EP2200 Performance analysis of Communication networks. Topic 3 Congestion and rate control

Size: px
Start display at page:

Download "EP2200 Performance analysis of Communication networks. Topic 3 Congestion and rate control"

Transcription

1 EP00 Performance analysis of Communication networks Toic 3 Congestion and rate control

2 Congestion, rate and error control Lecture material: Bertsekas, Gallager, Data networks, 6.- I. Kay, Stochastic modeling, J-Y Le Boudec, Rate adatation, congestion control and fairness: a tutorial, Nov. 005

3 Control functions in communication networks fairness concet congestion control rate control admission control error control delay control Differentiated transm. (congestion control) (error control) (admission control) 3

4 Congestion control To regulate the acket oulation in the network To share resources (link bandwidth, buffer sace) Flow control: between two users for seed matching, sometimes means congestion control in the literature The main objectives of congestion control Efficiency high utilization (from the network rovider s ersective) high er flow throughut, low delay (from users ersective) Fairness: fair allocation of resources 4

5 Congestion control Throughut Queues building u Congestion collase Offered load What haens if the incoming traffic is not restricted? Bottleneck links: the offered traffic is higher than the link transmission caacity: temorarily (bursts arriving) or ermanently What haens at bottleneck links? queue sizes grow, end-to-end delays increase queue sace fills u, ackets get droed ackets are retransmitted by the alications, further increasing the load Congestion collase: the network throughut decreases and delays become excessive 5

6 Congestion control techniques Should deend on the service requirements of the alication voice, video (streaming): minimum bandwidth requirement, some loss is allowed, delay sensitive data (elastic): lossless end-to-end transmission required Call blocking at the network edge + rate control calls blocked if resources are not available the rate of acceted calls is controlled Packet discarding at a network node at buffer overflow or earlier discarding olicy - fairness, service differentiation Packet blocking at the network edge acket waits in a queue outside the network Grou work: select solutions for streaming and for elastic flows find examles for the techniques above 6

7 Congestion control techniques Should deend on the service requirements of the alication voice, video: minimum bandwidth requirement, delay sensitive data: requires strict error control Call blocking at the network edge + rate control calls blocked if resources are not available the rate of acceted calls is controlled Packet discarding at a network node buffer overflow or active queue management discarding olicy - fairness, service differentiation Packet blocking at the network edge acket waits in a queue outside the network 8

8 End-to-end window based congestion control A Data ACK B Basic idea: Window: Uer bound on the number of ackets transmitted by A and not yet acknowledged by B Inut rate reduced if acknowledgements arrive slowly achieves congestion control 9

9 Fixed window based congestion control Congestion is indicated by increased round-tri time (RTT) Simle case: ACK after each acket recetion Window size W is * decremented after each transmission * incremented if ACK arrives Transmission, if W > 0 No lost Data acket or lost ACK Parameters constant maximum window size (W m ) constant acket transmission time (: acket size/link rate [sec]) round-tri time (rtt: roagation, transmission and queuing delays) To calculate: maximum acket transmission rate (r: [acket/sec]) r min Wm, rtt 0

10 Fixed window based congestion control Maximum acket transmission rate (r: [acket/sec]) Parameters constant maximum window size (W m ) constant acket transmission time (: acket size/link rate [sec]) round-tri delay (rtt: roagation, transmission and queuing delays) r min Wm, rtt Rate inversely roortional to round-tri delay Congestion control: large queuing delays large rtt lower rate Large W m allows higher rate if there is no congestion Reacts to congestion in W m ackets transmission time large window means slow reaction to congestion What rtt value means congestion? When should the congestion control be activated? (rttw m )?

11 Window control - acket delay End-to-end acket delay T? Delay: roagation, transmission and waiting at the queues in the multiho ath Queuing analysis in steady state, for given network load Model the network as a black box, aly Little theorem (N T) Assumtion: Constant arrival intensity (er node rate) Infinite buffers, no loss N T n i N λ const W n i n: active flows i i const W λ W i : max window size for flow i N: number of ackets in the network λ: aggregate throughut of all flows (no loss infinite buffers!) i i For constant aggregate throughut (λ) Delay is roortional to the number of active sessions and to the window sizes Large W m - large delay

