecommunication Industry Solutions ATIS is accredited by

More information

Synchronous Ethernet to Transport Frequency and Phase/Time

Synchronous Ethernet to Transport Frequency and Phase/Time ACCEPTED FROM OPEN CALL to Transport Frequency and Phase/Time Kenneth Hann, Tellabs Sébastien Jobert, France Telecom Orange Silvana Rodrigues, Integrated Devices Technology ABSTRACT This article describes

More information

ecpri Transport Network V1.0 ( )

ecpri Transport Network V1.0 ( ) e Transport Network V.0 (0-0-) Requirements Specification Common Public Radio Interface: Requirements for the e Transport Network The e Transport Network Requirements Specification has been developed by

More information

RME-V01. Digital Instruments. Time and Reference Measurement System

RME-V01. Digital Instruments. Time and Reference Measurement System Digital S.r.l. www.digital-instruments.com Ph. +39 02 66506250 Fax. +39 02 66506103 Introduction 1 is a Time & Reference measurement equipment for GPS or GLONASS based syncronization systems able to check

More information

Enhancing intra and inter datacenter synchronization using White Rabbit

Enhancing intra and inter datacenter synchronization using White Rabbit When every nanosecond counts Enhancing intra and inter datacenter synchronization using White Rabbit Pablo Marín Jiménez www.sevensols.com Summary Visibility network White Rabbit technology. Production

More information

Packet synchronization deployment

Packet synchronization deployment Packet synchronization deployment and challenges to mobile operator Background Challenges 1. Network growth seek the transformation of services delivery mechanism. 2. Summary of previous setup: DESCRIPTION

More information

IEEE 1588 Packet Network Synchronization Solution

IEEE 1588 Packet Network Synchronization Solution Packet Network Synchronization Solution Peter Meyer System Architect peter.meyer@zarlink.com FTF 2011 Packet Network Synchronization Basics for Telecom Packet Networks Synchronization Solutions Deployment

More information

Standards Update IEEE 1588

Standards Update IEEE 1588 VOICE & TIMING SOLUTIONS For a New Global Network Standards Update IEEE 1588 Silvana Rodrigues silvana.rodrigues@zarlink.com The 6th Time & Synchronisation in Telecoms Conference November 4 to 6, 2008

More information

Considerations on synchronization in next generation CRAN fronthaul architecture. Lv Bo, Hu Changjun, Lu Yang CAICT

Considerations on synchronization in next generation CRAN fronthaul architecture. Lv Bo, Hu Changjun, Lu Yang CAICT Considerations on synchronization in next generation CRAN fronthaul architecture Lv Bo, Hu Changjun, Lu Yang CAICT Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA

More information

Synchronization for Next Generation Networks The PTP Telecom Profile

Synchronization for Next Generation Networks The PTP Telecom Profile Synchronization for Next Generation Networks The PTP Telecom Profile Abstract This paper is designed to help network engineers, network planners, and network operations understand how to deploy Precision

More information

Time Synchronization in a Campus Network

Time Synchronization in a Campus Network Time Synchronization in a Campus Network Antti Pietiläinen 1 ITSF 2015, Edinburgh, Antti Pietiläinen 4.11.2015 Time Synchronization in a Campus Network Measurement scheme Network Measurements Conclusions

More information

The Ever-Changing Wireless Landscape. How It Will Impact Your Venue

The Ever-Changing Wireless Landscape. How It Will Impact Your Venue The Ever-Changing Wireless Landscape How It Will Impact Your Venue Speakers Greg Najjar Scott Pereira Tony LeFebvre Thierno Diallo Tracy Ford Sprint ibwave TE Connectivity EXFO HetNet Forum Sprint Wireless

More information

Testing Timing Synchronization for IP/Ethernet Mobile Backhaul. March 2012

Testing Timing Synchronization for IP/Ethernet Mobile Backhaul. March 2012 Testing Timing Synchronization for IP/Ethernet Mobile Backhaul March 2012 Agenda Market Drivers & Technology Review Test Requirements and Examples Industry Programs Market Drivers: All IP/Carrier Ethernet

More information

Applications of PTP in non-telecom networks. Anurag Gupta November 1 st -3 rd 2011, ITSF 2011

Applications of PTP in non-telecom networks. Anurag Gupta November 1 st -3 rd 2011, ITSF 2011 Applications of PTP in non-telecom networks Anurag Gupta angupta@juniper.net November 1 st -3 rd 2011, ITSF 2011 Introduction PTP/ 1588 has grown from its initial objective of Synchronization of real-time

More information

Mobile Backhaul Synchronization

Mobile Backhaul Synchronization Mobile Backhaul Synchronization In Service Timing SLA Tools for Mobile Networks Gil Biran, ITSF 2012, Nice France Agenda Synchronization SLA tool requirements Description of Synchronization SLA tools Detailed

More information

TIME SYNCHRONIZATION TEST SOLUTION FROM VERYX TECHNOLOGIES

TIME SYNCHRONIZATION TEST SOLUTION FROM VERYX TECHNOLOGIES TIME SYNCHRONIZATION TEST SOLUTION FROM VERYX TECHNOLOGIES CONTENTS Introduction... 1 1588v2 Overview... 1 SyncE overview... 2 VERYX capability... 2 1588v2 Test Coverage... 2 Time Sync Application Test

More information

Synchronization of Television, Audio and Moving Pictures in a Digital Age. Tim Frost, Symmetricom Inc.,

Synchronization of Television, Audio and Moving Pictures in a Digital Age. Tim Frost, Symmetricom Inc., Synchronization of Television, Audio and Moving Pictures in a Digital Age Tim Frost, Symmetricom Inc., tfrost@symmetricom.com ITSF 2009 Contents Synchronization Requirements in a Digital TV Studio SMPTE/EBU

More information

White Paper. Synchronization for Next Generation Networks The PTP Telecom Profile

White Paper. Synchronization for Next Generation Networks The PTP Telecom Profile White Paper Synchronization for Next Generation Networks The PTP Telecom Profile Abstract This paper is designed to help network engineers, network planners, and network operations understand how to deploy

More information

IEEE 1588 PTP clock synchronization over a WAN backbone

IEEE 1588 PTP clock synchronization over a WAN backbone Whitepaper IEEE 1588 PTP clock synchronization over a WAN backbone A field study comparing PTP clock synchronization accuracy against GPS external time reference in a live production WAN environment Contents

More information