Data Storage in Sensor Networks for Multi-dimensional Range Queries

Size: px
Start display at page:

Download "Data Storage in Sensor Networks for Multi-dimensional Range Queries"

Transcription

1 Data Storage in Sensor Networks for Multi-dimensional Range Queries Ji Yeon Lee 1, Yong Hun Lim 2, Yon Dohn Chung 3,*, and Myoung Ho Kim 4 1 E-Government Team, National Computerization Agency, Seoul, Korea jylee@nca.or.kr 2 Home Platform Group, Samsung Electronics, Seoul, Korea yonghun.lim@samsung.com 3 Department of Computer Engineering, Dongguk University, Seoul, Korea ydchung@dgu.edu 4 Department of Computer Science, KAIST, Daejon, Korea mhkim@dbserver.kaist.ac.kr Abstract. In data-centric sensor networks, various data items, such as temperature, humidity, pressure and so on, are sensed and stored in sensor nodes. As these attributes are mostly scalar values and inter-related, multi-dimensional range queries are very useful. However, the previous work on range query processing in sensor networks did not consider overall network lifetime. To prolong network lifetime and support multi-dimensional range queries, we propose a dynamic data placement method for multi-dimensional data, where data space is divided into equal-sized regions and placed over sensor nodes in a dynamic way. Through experiments, we show the efficiency of the proposed method compared with the previous work.. Keywords: sensor network, data-centric storage, multi-dimensional range queries, data placement and distribution. 1 Introduction A sensor network consists of widely distributed sensors, where each sensor node is a small device with some limited computing, storage and wireless communication capacity [1, 2, 4, 5, 8]. The applications of sensor networks have been widely expanded into areas of military, environment, health, and so on. For example, in an environmental monitoring application, sensor nodes which are widely and randomly deployed over deserts or volcanic areas periodically sense environmental parameters such as the temperature, humidity, and air pressure. The sensor data can be stored locally into sensor nodes or delivered to other sensor nodes/outer gateways. The sensor network where measured data are stored within sensor nodes is called data-centric, which is the target environment of this paper. The stored data are analyzed or processed through various queries including point queries, range queries, aggregation queries, and so on. * Corresponding author. L.T. Yang et al. (Eds.): ICESS 2005, LNCS 3820, pp , Springer-Verlag Berlin Heidelberg 2005

2 Data Storage in Sensor Networks for Multi-dimensional Range Queries 421 Sensor network has some unique properties compared with the conventional wireless network [2, 4, 5, 7, 8]. First, the capacity or resource of a sensor such as computing power, storage, and energy is very restricted. Especially, since sensor nodes use batteries for their energy source and the batteries cannot be re-charged or replaced, efficient control of energy consumption in sensor nodes is very important. Second, sensor nodes are randomly (i.e., not-controlled) deployed over a target area, and hence they are not informed of the overall network configuration. (That is, a sensor node is aware of only its neighbor nodes within its radio scope.) Third, the sensor node is not gathered and reused, so it is important to fully use the deployed sensors by prolonging their lifetimes. Since the lifetime of a sensor network is determined by that of the shortest-life sensor node, we have to elaborate on the energy consumption of sensor network not to be concentrated on some hot-spot nodes. In data-centric sensor networks [5, 7, 8], data are stored in sensor nodes based on their values, not stored in the collector node or delivered to external storage (or a predefined processor). In this approach, each sensor node has a predefined region of data domain it will store. This prevents the cases that the sensor nodes which are located near to external storage or collect more data than the others become hot-spot (i.e., consuming much more energy than the others). In this paper, in order to balance the energy-consumption of sensor nodes, we propose a dynamic data placement method, where we initially assign each sensor node a range of data domain, and dynamically adjust the ranges of sensor nodes based on their workload. For region assignment, we linearize the multi-dimensional data space by using Hilbert space-filling curves, and make a linear address space by zigzag traversing of sensor nodes. The rest of the paper is organized as follows. In Chapter 2, we describe some related work on data-centric sensor networks. In Chapter 3, we propose a dynamic data placement method for multi-dimensional queries on sensor networks. In Chapter 4, we show the performance of the proposed method through experimental results. In Chapter 5, we conclude the paper with some remarks on future work. 2 Related Work In data-centric sensor networks, addressing scheme which determines sensor node to store data is needed. The address (also called the index ) denotes the logical position of data storage, which is used for routing data or queries to target sensors. A popular addressing scheme in the conventional data-centric sensor networks is GHT (Geographic Hash Table) [8]. In the GHT method, data are stored sensor nodes which are determined based on their geographic locations. Although this method is so effective for exact-match queries and prefix queries, it is not efficient for range queries. It is because data objects of similar values are stored into geographically dispersed sensor nodes, and hence partial queries should be transmitted over many sensor nodes in the network for range-query processing. In the DIM (Distributed Index for Multi-dimensional data) approach [5], the geographic area of sensor networks are iteratively divided by X-dimension and Y- dimension in an alternative way until there remains one sensor node for a region. Then, the data space is partitioned and assigned into the geographic regions of sensor nodes. Differently from GHT, DIM assigns data objects of similar values into geo-

3 422 J.Y. Lee et al. graphically near sensor nodes. This improves energy-efficiency for range-query processing because the number of communications between sensor nodes is reduced compared with GHT. However, since the sensor nodes are deployed in a not-controlled manner, the data region assignments of sensor nodes cannot be guaranteed to be balanced. (In Figure 1(b), you can observe that the data allocation for each sensor node is not equal.) Because the energy-consumption of sensor nodes for query processing is in proportion to the amount of data it stores, non-uniform data assignment to sensor nodes will cause non-uniform energy-consumption between sensor nodes, which results in shortening the lifetime of the sensor networks. zœ š Gkˆ ˆ h ŒššG z ˆŠŒ zœ š G uœ ž š OˆPGno{ O PGkpt Fig. 1. Data Distribution in GHT and DIM Methods 3 The Proposed Method Our solution for dynamic distribution of sensor data consists of the following steps: (1) We construct a single dimensional address space of sensor nodes (i.e., linearization of sensor nodes) through a zigzag traversing such that geographically near nodes are located near in the linear address space. (2) We transform the multi-dimensional data space into a single dimensional data space (i.e., linearization of data space) using Hilbert space-filling curves. (3) Initially, the data regions on the one dimensional data space are uniformly assigned into one dimensional address space of sensor nodes. Then, during the lifetime of the sensor networks, parts of data regions initially allocated to sensor nodes are dynamically migrated to near sensor nodes based on the workload of sensor nodes. 3.1 Construction of One Dimensional Address Space of Sensor Nodes If we assign data regions into sensor nodes based on geographic positions as in DIM, the amount of data allocated to sensor nodes may be unbalanced. This causes the