12 Window control How to select the maximum window size? Small window: OK acket delay, but low throughut (congestion control starts with low rtt) Large window: OK throughut, but high acket delay and long reaction time r min, T n i const i W i λ W rtt Dynamic maximum window sizes are necessary to follow the network load small window if the network is congested large window if the network is low loaded congestion is controlled by the window size not by the rtt But what indicates the congestion: acket dro, increased rtt,? 3

13 Congestion control-dynamic window size How to select the window size? Small window: OK acket delay, but low throughut Large window: OK throughut, but high acket delay Dynamic window sizes are necessary to follow the network load Congestion is controlled by the window size not by the rtt TCP Performance with dynamic window sizes - comes now More realistic models for TCP erformance reading assignment 4

14 TCP congestion control Window based congestion control Dynamic window size: decrease max window size if congestion is detected congestion indicated by acket loss increase max window size if current rate does not cause congestion (e.g., no loss) How to increase and decrease the window sizes? Additive-increase, multilicative decrease (AIMD) Efficient and fair (if all users get the same immediate indication of congestion): Chiu and Jain, 989 Probing - increase hase in each rtt: Congestion - decrease hase: TCP: a0.5, b w i w + + b,0 < b << w i max w i awi,0 < + a < TCP additional hases: slow start, fast recovery not considered now 5

15 Analysis AIDM model Congestion indicator: acket loss (full buffer on the ath) Question: How does the throughut deend on the loss rate? Assumtions for a very simlified case saturated source (always has acket to send) constant background traffic (all other traffic), loss at the same window size loss due to congestion only loss is the only congestion indicator transients negligible (long flows) we model a static congestion avoidance hase constant round tri time (rtt) rtt >> transmission time constant acket size L low loss robability (to simlify calculations) W m W m / W increased to W+ after rtt if there was no loss W decreased to W/ after rtt if there was a loss One acket loss here W ackets transmitted within an rtt t 6

16 7 TCP throughut vs. acket loss Th as a function of and rtt rtt L rtt L rtt L T L N Th N W W W W N rtt W T N N T L N Th m m m m m ) ( , ) ( rtt: round tri time (s) : acket loss robability L: acket length (bit) Th: throughut (bit/s) W m : max achieved window (ackets) T 0 : cycle (s) time between losses N: ackets transmitted in one cycle w(t) t W m W m / T 0

17 TCP throughut vs. acket loss Statement: throughut in steady state varies as the inverse-square-root of the loss rate, and is inversely roortional to the round tri time (this we have seen for fixed window already!) Th 3 L rtt

18 Recall and outline for today Last lecture: Congestion control definition and ossible solutions End-to-end congestion control based on acket blocking at the network edge Fixed window size schemes throughut, delay conflict Dynamic window congestion control Simle AIMD scheme and throughut analysis first stes towards evaluating TCP Todays lecture: Intro for the TCP modeling home reading TCP friendly rate control for delay sensitive traffic Rate control for guaranteed service Home reading: J. Padhye, F. Firoiu, D. Towsley, J. Kurose, "Modeling TCP throughut: a simle model and its emirical validation," Sigcomm, 998 9

19 TCP friendly rate control Some flows can not allow acket blocking at the network edge E.g., streaming voice and video Without congestion control they could monoolize the network by ressing back TCP flows Idea: Rate control: in average the sending rate should be the same as for a TCP flow in the same situation (rtt, loss rate) The alication adats coding rate accordingly Th 3 L rtt

20 Project toics related to TCP Research areas where some of the assumtions are released or discussed: TCP erformance in high bandwidth-delay roduct networks (slow feedback) loss does not mean congestion: TCP over wireless links TCP for short flows (never leave the slow start hase) TCP and self similarity loss distribution among sessions: active queue management for TCP 6

21 Control functions in communication networks fairness concet congestion control rate control admission control error control delay control Differentiated transm. (congestion control) (error control) (admission control) 7

22 Rate control and guaranteed service Contract between the user and the network If the user satisfies a traffic constraint, Then the network rovides delay, delay jitter (and loss) limits Rate control during the connection time Peak rate Average rate Burstiness (e.g., max. number of ackets transmitted without time ga) Window based control (r,t) Rate r ensured in window T (n maximum number of ackets er T: nrt) Juming or sliding window versions Problem: Burstiness: juming: bnrt, sliding: bnrt Max burst size can not be controlled indeendently from r and T Traffic enveloe max transmitted data within any time interval is given by a function b(t) how to imlement it? 8