4 Data Storage in Sensor Networks for Multi-dimensional Range Queries 423 energy-consumption of some nodes that covers relatively large data regions to be more than the others, which leads to shortening the lifetime of entire sensor networks. For addressing sensor nodes without geographic position information, we construct a linear address space of sensor nodes through zigzag traversing. The zigzag traversing allows sensor nodes which are deployed geographically near to be assigned near addresses in the linear address space. The procedure for zigzag traversing is shown in Figure 2. All nodes are initially assigned level numbers through constructing a spanning tree via flooding (See Figure 3(a)). A level number denotes the number of hops needed for reaching the node from an outer point. After complete level numbering, we traverse the sensor nodes in a zigzag way. The sequence of traverse becomes the one dimensional address space of sensor nodes, where the start node is numbered as 1. Figure 3(b) shows an example of zigzag traversing. In the figure, sensor node a has three same-level neighbors (node b, c and d ). According to Step 1.A of Figure 2, node b is selected. 1. Choose a sensor node in the lowest level among ne ighboring sensor nodes. A. When there are multiple candidates (i.e., the same level), choose a sensor the number of neig hbors of which is minimal. (This is a heuristic for selecting outlier nodes first.) i. When there are still multiple candidates (i.e., the same level and the same number of neighbors), choose the nearest one 2. When no more neighbor node exists, we backtrack o n the traversed path and checked if there are still not-chosen neighboring sensor nodes. If any, we proc eed to the above Step1 from that node. 3. When we backtrack to the start node (i.e., number 1 node), the traversal is terminated. Fig. 2. The Algorithm of Zigzag Traversing sœœ GX sœœ GY sœœ GZ sœœ G[ X Y _ [ Z ^ ` \ ] XW XY XX OˆPGsŒŒ Guœ Œ Ž O PGŽ ˆŽG{ ˆŒ š Ž Fig. 3. Generation of Linear Address Space by Zigzag Traversing of Sensor Networks

5 424 J.Y. Lee et al. 3.2 Transforming Multi-dimensional Data Space into One Dimensional Data Space In this paper, we consider multi-attribute sensor data (e.g., temperature, humidity, air pressure, lightness and so on) on which multi-dimensional range queries are processed. In order to store multi-dimensional data into sensor nodes, we transform the multi-dimensional data space into one dimensional one. For this purpose, we use a popular space-filling curve, called the Hilbert curve. It is known that the Hilbert curve has the best locality-preserving characteristic among many space-filling curves such as Z-ordering, Peano curve, etc [3, 6]. Since the Hilbert curve method assumes a normalized data space, we have to normalize the sensor data. In this paper we assume that sensor nodes are aware of all domains of sensor data space, and compute the normalized values as a N = (a a MIN ) / (a MAX a MIN ), where a is the measured data, a N is normalized data value of a, a MIN is the minimum value of the attribute, and a MAX is the maximum value. 3.3 Data Allocation and Dynamic Adjustment After generating linear address space of sensor nodes via zigzag traversing and linear data space via Hilbert curve, we map the data regions evenly into sensor nodes as in Figure 4. Since both the zigzag traversing and Hilbert space-filling curve tend to preserve the locality property, this data placement on sensor nodes also has good clustering effects on range queries. For example, in Figure 4, data regions 31~34 which are adjacent with each other in the original multi-dimensional data space are actually allocated in neighboring sensor nodes 4 and 5. This entails low cost when a range query includes data regions 31~34 is processed, since partial queries need not be delivered to other far-away nodes Sensor Networks ~8 9~16 17~24 25~32 33~40 41~48 49~56 57~64 Addresses Humidity Temperature Fig. 4. Allocation of Data Regions to Sensor Nodes 0 1 Light Multi-dimensional Data Space

6 Data Storage in Sensor Networks for Multi-dimensional Range Queries 425 The above allocation of data is fair when the workload on every data regions is uniform, since the amount of data space allocated to each sensor node is equal. However, according to specific characteristics of attributes, some data regions will be highly accessed than other regions. Query patterns are also dynamically changed during the lifetime of sensor networks. If the workload of sensor nodes is not uniform, the energy-consumption could be skewed. For the purpose of balancing the workload of sensor nodes, which is the goal of our proposed method, we dynamically adjust the data regions allocated to sensor nodes based on the current workload of sensor nodes. Region Adjustment for Overloaded Sensor Nodes For balancing the workload, we have to measure the amount of load of a sensor node in a quantitative way. Based on the assumption that the amount of energy consumption of a sensor node primarily depends on the amount of data it has stored and the frequency of queries it has processed, we define the load of a sensor node as follows: Definition 1. The load(l i ) of sensor node i is defined as L i = j e j q j, where j are the data regions allocated to sensor node i, e j is the amount of data region j, and q j is the frequency of queries for j. In the paper, we use the following two terms, neighboring sensor and adjacent sensor. The neighboring sensor denotes the sensor which is connected directly i.e., located in a single hop communication range. The adjacent node denotes the sensor node whose data region is adjacent. Usually, the adjacent node of a sensor node is chosen among its neighboring nodes. When a node is overloaded, its two adjacent nodes will take parts of data of the overloaded node for load balancing. The state of overloaded means the sensor has been consuming relatively more energy than the other sensors. In the proposed method, dynamic adjustment of data regions between sensor nodes is activated by detection of any overloaded sensor nodes. In this paper, we define the criteria of being overloaded as follows: Compared with the initial amount of energy in the battery and the amount of storage space, when the amount of currently remained energy or the amount of currently available free storage space are below the half of initial ones, we call those sensor nodes are overloaded. (The criteria can be modified according to target environments and applications.) When adjusting data regions of sensor nodes, parts of data regions of overloaded sensor nodes are distributed into their adjacent nodes. Here, the amount of data for migration is determined according to the relative loads of overloaded node and its adjacent nodes. Definition 2. The amount of data space ( pq ) to be transferred from sensor node p to sensor node q is as follows: (Here, p max and p min are the max/min addresses (on the 1- dimensional address space) for sensor node p, L p and L q are the amount of load of sensor nodes p and q, respectively. pq = p p 2 L L L max min p q p

7 426 J.Y. Lee et al. When data transfer is performed on two (i.e., left and right) adjacent nodes, these nodes might be overloaded due to the transferred data. Then, those nodes can also transfer parts of their data to their adjacent nodes progressively. For example, in Figure 5, some data are transferred from n 3 (initially overloaded sensor node) to node n 2 and n 4, then n 2 and n 4 can send parts of their data to n 1 and n 5, respectively. h ŒššG z ˆŠŒ W X Y Z [ vœ ˆ Œ Fig. 5. Data Transfer for Overloaded Sensor Nodes 4 Performance Experiments We have conducted simulation experiments for evaluating the performance of our approach compared with the previous one. We set the size of area for deploying 300 sensor nodes as 800m x 800m, where a sensor node has 14 neighbor nodes (in average) within its radio coverage 100m. A data record in a sensor consists of 5 attributes, and a sensor node contains 100 data records at the beginning. We have conducted the experiment until a failure of sensor node is occurred. We have generated multidimensional range queries which cover 5%, 10% and 20% of data space in a normalized way and in randomly chosen sensor nodes. The amount of energy consumption is determined by the number of message hops multiplied by the number of bytes for each message. In this experiment, the energy consumption for data storage is ignored for convenience. Energy Consumption In DIM, when two sensor nodes are located very closely, one sensor is assigned a very big region of data space while the other is assigned a small one. Observed through experiments, the size of maximum region assignment is 5 times bigger than that of the average one. This unbalanced region assignment leads to the increase of differences of energy consumption between sensor nodes, which results in shortening the lifetime of overall networks. Figure 6 shows the comparison result of energy consumption of our method and the DIM, where the data records are uniformly generated over the entire data space, and range queries access the data space uniformly. The results indicate energy consumption ratios of sensor nodes at the time when a sensor node has failed due to ex-

8 Data Storage in Sensor Networks for Multi-dimensional Range Queries 427 haustion of its energy. The DIM method has many highly consumed nodes compared with our method. We have tested a non-uniform setting, where data generation follows a normal distribution with the mean value of 0.5 and the standard deviation of 0.1, and also the query generation is based on the normal distribution of 0 and 0.1. Figure 7 shows the result of experiment, where we have measured the energy consumption ratios of sensor nodes at the time when 10% of the sensor nodes in our method are failed. (Here, we sort the id s of sensor nodes for readers convenience.) In the result we can see that more than half of the sensor nodes in DIM have consumed most of their energy at the time of 10% node failure whereas our sensor nodes consume relatively little energy. Fig. 6. Energy Consumption Ratios under Uniform Data and Queries Node Energy Consumption(%) Ours DIM sensor id Fig. 7. Energy Consumption Ratios under Non-uniform Data and Queries Network Lifetime Figure 8 shows the network lifetime (in terms of unit time) comparison result of our method and DIM. As you can see in the figure, the lifetime until one node failure of DIM is very short compared with ours. This indicates that DIM is not appropriate for mission-critical applications where a single node failure would not be admitted. By the time of 15% node failure, our method survives longer (about 150%) than DIM.

9 428 J.Y. Lee et al. Fig. 8. Network Lifetime according to Node Failure Ratios 5 Conclusion In data-centric sensor networks, the lifetime significantly depends on data placement (or distribution). The use of hash functions is effective for load balancing since it distributes (i.e., de-cluster) data over the entire network. However, it is inefficient for range queries since many sensor nodes must be involved for the query processing. In other aspects, the previous approach DIM for range query processing did not consider load balancing on sensor nodes, which results in differences of energy consumption between sensor nodes and thus short network lifetime. In this paper we have proposed a new data storage method which balances workloads of sensor nodes, and thus improves overall network life time. We have constructed the address space of sensor nodes by using zigzag traversing, and assigned the linearly transformed (via Hilbert curves) data space on it. Since this approach assigns adjacent addresses onto neighboring sensor nodes, (multi-dimensional) range queries can be efficiently processed. In addition, the dynamic and progressive update of address assignments effectively copes with the changes of workloads and balances energy consumption ratios of sensor nodes. Through simulation experiments, we have shown that the proposed approach efficiently balances the energy-consumption of sensor nodes and improve the lifetime of sensor networks. We in the paper considered that the data are stored on sensor nodes in a nonreplicated way. For future work, we will investigate on data replication in sensor networks and query processing over replicated data. If some replication of data between sensor nodes is allowable, the performance of query processing and the availability of sensor database will be significantly improved. Acknowledgement This work was done as a part of Information & Communication Fundamental Technology Research Program, supported by Ministry of Information & Communication in Republic of Korea.

10 Data Storage in Sensor Networks for Multi-dimensional Range Queries 429 References [1] Bhardwaj, M.. and Chandrakasan, A. P. Bounding the Lifetime of Sensor Networks Via Optimal Role Assignments, IEEE INFOCOM [2] Greenstein, B. et. al. DIFS: A Distributed Index for Features in Sensor Networks, Elsevier Journal of Ad Hoc Networks, [3] Jagadish, H. V., Linear clustering of objects with multiple attributes, International Conference on Management of Data, Proceedings of the ACM SIGMOD [4] Karp, B. and Kung, H. Greedy Perimeter Stateless Routing In Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing, pp. 243~254, [5] Li, X. et. al. Multi-dimensional Range Queries in Sensor Networks, Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 63~75, [6] Moon, B. et. al. Analysis of the clustering properties of Hilbert space-filling curve. IEEE Trans. on Knowledge and Data Engineering, pp 124~141, [7] Newsome, J. and Song, D. GEM: Graph EMbedding for Routing and Data-Centric Storage in Sensor Networks without Geographic Information. SenSys [8] Ratnasamy, S. et. al. Data-Centric Storage in Sensornets with GHT, a Geographic Hash Table, Mobile Networks and Applications, 8, pp , 2003.

Zone Sharing: A Hot-Spots Decomposition Scheme for Data-Centric Storage in Sensor Networks

Zone Sharing: A Hot-Spots Decomposition Scheme for Data-Centric Storage in Sensor Networks Zone Sharing: A Hot-Spots Decomposition Scheme for Data-Centric Storage in Sensor Networks Mohamed Aly, Nicholas Morsillo, Panos K. Chrysanthis, and Kirk Pruhs Department of Computer Science University

More information

Probabilistic Modeling of Leach Protocol and Computing Sensor Energy Consumption Rate in Sensor Networks

Probabilistic Modeling of Leach Protocol and Computing Sensor Energy Consumption Rate in Sensor Networks Probabilistic Modeling of Leach Protocol and Computing Sensor Energy Consumption Rate in Sensor Networks Dezhen Song CS Department, Texas A&M University Technical Report: TR 2005-2-2 Email: dzsong@cs.tamu.edu

More information

CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level

CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level Ali Abdi Seyedkolaei 1 and Ali Zakerolhosseini 2 1 Department of Computer, Shahid Beheshti University, Tehran,

More information

Distributed Indexing and Data Dissemination in Large Scale Wireless Sensor Networks

Distributed Indexing and Data Dissemination in Large Scale Wireless Sensor Networks Distributed Indexing and Data Dissemination in Large Scale Wireless Sensor Networks Yiwei Wu Department of Computer Science Georgia State University Email: wyw@cs.gsu.edu Yingshu Li Department of Computer

More information

Location-aware In-Network Monitoring in Wireless Sensor Networks

Location-aware In-Network Monitoring in Wireless Sensor Networks Location-aware In-Network Monitoring in Wireless Sensor Networks Volker Turau and Christoph Weyer Department of Telematics, Technische Universität Hamburg-Harburg Schwarzenbergstraße 95, 21073 Hamburg,

More information

Energy-efficient Data Dissemination in Wireless Sensor Networks

Energy-efficient Data Dissemination in Wireless Sensor Networks Energy-efficient Data Dissemination in Wireless Sensor Networks Ji-Han Jiang 1 Kuo-Hua Kao 2 Singing ee 2 1 Department of Computer Science and Information Engineering National Formosa University, Yun-in,

More information

ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing

ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing Jaekwang Kim Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon,

More information

New Join Operator Definitions for Sensor Network Databases *

New Join Operator Definitions for Sensor Network Databases * Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 41 New Join Operator Definitions for Sensor Network Databases * Seungjae