23 Rate control Leaky-bucket Leaky-bucket scheme Version : average rate and max burst size token buffer size (b) token generation rate (r) ackets from inut enter data buffer, waiting for service acket transmitted to outut if there is a token in the token buffer token removed at acket transmission Result: traffic enveloe: b(t)b+rt average rate: (b+rt)/t Note: from outut the ackets enter a transmission buffer (MAC) Note: t is not the time from the system start, but any interval t during the transmission 9

24 Rate control Leaky-bucket Leaky-bucket scheme Version : eak rate, average rate, burstiness average rate buffer (b) average token generation rate (r) eak rate buffer () eak token generation rate (P>r) ackets from inut enter data buffer, waiting for service acket transmitted to outut if there is at least one token in both token buffers tokens removed at acket transmission Result: traffic enveloe b(t) 30

25 Summary Congestion control to limit the traffic in the network (avoid loss or large delays) window based congestion control AIMD schemes and TCP Rate control to control the average rate, burstiness or eak rate of traffic injected to the network with the goal of roviding service guarantees Solutions window based roblem with rate and burstiness couling traffic enveloe based leaky bucket At home J. Padhye, F. Firoiu, D. Towsley, J. Kurose, "Modeling TCP throughut: a simle model and its emirical validation," Sigcomm, 998 Check the matlab emulator for the Leaky Bucket! 3

Streaming Video and TCP-Friendly Congestion Control

Streaming Video and TCP-Friendly Congestion Control Streaming Video and TCP-Friendly Congestion Control Sugih Jamin Department of EECS University of Michigan jamin@eecs.umich.edu Joint work with: Zhiheng Wang (UofM), Sujata Banerjee (HP Labs) Video Application

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

Resource allocation in networks. Resource Allocation in Networks. Resource allocation

Resource allocation in networks. Resource Allocation in Networks. Resource allocation Resource allocation in networks Resource Allocation in Networks Very much like a resource allocation problem in operating systems How is it different? Resources and jobs are different Resources are buffers

More information

Lecture Outline. Bag of Tricks

Lecture Outline. Bag of Tricks Lecture Outline TELE302 Network Design Lecture 3 - Quality of Service Design 1 Jeremiah Deng Information Science / Telecommunications Programme University of Otago July 15, 2013 2 Jeremiah Deng (Information

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Amin Vahdat, Dina Katabi Lecture 14 Overview" TCP congestion control review XCP Overview 2 Congestion Control

More information

TELE Switching Systems and Architecture. Assignment Week 10 Lecture Summary - Traffic Management (including scheduling)

TELE Switching Systems and Architecture. Assignment Week 10 Lecture Summary - Traffic Management (including scheduling) TELE9751 - Switching Systems and Architecture Assignment Week 10 Lecture Summary - Traffic Management (including scheduling) Student Name and zid: Akshada Umesh Lalaye - z5140576 Lecturer: Dr. Tim Moors

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN)

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) G. S. Ahn, A. T. Campbell, A. Veres, and L. H. Sun IEEE Trans. On Mobile Computing

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

Computer Networking. Queue Management and Quality of Service (QOS)

Computer Networking. Queue Management and Quality of Service (QOS) Computer Networking Queue Management and Quality of Service (QOS) Outline Previously:TCP flow control Congestion sources and collapse Congestion control basics - Routers 2 Internet Pipes? How should you

More information

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long 6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long Please read Chapter 19 of the 6.02 book for background, especially on acknowledgments (ACKs), timers,

More information

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services Overview 15-441 15-441 Computer Networking 15-641 Lecture 19 Queue Management and Quality of Service Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 What is QoS? Queuing discipline and scheduling

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks George Porter Thanks: Amin Vahdat, Dina Katabi and Alex C. Snoeren Lecture 14 Overview" TCP congestion control review Dukkipati

More information

TCP Congestion Control. Lecture 16. Outline. TCP Congestion Control. Additive Increase / Multiplicative Decrease (AIMD)