More information

The Impact of Clustering on the Average Path Length in Wireless Sensor Networks

The Impact of Clustering on the Average Path Length in Wireless Sensor Networks The Impact of Clustering on the Average Path Length in Wireless Sensor Networks Azrina Abd Aziz Y. Ahmet Şekercioğlu Department of Electrical and Computer Systems Engineering, Monash University, Australia

More information

An Energy Efficiency Routing Algorithm of Wireless Sensor Network Based on Round Model. Zhang Ying-Hui

An Energy Efficiency Routing Algorithm of Wireless Sensor Network Based on Round Model. Zhang Ying-Hui Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) An Energy Efficiency Routing Algorithm of Wireless Sensor Network Based on Round Model Zhang Ying-Hui Software

More information

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS YINGHUI QIU School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, 102206, China ABSTRACT

More information

Ameliorate Threshold Distributed Energy Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks

Ameliorate Threshold Distributed Energy Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks Vol. 5, No. 5, 214 Ameliorate Threshold Distributed Energy Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks MOSTAFA BAGHOURI SAAD CHAKKOR ABDERRAHMANE HAJRAOUI Abstract Ameliorating

More information

The Research of Data Storage and Retrieval Scheme for Wireless Sensor Networks

The Research of Data Storage and Retrieval Scheme for Wireless Sensor Networks The Research of Data Storage and Retrieval Scheme for Wireless Sensor Networks Yan Liu 1 *, Weiliang Tao 1, Kai Liu 2 *, Ying Xu 2 1 School of Electronic Information,Wuhan University, P.R.China 2 State

More information

ScienceDirect. Analogy between immune system and sensor replacement using mobile robots on wireless sensor networks

ScienceDirect. Analogy between immune system and sensor replacement using mobile robots on wireless sensor networks Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 35 (2014 ) 1352 1359 18 th International Conference in Knowledge Based and Intelligent Information & Engineering Systems

More information

Mitigating Hot Spot Problems in Wireless Sensor Networks Using Tier-Based Quantification Algorithm

Mitigating Hot Spot Problems in Wireless Sensor Networks Using Tier-Based Quantification Algorithm BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 1 Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2016-0005 Mitigating Hot Spot Problems

More information

Efficient Cluster Based Data Collection Using Mobile Data Collector for Wireless Sensor Network

Efficient Cluster Based Data Collection Using Mobile Data Collector for Wireless Sensor Network ISSN (e): 2250 3005 Volume, 06 Issue, 06 June 2016 International Journal of Computational Engineering Research (IJCER) Efficient Cluster Based Data Collection Using Mobile Data Collector for Wireless Sensor

More information

EBRP: Energy Band based Routing Protocol for Wireless Sensor Networks

EBRP: Energy Band based Routing Protocol for Wireless Sensor Networks EBRP: Energy Band based Routing Protocol for Wireless Sensor Networks Sasanka Madiraju Cariappa Mallanda #Rajgopal Kannan Arjan Durresi S.S.Iyengar {madiraju, Cariappa, rkannan, Durresi, iyengar}@csc.lsu.edu

More information

On Distributed Algorithms for Maximizing the Network Lifetime in Wireless Sensor Networks

On Distributed Algorithms for Maximizing the Network Lifetime in Wireless Sensor Networks On Distributed Algorithms for Maximizing the Network Lifetime in Wireless Sensor Networks Akshaye Dhawan Georgia State University Atlanta, Ga 30303 akshaye@cs.gsu.edu Abstract A key challenge in Wireless

More information

Energy-Efficient Communication Protocol for Wireless Micro-sensor Networks

Energy-Efficient Communication Protocol for Wireless Micro-sensor Networks Energy-Efficient Communication Protocol for Wireless Micro-sensor Networks Paper by: Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan Outline Brief Introduction on Wireless Sensor

More information

Minimum Overlapping Layers and Its Variant for Prolonging Network Lifetime in PMRC-based Wireless Sensor Networks

Minimum Overlapping Layers and Its Variant for Prolonging Network Lifetime in PMRC-based Wireless Sensor Networks Minimum Overlapping Layers and Its Variant for Prolonging Network Lifetime in PMRC-based Wireless Sensor Networks Qiaoqin Li 12, Mei Yang 1, Hongyan Wang 1, Yingtao Jiang 1, Jiazhi Zeng 2 1 Department

More information

Mobile Data Gathering With Load Balanced Clustering and Dual Data Uploading In Wireless Sensor Networks

Mobile Data Gathering With Load Balanced Clustering and Dual Data Uploading In Wireless Sensor Networks Mobile Data Gathering With Load Balanced Clustering and Dual Data Uploading In Wireless Sensor Networks 1 Mr. Shankargouda Biradar, 2 Mrs. Sarala D.V. 2 Asst.Professor, 1,2 APS college of Engg Bangalore,

More information

Novel Cluster Based Routing Protocol in Wireless Sensor Networks

Novel Cluster Based Routing Protocol in Wireless Sensor Networks ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 32 Novel Cluster Based Routing Protocol in Wireless Sensor Networks Bager Zarei 1, Mohammad Zeynali 2 and Vahid Majid Nezhad 3 1 Department of Computer

More information

A Gateway Selections Using Signal Strength among Clusters in Ad Hoc Networks

A Gateway Selections Using Signal Strength among Clusters in Ad Hoc Networks A Gateway Selections Using Signal Strength among Clusters in Ad Hoc Networks Mary Wu 1, ChongGun Kim 1 1*, HeeJoo park 1 Dept. of Computer Eng., Yeungnam Univ., Korea Dept. of Cyber Security., Kyungil

More information

OPTIMIZED TASK ALLOCATION IN SENSOR NETWORKS

OPTIMIZED TASK ALLOCATION IN SENSOR NETWORKS OPTIMIZED TASK ALLOCATION IN SENSOR NETWORKS Ali Bagherinia 1 1 Department of Computer Engineering, Islamic Azad University-Dehdasht Branch, Dehdasht, Iran ali.bagherinia@gmail.com ABSTRACT In this paper

More information

Load Sharing in Peer-to-Peer Networks using Dynamic Replication

Load Sharing in Peer-to-Peer Networks using Dynamic Replication Load Sharing in Peer-to-Peer Networks using Dynamic Replication S Rajasekhar, B Rong, K Y Lai, I Khalil and Z Tari School of Computer Science and Information Technology RMIT University, Melbourne 3, Australia

More information

2. REVIEW OF RELATED RESEARCH WORK. 2.1 Methods of Data Aggregation

2. REVIEW OF RELATED RESEARCH WORK. 2.1 Methods of Data Aggregation ata Aggregation in Wireless Sensor Networks with Minimum elay and Minimum Use of Energy: A comparative Study Bushra Qayyum Mohammed Saeed Jason Roberts Ph Student ean of Research Senior Lecturer University

More information

Target Tracking in Wireless Sensor Network

Target Tracking in Wireless Sensor Network International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 6 (2014), pp. 643-648 International Research Publications House http://www. irphouse.com Target Tracking in