TCP Congestion Control. Lecture 16. Outline. TCP Congestion Control. Additive Increase / Multiplicative Decrease (AIMD) Lecture 16 TCP Congestion Control Homework 6 Due Today TCP uses ACK arrival as a signal to transmit a new packet. Since connections come-and-go TCP congestion control must be adaptive. TCP congestion control

More information

different problems from other networks ITU-T specified restricted initial set Limited number of overhead bits ATM forum Traffic Management

different problems from other networks ITU-T specified restricted initial set Limited number of overhead bits ATM forum Traffic Management Traffic and Congestion Management in ATM 3BA33 David Lewis 3BA33 D.Lewis 2007 1 Traffic Control Objectives Optimise usage of network resources Network is a shared resource Over-utilisation -> congestion

More information

EP2210 Scheduling. Lecture material:

EP2210 Scheduling. Lecture material: EP2210 Scheduling Lecture material: Bertsekas, Gallager, 6.1.2. MIT OpenCourseWare, 6.829 A. Parekh, R. Gallager, A generalized Processor Sharing Approach to Flow Control - The Single Node Case, IEEE Infocom

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 3 Baochun Li Department of Electrical and Computer Engineering University of Toronto Outline What is scheduling? Why do we need it? Requirements of a scheduling

More information

Bandwidth Allocation & TCP

Bandwidth Allocation & TCP Bandwidth Allocation & TCP The Transport Layer Focus Application Presentation How do we share bandwidth? Session Topics Transport Network Congestion control & fairness Data Link TCP Additive Increase/Multiplicative

More information

Network Management & Monitoring Network Delay

Network Management & Monitoring Network Delay Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) The Internet was originally designed for best-effort service without guarantee of predictable performance. Best-effort service is often sufficient for a traffic that is not sensitive

More information

Congestion Control in Communication Networks

Congestion Control in Communication Networks Congestion Control in Communication Networks Introduction Congestion occurs when number of packets transmitted approaches network capacity Objective of congestion control: keep number of packets below

More information

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED TCP Congestion Control 15-744: Computer Networking L-4 TCP Congestion Control RED Assigned Reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [TFRC] Equation-Based Congestion Control

More information

Congestion control in TCP

Congestion control in TCP Congestion control in TCP If the transport entities on many machines send too many packets into the network too quickly, the network will become congested, with performance degraded as packets are delayed

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

Congestion Control Techniques and Algorithms. CSIT 560 Brahim Bensaou

Congestion Control Techniques and Algorithms. CSIT 560 Brahim Bensaou Congestion Control Techniques and Algorithms CSIT 560 Brahim Bensaou Internet Switches and Routers 2 Internet Routers fulfill essentially two functions Routing Forwarding Congestion 3 Input port queueing:

More information

Congestion in Data Networks. Congestion in Data Networks

Congestion in Data Networks. Congestion in Data Networks Congestion in Data Networks CS420/520 Axel Krings 1 Congestion in Data Networks What is Congestion? Congestion occurs when the number of packets being transmitted through the network approaches the packet

More information

Computer Networking

Computer Networking 15-441 Computer Networking Lecture 17 TCP Performance & Future Eric Anderson Fall 2013 www.cs.cmu.edu/~prs/15-441-f13 Outline TCP modeling TCP details 2 TCP Performance Can TCP saturate a link? Congestion

More information

A Study of Protocols for Low-Latency Video Transport over the Internet

A Study of Protocols for Low-Latency Video Transport over the Internet A Study of Protocols for Low-Latency Video Transort over the Internet Ciro A. Noronha, Ph.D. Cobalt Digital Santa Clara, CA ciro.noronha@cobaltdigital.com Juliana W. Noronha University of California, Davis

More information

Oscillations and Buffer Overflows in Video Streaming under Non- Negligible Queuing Delay

Oscillations and Buffer Overflows in Video Streaming under Non- Negligible Queuing Delay Oscillations and Buffer Overflows in Video Streaming under Non- Negligible Queuing Delay Presented by Seong-Ryong Kang Yueping Zhang and Dmitri Loguinov Department of Computer Science Texas A&M University

More information

CS 268: Lecture 7 (Beyond TCP Congestion Control)

CS 268: Lecture 7 (Beyond TCP Congestion Control) Outline CS 68: Lecture 7 (Beyond TCP Congestion Control) TCP-Friendly Rate Control (TFRC) explicit Control Protocol Ion Stoica Computer Science Division Department of Electrical Engineering and Computer

More information

Congestion Control. Principles of Congestion Control. Network-assisted Congestion Control: ATM. Congestion Control. Computer Networks 10/21/2009

Congestion Control. Principles of Congestion Control. Network-assisted Congestion Control: ATM. Congestion Control. Computer Networks 10/21/2009 Congestion Control Kai Shen Principles of Congestion Control Congestion: informally: too many sources sending too much data too fast for the network to handle results of congestion: long delays (e.g. queueing

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

15-744: Computer Networking TCP

15-744: Computer Networking TCP 15-744: Computer Networking TCP Congestion Control Congestion Control Assigned Reading [Jacobson and Karels] Congestion Avoidance and Control [TFRC] Equation-Based Congestion Control for Unicast Applications

More information

Frame Relay. Frame Relay: characteristics

Frame Relay. Frame Relay: characteristics Frame Relay Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network management and QoS provisioning - 1 Frame Relay: characteristics Packet switching

More information

Tutorial 8 : Congestion Control

Tutorial 8 : Congestion Control Lund University ETSN01 Advanced Telecommunication Tutorial 8 : Congestion Control Author: Antonio Franco Emma Fitzgerald Tutor: Farnaz Moradi December 18, 2015 Contents I Before you start 3 II Exercises

More information

Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren

Lecture 21: Congestion Control CSE 123: Computer Networks Alex C. Snoeren Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren Lecture 21 Overview" How fast should a sending host transmit data? Not to fast, not to slow, just right Should not be faster than

More information

! Network bandwidth shared by all users! Given routing, how to allocate bandwidth. " efficiency " fairness " stability. !

! Network bandwidth shared by all users! Given routing, how to allocate bandwidth.  efficiency  fairness  stability. ! Motivation Network Congestion Control EL 933, Class10 Yong Liu 11/22/2005! Network bandwidth shared by all users! Given routing, how to allocate bandwidth efficiency fairness stability! Challenges distributed/selfish/uncooperative

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Stefano Vissicchio UCL Computer Science COMP0023 Recap: Last Lecture Transport Concepts Layering context Transport goals Transport mechanisms and design

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

Flow Control. Flow control problem. Other considerations. Where?

Flow Control. Flow control problem. Other considerations. Where? Flow control problem Flow Control An Engineering Approach to Computer Networking Consider file transfer Sender sends a stream of packets representing fragments of a file Sender should try to match rate

More information

of-service Support on the Internet

of-service Support on the Internet Quality-of of-service Support on the Internet Dept. of Computer Science, University of Rochester 2008-11-24 CSC 257/457 - Fall 2008 1 Quality of Service Support Some Internet applications (i.e. multimedia)

More information

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF Your Name: Answers SUNet ID: root @stanford.edu In accordance with both the letter and the

More information

Distributed Systems (5DV147)

Distributed Systems (5DV147) Distributed Systems (5DV147) Mutual Exclusion and Elections Fall 2013 1 Processes often need to coordinate their actions Which rocess gets to access a shared resource? Has the master crashed? Elect a new

More information

Chapter 24 Congestion Control and Quality of Service 24.1

Chapter 24 Congestion Control and Quality of Service 24.1 Chapter 24 Congestion Control and Quality of Service 24.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 24-1 DATA TRAFFIC The main focus of congestion control

More information

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS : Computer Networks Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS Ways to deal with congestion Host-centric versus router-centric Reservation-based versus feedback-based Window-based versus rate-based

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013 Congestion Control Kai Shen Principles of Congestion Control Congestion: Informally: too many sources sending too much data too fast for the network to handle Results of congestion: long delays (e.g. queueing

More information

ATM Quality of Service (QoS)

ATM Quality of Service (QoS) ATM Quality of Service (QoS) Traffic/Service Classes, Call Admission Control Usage Parameter Control, ABR Agenda Introduction Service Classes and Traffic Attributes Traffic Control Flow Control Special

More information

"Filling up an old bath with holes in it, indeed. Who would be such a fool?" "A sum it is, girl," my father said. "A sum. A problem for the mind.