More information

Mobile Sink to Track Multiple Targets in Wireless Visual Sensor Networks

Mobile Sink to Track Multiple Targets in Wireless Visual Sensor Networks Mobile Sink to Track Multiple Targets in Wireless Visual Sensor Networks William Shaw 1, Yifeng He 1, and Ivan Lee 1,2 1 Department of Electrical and Computer Engineering, Ryerson University, Toronto,

More information

ALL ABOUT DATA AGGREGATION IN WIRELESS SENSOR NETWORKS

ALL ABOUT DATA AGGREGATION IN WIRELESS SENSOR NETWORKS e-issn 2455 1392 Volume 1 Issue 1, November 2015 pp. 1-7 http://www.ijcter.com ALL ABOUT DATA AGGREGATION IN WIRELESS SENSOR NETWORKS Komal Shah 1, Heena Sheth 2 1,2 M. S. University, Baroda Abstract--

More information

Impact of Black Hole and Sink Hole Attacks on Routing Protocols for WSN

Impact of Black Hole and Sink Hole Attacks on Routing Protocols for WSN Impact of Black Hole and Sink Hole Attacks on Routing Protocols for WSN Padmalaya Nayak V. Bhavani B. Lavanya ABSTRACT With the drastic growth of Internet and VLSI design, applications of WSNs are increasing

More information

Reliable Time Synchronization Protocol for Wireless Sensor Networks

Reliable Time Synchronization Protocol for Wireless Sensor Networks Reliable Time Synchronization Protocol for Wireless Sensor Networks Soyoung Hwang and Yunju Baek Department of Computer Science and Engineering Pusan National University, Busan 69-735, South Korea {youngox,yunju}@pnu.edu

More information

IMPROVING THE DATA COLLECTION RATE IN WIRELESS SENSOR NETWORKS BY USING THE MOBILE RELAYS

IMPROVING THE DATA COLLECTION RATE IN WIRELESS SENSOR NETWORKS BY USING THE MOBILE RELAYS IMPROVING THE DATA COLLECTION RATE IN WIRELESS SENSOR NETWORKS BY USING THE MOBILE RELAYS 1 K MADHURI, 2 J.KRISHNA, 3 C.SIVABALAJI II M.Tech CSE, AITS, Asst Professor CSE, AITS, Asst Professor CSE, NIST

More information

Extending Network Lifetime of Clustered-Wireless Sensor Networks Based on Unequal Clustering

Extending Network Lifetime of Clustered-Wireless Sensor Networks Based on Unequal Clustering 96 IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016 Extending Network Lifetime of Clustered-Wireless Sensor Networks Based on Unequal Clustering Arunkumar V

More information

An Efficient Data-Centric Routing Approach for Wireless Sensor Networks using Edrina

An Efficient Data-Centric Routing Approach for Wireless Sensor Networks using Edrina An Efficient Data-Centric Routing Approach for Wireless Sensor Networks using Edrina Rajasekaran 1, Rashmi 2 1 Asst. Professor, Department of Electronics and Communication, St. Joseph College of Engineering,

More information

Power Aware Metrics for Wireless Sensor Networks

Power Aware Metrics for Wireless Sensor Networks Power Aware Metrics for Wireless Sensor Networks Ayad Salhieh Department of ECE Wayne State University Detroit, MI 48202 ai4874@wayne.edu Loren Schwiebert Department of Computer Science Wayne State University

More information

Localized and Incremental Monitoring of Reverse Nearest Neighbor Queries in Wireless Sensor Networks 1

Localized and Incremental Monitoring of Reverse Nearest Neighbor Queries in Wireless Sensor Networks 1 Localized and Incremental Monitoring of Reverse Nearest Neighbor Queries in Wireless Sensor Networks 1 HAI THANH MAI AND MYOUNG HO KIM Department of Computer Science Korea Advanced Institute of Science

More information

Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge of Applications and Network

Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge of Applications and Network International Journal of Information and Computer Science (IJICS) Volume 5, 2016 doi: 10.14355/ijics.2016.05.002 www.iji-cs.org Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge

More information

Energy-Efficient Dynamic Query Routing Tree Algorithm for Wireless Sensor Networks

Energy-Efficient Dynamic Query Routing Tree Algorithm for Wireless Sensor Networks Energy-Efficient Dynamic Query Routing Tree Algorithm for Wireless Sensor Networks Si Gwan Kim Dept. of Computer Software Kumoh Nat l Inst. of Technology Gumi, Korea Abstract To exploit in answering queries

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN: Fast Data Collection with Reduced Interference and Increased Life Time in Wireless Sensor Networks Jayachandran.J 1 and Ramalakshmi.R 2 1 M.Tech Network Engineering, Kalasalingam University, Krishnan koil.

More information

Research Article A Data Gathering Method Based on a Mobile Sink for Minimizing the Data Loss in Wireless Sensor Networks

Research Article A Data Gathering Method Based on a Mobile Sink for Minimizing the Data Loss in Wireless Sensor Networks Distributed Sensor Networks, Article ID 90636, 7 pages http://dx.doi.org/10.1155/014/90636 Research Article A Gathering Method Based on a Mobile Sink for Minimizing the Loss in Wireless Sensor Networks

More information

High Speed Data Collection in Wireless Sensor Network

High Speed Data Collection in Wireless Sensor Network High Speed Data Collection in Wireless Sensor Network Kamal Kr. Gola a, *, Bhumika Gupta b, Zubair Iqbal c a Department of Computer Science & Engineering, Uttarakhand Technical University, Uttarakhand,

More information

Energy-efficient routing algorithms for Wireless Sensor Networks

Energy-efficient routing algorithms for Wireless Sensor Networks Energy-efficient routing algorithms for Wireless Sensor Networks Chao Peng Graduate School of Information Science Japan Advanced Institute of Science and Technology March 8, 2007 Presentation Flow Introduction

More information

Decomposing Data-Centric Storage Query Hot-Spots in Sensor Networks

Decomposing Data-Centric Storage Query Hot-Spots in Sensor Networks Decomposing Data-Centric Storage Query Hot-Spots in Sensor Networks Mohamed Aly Panos K. Chrysanthis Kirk Pruhs Department of Computer Science University of Pittsburgh Pittsburgh, PA 15260, USA {maly,

More information

Comparison of TDMA based Routing Protocols for Wireless Sensor Networks-A Survey

Comparison of TDMA based Routing Protocols for Wireless Sensor Networks-A Survey Comparison of TDMA based Routing Protocols for Wireless Sensor Networks-A Survey S. Rajesh, Dr. A.N. Jayanthi, J.Mala, K.Senthamarai Sri Ramakrishna Institute of Technology, Coimbatore ABSTRACT One of

More information

Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning

Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning Brad Karp Berkeley, CA bkarp@icsi.berkeley.edu DIMACS Pervasive Networking Workshop 2 May, 2 Motivating Examples Vast

More information

Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator

Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator Ashika R. Naik Department of Electronics & Tele-communication, Goa College of Engineering (India) ABSTRACT Wireless

More information

Maximum Coverage Range based Sensor Node Selection Approach to Optimize in WSN

Maximum Coverage Range based Sensor Node Selection Approach to Optimize in WSN Maximum Coverage Range based Sensor Node Selection Approach to Optimize in WSN Rinku Sharma 1, Dr. Rakesh Joon 2 1 Post Graduate Scholar, 2 Assistant Professor, Department of Electronics and Communication

More information

Wireless Sensor Networks Localization Methods: Multidimensional Scaling vs. Semidefinite Programming Approach

Wireless Sensor Networks Localization Methods: Multidimensional Scaling vs. Semidefinite Programming Approach Wireless Sensor Networks Localization Methods: Multidimensional Scaling vs. Semidefinite Programming Approach Biljana Stojkoska, Ilinka Ivanoska, Danco Davcev, 1 Faculty of Electrical Engineering and Information

More information

Optimized Coverage and Efficient Load Balancing Algorithm for WSNs-A Survey P.Gowtham 1, P.Vivek Karthick 2

Optimized Coverage and Efficient Load Balancing Algorithm for WSNs-A Survey P.Gowtham 1, P.Vivek Karthick 2 Optimized Coverage and Efficient Load Balancing Algorithm for WSNs-A Survey P.Gowtham 1, P.Vivek Karthick 2 1 PG Scholar, 2 Assistant Professor Kathir College of Engineering Coimbatore (T.N.), India. Abstract

More information

Energy Aware Location Based Routing Protocols in Wireless Sensor Networks

Energy Aware Location Based Routing Protocols in Wireless Sensor Networks Available online at www.worldscientificnews.com WSN 124(2) (2019) 326-333 EISSN 2392-2192 SHORT COMMUNICATION Energy Aware Location Based Routing Protocols in Wireless Sensor Networks ABSTRACT Kalpna Guleria

More information

(EBHCR) Energy Balancing and Hierarchical Clustering Based Routing algorithm for Wireless Sensor Networks

(EBHCR) Energy Balancing and Hierarchical Clustering Based Routing algorithm for Wireless Sensor Networks Australian Journal of Basic and Applied Sciences, 5(9): 1376-1380, 2011 ISSN 1991-8178 (EBHCR) Energy Balancing and Hierarchical Clustering Based Routing algorithm for Wireless Sensor Networks 1 Roghaiyeh

More information

Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web

Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web TR020701 April 2002 Erbil Yilmaz Department of Computer Science The Florida State University Tallahassee, FL 32306

More information

VIRTUAL FORCE ALGORITHM AND CUCKOO SEARCH ALGORITHM FOR NODE PLACEMENT TECHNIQUE IN WIRELESS SENSOR NETWORK

VIRTUAL FORCE ALGORITHM AND CUCKOO SEARCH ALGORITHM FOR NODE PLACEMENT TECHNIQUE IN WIRELESS SENSOR NETWORK VIRTUAL FORCE ALGORITHM AND CUCKOO SEARCH ALGORITHM FOR NODE PLACEMENT TECHNIQUE IN WIRELESS SENSOR NETWORK Puteri Azwa Ahmad 1, M. Mahmuddin 2, and Mohd Hasbullah Omar 3 1 Politeknik Tuanku Syed Sirajuddin,

More information

Mobile Agent Driven Time Synchronized Energy Efficient WSN

Mobile Agent Driven Time Synchronized Energy Efficient WSN Mobile Agent Driven Time Synchronized Energy Efficient WSN Sharanu 1, Padmapriya Patil 2 1 M.Tech, Department of Electronics and Communication Engineering, Poojya Doddappa Appa College of Engineering,

More information

904 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 4, AUGUST 2008

904 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 4, AUGUST 2008 904 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 4, AUGUST 2008 Optimizing Lifetime for Continuous Data Aggregation With Precision Guarantees in Wireless Sensor Networks Xueyan Tang, Member, IEEE,

More information

Reducing Computation Complexity in Interference-aware Energy-efficient Geographical Routing for Low Rate Wireless Personal Area Networks

Reducing Computation Complexity in Interference-aware Energy-efficient Geographical Routing for Low Rate Wireless Personal Area Networks International Journal of Computer Applications (975 8887) Volume 55 No.1 October 1 Reducing Computation Complexity in Interference-aware Energy-efficient Geographical Routing for Low Rate Wireless ersonal

More information

6% Writes. 4% Writes. 2% Writes. D e g r e e o f R e p l i c a t i o n

6% Writes. 4% Writes. 2% Writes. D e g r e e o f R e p l i c a t i o n Power-Aware Replication of Data Structures in Distributed Embedded Real-Time Systems? Osman S. Unsal, Israel Koren, C. Mani Krishna Department of Electrical and Computer Engineering University of Massachusetts,

More information

Supporting Multi-Dimensional Range Query for Sensor Networks

Supporting Multi-Dimensional Range Query for Sensor Networks Supporting Multi-Dimensional Range Query for Sensor Networks Yu-Chi Chung I-Fang Su Chiang Lee Department of Computer Science and Information Engineering National Cheng-Kung University, Tainan, Taiwan,

More information

A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK

A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK Md. Nadeem Enam 1, Ozair Ahmad 2 1 Department of ECE, Maulana Azad College of Engineering & Technology, Patna, (India)

More information

An Energy Efficient Clustering in Wireless Sensor Networks

An Energy Efficient Clustering in Wireless Sensor Networks , pp.37-42 http://dx.doi.org/10.14257/astl.2015.95.08 An Energy Efficient Clustering in Wireless Sensor Networks Se-Jung Lim 1, Gwang-Jun Kim 1* and Daehyon Kim 2 1 Department of computer engineering,

More information

Clustering Routing Protocol Based on Location Node in Wireless Sensor Networks

Clustering Routing Protocol Based on Location Node in Wireless Sensor Networks Clustering Routing Protocol Based on Location Node in Wireless Sensor Networks NURHAYATI, KYUNG OH LEE Department of Computer Science Sun Moon University Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam 336-708

More information

Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks

Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks RAFE ALASEM 1, AHMED REDA 2 AND MAHMUD MANSOUR 3 (1) Computer Science Department Imam Muhammad ibn Saud Islamic University

More information

Hierarchical Low Power Consumption Technique with Location Information for Sensor Networks

Hierarchical Low Power Consumption Technique with Location Information for Sensor Networks Hierarchical Low Power Consumption Technique with Location Information for Sensor Networks Susumu Matsumae Graduate School of Science and Engineering Saga University Saga 840-8502, Japan Fukuhito Ooshita

More information

New Optimal Load Allocation for Scheduling Divisible Data Grid Applications

New Optimal Load Allocation for Scheduling Divisible Data Grid Applications New Optimal Load Allocation for Scheduling Divisible Data Grid Applications M. Othman, M. Abdullah, H. Ibrahim, and S. Subramaniam Department of Communication Technology and Network, University Putra Malaysia,

More information

Optimal Multi-sink Positioning and Energy-efficient Routing in Wireless Sensor Networks

Optimal Multi-sink Positioning and Energy-efficient Routing in Wireless Sensor Networks Optimal Multi-sink Positioning and Energy-efficient Routing in Wireless Sensor Networks Haeyong Kim, Yongho Seok, Nakjung Choi, Yanghee Choi, and Taekyoung Kwon School of Computer Science and Engineering

More information

VORONOI LEACH FOR ENERGY EFFICIENT COMMUNICATION IN WIRELESS SENSOR NETWORKS

VORONOI LEACH FOR ENERGY EFFICIENT COMMUNICATION IN WIRELESS SENSOR NETWORKS VORONOI LEACH FOR ENERGY EFFICIENT COMMUNICATION IN WIRELESS SENSOR NETWORKS D. Satyanarayana Department of Electrical and Computer Engineering University of Buraimi Al Buraimi, Sultanate of Oman Sathyashree.

More information

An Analysis of Spatio-Temporal Query Processing in Sensor Networks

An Analysis of Spatio-Temporal Query Processing in Sensor Networks An Analysis of Spatio-Temporal Query Processing in Sensor Networks Alexandru Coman Jörg Sander Mario A. Nascimento Department of Computing Science University of Alberta, Edmonton, Canada {acoman,joerg,mn}@cs.ualberta.ca

More information

Advanced Topics on Wireless Ad Hoc Networks. Lecture 4: Energy-aware Routing Algorithms

Advanced Topics on Wireless Ad Hoc Networks. Lecture 4: Energy-aware Routing Algorithms Advanced Topics on Wireless Ad Hoc Networks Lecture 4: Energy-aware Routing Algorithms Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Efficient Data propagation

More information

MultiHop Routing for Delay Minimization in WSN

MultiHop Routing for Delay Minimization in WSN MultiHop Routing for Delay Minimization in WSN Sandeep Chaurasia, Saima Khan, Sudesh Gupta Abstract Wireless sensor network, consists of sensor nodes in capacity of hundred or thousand, which deployed

More information

An Enhanced Super-Peer System Considering Mobility and Energy in Mobile Environments

An Enhanced Super-Peer System Considering Mobility and Energy in Mobile Environments An Enhanced Super-Peer System Considering Mobility and Energy in Mobile Environments Sun-Kyum Kim, Kwang-Jo Lee, Sung-Bong Yang Departement of Computer Science Yonsei University Repubilc of Korea {skyum,

More information

A Simple Sink Mobility Support Algorithm for Routing Protocols in Wireless Sensor Networks

A Simple Sink Mobility Support Algorithm for Routing Protocols in Wireless Sensor Networks A Simple Mobility Support Algorithm for Routing Protocols in Wireless Sensor Networks Chun-Su Park, You-Sun Kim, Kwang-Wook Lee, Seung-Kyun Kim, and Sung-Jea Ko Department of Electronics Engineering, Korea

More information

A Fuzzy System based Approach to Extend Network Lifetime for En-Route Filtering Schemes in WSNs

A Fuzzy System based Approach to Extend Network Lifetime for En-Route Filtering Schemes in WSNs A Fuzzy System based Approach to Extend Network Lifetime for En-Route Filtering Schemes in WSNs M.K. Shahzad, Member, IEEE, L. Nkenyereye, Member, IEEE, S. M. Riazul Islam, Member, IEEE 1 Authors' Affiliations

More information

Effective Pattern Similarity Match for Multidimensional Sequence Data Sets

Effective Pattern Similarity Match for Multidimensional Sequence Data Sets Effective Pattern Similarity Match for Multidimensional Sequence Data Sets Seo-Lyong Lee, * and Deo-Hwan Kim 2, ** School of Industrial and Information Engineering, Hanu University of Foreign Studies,

More information

Secure Data Collection for Wireless Sensor Networks

Secure Data Collection for Wireless Sensor Networks Secure Data Collection for Wireless Sensor Networks Haengrae Cho 1 and Soo-Young Suck 2 1 Department of Computer Engineering, Yeungnam University, Republic of Korea 2 Department of R&D, Gyeongbuk Institute

More information

Energy Efficient Clustering Protocol for Wireless Sensor Network

Energy Efficient Clustering Protocol for Wireless Sensor Network Energy Efficient Clustering Protocol for Wireless Sensor Network Shraddha Agrawal #1, Rajeev Pandey #2, Mahesh Motwani #3 # Department of Computer Science and Engineering UIT RGPV, Bhopal, India 1 45shraddha@gmail.com

More information

II. CLASSIFICATION OF ROUTING PROTOCOLS MANET routing protocols are classified into three major categories: proactive, reactive and hybrid.

II. CLASSIFICATION OF ROUTING PROTOCOLS MANET routing protocols are classified into three major categories: proactive, reactive and hybrid. A COMPLETE STUDY ON POWER AWARE ROUTING PROTOCOL FOR MOBILE ADHOC NETWORK A. Kumaravel 1, Dr. M.Chandrasekaran 2 1 (Electronics and Communication Engineering, Paavai Engineering College,India) 2 (Electronics

More information

Supplementary File: Dynamic Resource Allocation using Virtual Machines for Cloud Computing Environment

Supplementary File: Dynamic Resource Allocation using Virtual Machines for Cloud Computing Environment IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS(TPDS), VOL. N, NO. N, MONTH YEAR 1 Supplementary File: Dynamic Resource Allocation using Virtual Machines for Cloud Computing Environment Zhen Xiao,

More information

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks Stephen S. Yau, Wei Gao, and Dazhi Huang Dept. of Computer Science and Engineering Arizona State University Tempe,

More information

A Low-Overhead Hybrid Routing Algorithm for ZigBee Networks. Zhi Ren, Lihua Tian, Jianling Cao, Jibi Li, Zilong Zhang

A Low-Overhead Hybrid Routing Algorithm for ZigBee Networks. Zhi Ren, Lihua Tian, Jianling Cao, Jibi Li, Zilong Zhang A Low-Overhead Hybrid Routing Algorithm for ZigBee Networks Zhi Ren, Lihua Tian, Jianling Cao, Jibi Li, Zilong Zhang Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts

More information

Modulation-Aware Energy Balancing in Hierarchical Wireless Sensor Networks 1

Modulation-Aware Energy Balancing in Hierarchical Wireless Sensor Networks 1 Modulation-Aware Energy Balancing in Hierarchical Wireless Sensor Networks 1 Maryam Soltan, Inkwon Hwang, Massoud Pedram Dept. of Electrical Engineering University of Southern California Los Angeles, CA

More information

A Cluster-Based Energy Balancing Scheme in Heterogeneous Wireless Sensor Networks

A Cluster-Based Energy Balancing Scheme in Heterogeneous Wireless Sensor Networks A Cluster-Based Energy Balancing Scheme in Heterogeneous Wireless Sensor Networks Jing Ai, Damla Turgut, and Ladislau Bölöni Networking and Mobile Computing Research Laboratory (NetMoC) Department of Electrical

More information

Analysis of Deployment Strategies in Wireless Sensor Network (WSN)

Analysis of Deployment Strategies in Wireless Sensor Network (WSN) Analysis of Deployment Strategies in Wireless Sensor Network (WSN) Pratibha. R. Biradar Chitrashree Kurtkoti Yashashree Bendale Abstract The field of wireless networking is experiencing a tremendous growth.

More information

CACHING IN WIRELESS SENSOR NETWORKS BASED ON GRIDS

CACHING IN WIRELESS SENSOR NETWORKS BASED ON GRIDS International Journal of Wireless Communications and Networking 3(1), 2011, pp. 7-13 CACHING IN WIRELESS SENSOR NETWORKS BASED ON GRIDS Sudhanshu Pant 1, Naveen Chauhan 2 and Brij Bihari Dubey 3 Department

More information

Energy Aware and Anonymous Location Based Efficient Routing Protocol

Energy Aware and Anonymous Location Based Efficient Routing Protocol Energy Aware and Anonymous Location Based Efficient Routing Protocol N.Nivethitha 1, G.Balaji 2 1 PG student, 2 Asst.Professor Department of Electronics and Communication Engineering Angel College of Engineering

More information

A Novel Hierarchical Routing Protocol for Wireless Sensor Networks

A Novel Hierarchical Routing Protocol for Wireless Sensor Networks A Novel Hierarchical Routing Protocol for Wireless Sensor Networks TrongThuaHuynh 1 and Choong Seon Hong 2 Department of Computer Science, Kyung Hee University, 1 Seocheon, Giheung, Yongin, Gyeonggi 449-701

More information

Sensor Scheduling for k-coverage in Wireless Sensor Networks

Sensor Scheduling for k-coverage in Wireless Sensor Networks Sensor Scheduling for k-coverage in Wireless Sensor Networks Shan Gao, Chinh T. Vu, and Yingshu Li Department of Computer Science Georgia State University Atlanta, GA 333, USA {sgao, chinhvtr, yli}@cs.gsu.edu

More information

An Energy-aware Greedy Perimeter Stateless Routing Protocol for Mobile Ad hoc Networks

An Energy-aware Greedy Perimeter Stateless Routing Protocol for Mobile Ad hoc Networks An Energy-aware Greedy Perimeter Stateless Routing Protocol for Mobile Ad hoc Networks Natarajan Meghanathan Jackson State University P. O. Box 18839, 1400 J. Lynch Street Jackson, MS 39217, USA ABSTRACT

More information

Image Transmission in Sensor Networks

Image Transmission in Sensor Networks Image Transmission in Sensor Networks King-Shan Lui and Edmund Y. Lam Department of Electrical and Electronic Engineering The University of Hong Kong Pokfulam Road, Hong Kong, China Email {kslui,elam}@eee.hku.hk

More information

End-To-End Delay Optimization in Wireless Sensor Network (WSN)

End-To-End Delay Optimization in Wireless Sensor Network (WSN) Shweta K. Kanhere 1, Mahesh Goudar 2, Vijay M. Wadhai 3 1,2 Dept. of Electronics Engineering Maharashtra Academy of Engineering, Alandi (D), Pune, India 3 MITCOE Pune, India E-mail: shweta.kanhere@gmail.com,

More information

Energy Efficient Data Gathering For Throughput Maximization with Multicast Protocol In Wireless Sensor Networks

Energy Efficient Data Gathering For Throughput Maximization with Multicast Protocol In Wireless Sensor Networks Energy Efficient Data Gathering For Throughput Maximization with Multicast Protocol In Wireless Sensor Networks S. Gokilarani 1, P. B. Pankajavalli 2 1 Research Scholar, Kongu Arts and Science College,

More information

EEEM: An Energy-Efficient Emulsion Mechanism for Wireless Sensor Networks

EEEM: An Energy-Efficient Emulsion Mechanism for Wireless Sensor Networks EEEM: An Energy-Efficient Emulsion Mechanism for Wireless Sensor Networks M.Sudha 1, J.Sundararajan 2, M.Maheswari 3 Assistant Professor, ECE, Paavai Engineering College, Namakkal, Tamilnadu, India 1 Principal,

More information

SDS: Distributed Spatial-Temporal Similarity Data Storage in Wireless Sensor Networks

SDS: Distributed Spatial-Temporal Similarity Data Storage in Wireless Sensor Networks : Distributed Spatial-Temporal Similarity Data Storage in Wireless Sensor Networks Haiying Shen, Ting Li, Lianyu Zhao and Ze Li Department of Computer Science and Computer Engineering University of Arkansas,

More information

Optimization of Ant based Cluster Head Election Algorithm in Wireless Sensor Networks

Optimization of Ant based Cluster Head Election Algorithm in Wireless Sensor Networks Optimization of Ant based Cluster Head Election Algorithm in Wireless Sensor Networks Siddharth Kumar M.Tech Student, Dept of Computer Science and Technology, Central University of Punjab, Punjab, India

More information

Outline. Motivation. Traditional Database Systems. A Distributed Indexing Scheme for Multi-dimensional Range Queries in Sensor Networks

Outline. Motivation. Traditional Database Systems. A Distributed Indexing Scheme for Multi-dimensional Range Queries in Sensor Networks A Distributed Indexing Scheme for Multi-dimensional Range Queries in Sensor Networks Tingjian Ge Outline Introduction and Overview Concepts and Technology Inserting Events into the Index Querying the Index

More information

Data-Centric Routing Mechanism Using Hash-Value in Wireless Sensor Network

Data-Centric Routing Mechanism Using Hash-Value in Wireless Sensor Network Wireless Sensor Network, 2010, 2, 710-717 doi:10.4236/wsn.2010.29086 Published Online September 2010 (http://www.scirp.org/journal/wsn) Data-Centric Routing Mechanism Using Hash-Value in Wireless Sensor

More information

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions R.Thamaraiselvan 1, S.Gopikrishnan 2, V.Pavithra Devi 3 PG Student, Computer Science & Engineering, Paavai College

More information

An Adaptive Self-Organization Protocol for Wireless Sensor Networks

An Adaptive Self-Organization Protocol for Wireless Sensor Networks An Adaptive Self-Organization Protocol for Wireless Sensor Networks Kil-Woong Jang 1 and Byung-Soon Kim 2 1 Dept. of Mathematical and Information Science, Korea Maritime University 1 YeongDo-Gu Dongsam-Dong,

More information

Survey on Reliability Control Using CLR Method with Tour Planning Mechanism in WSN

Survey on Reliability Control Using CLR Method with Tour Planning Mechanism in WSN Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.854

More information

New Active Caching Method to Guarantee Desired Communication Reliability in Wireless Sensor Networks

New Active Caching Method to Guarantee Desired Communication Reliability in Wireless Sensor Networks J. Basic. Appl. Sci. Res., 2(5)4880-4885, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com New Active Caching Method to Guarantee Desired

More information

Nowadays data-intensive applications play a

Nowadays data-intensive applications play a Journal of Advances in Computer Engineering and Technology, 3(2) 2017 Data Replication-Based Scheduling in Cloud Computing Environment Bahareh Rahmati 1, Amir Masoud Rahmani 2 Received (2016-02-02) Accepted

More information