Filling up an old bath with holes in it, indeed. Who would be such a fool? A sum it is, girl, my father said. A sum. A problem for the mind. We were doing very well, up to the kind of sum when a bath is filling at the rate of so many gallons and two holes are letting the water out, and please to say how long it will take to fill the bath, when

More information

CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers. Xiaowei Yang

CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers. Xiaowei Yang CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers Xiaowei Yang xwy@cs.duke.edu Overview More on TCP congestion control Theory Macroscopic behavior TCP

More information

Chapter 6: Congestion Control and Resource Allocation

Chapter 6: Congestion Control and Resource Allocation Chapter 6: Congestion Control and Resource Allocation CS/ECPE 5516: Comm. Network Prof. Abrams Spring 2000 1 Section 6.1: Resource Allocation Issues 2 How to prevent traffic jams Traffic lights on freeway

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Laurent Vanbever nsg.ee.ethz.ch ETH Zürich (D-ITET) April 30 2018 Materials inspired from Scott Shenker & Jennifer Rexford Last week on Communication Networks We started

More information

Traffic Access Control. Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011

Traffic Access Control. Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011 Traffic Access Control Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011 Outlines Traffic Access Control Definition Traffic Shaping Traffic Policing The Leaky Bucket The Token

More information

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks Hybrid Control and Switched Systems Lecture #17 Hybrid Systems Modeling of Communication Networks João P. Hespanha University of California at Santa Barbara Motivation Why model network traffic? to validate

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

Queuing. Congestion Control and Resource Allocation. Resource Allocation Evaluation Criteria. Resource allocation Drop disciplines Queuing disciplines

Queuing. Congestion Control and Resource Allocation. Resource Allocation Evaluation Criteria. Resource allocation Drop disciplines Queuing disciplines Resource allocation Drop disciplines Queuing disciplines Queuing 1 Congestion Control and Resource Allocation Handle congestion if and when it happens TCP Congestion Control Allocate resources to avoid

More information

Lecture 5: Performance Analysis I

Lecture 5: Performance Analysis I CS 6323 : Modeling and Inference Lecture 5: Performance Analysis I Prof. Gregory Provan Department of Computer Science University College Cork Slides: Based on M. Yin (Performability Analysis) Overview

More information

Lecture 12: TCP Friendliness, DCCP, NATs, and STUN

Lecture 12: TCP Friendliness, DCCP, NATs, and STUN Lecture 12: TCP Friendliness, DCCP, NATs, and STUN Congestion Control TCP dynamically adapts its rate in response to congestion AIMD causes flows to converge to fair goodput But how do losses (e.g., bit

More information

Lecture 10: TCP Friendliness, DCCP, NATs, and STUN

Lecture 10: TCP Friendliness, DCCP, NATs, and STUN Lecture 10: TCP Friendliness, DCCP, NATs, and STUN TCP Friendliness Congestion Control TCP dynamically adapts its rate in response to congestion AIMD causes flows to converge to fair goodput But how do

More information

Computer Networks. Course Reference Model. Topic. Congestion What s the hold up? Nature of Congestion. Nature of Congestion 1/5/2015.

Computer Networks. Course Reference Model. Topic. Congestion What s the hold up? Nature of Congestion. Nature of Congestion 1/5/2015. Course Reference Model Computer Networks 7 Application Provides functions needed by users Zhang, Xinyu Fall 204 4 Transport Provides end-to-end delivery 3 Network Sends packets over multiple links School

More information

Priority Traffic CSCD 433/533. Advanced Networks Spring Lecture 21 Congestion Control and Queuing Strategies

Priority Traffic CSCD 433/533. Advanced Networks Spring Lecture 21 Congestion Control and Queuing Strategies CSCD 433/533 Priority Traffic Advanced Networks Spring 2016 Lecture 21 Congestion Control and Queuing Strategies 1 Topics Congestion Control and Resource Allocation Flows Types of Mechanisms Evaluation

More information

TCP VON: Joint Congestion Control and Online Network Coding for Wireless Networks

TCP VON: Joint Congestion Control and Online Network Coding for Wireless Networks TCP VON: Joint Congestion Control and Online Network Coding for Wireless Networks Wei Bao, Vahid Shah-Mansouri, Vincent W.S. Wong, and Victor C.M. Leung Deartment of Electrical and Comuter Engineering

More information

Congestion Control and Resource Allocation

Congestion Control and Resource Allocation Problem: allocating resources Congestion control Quality of service Congestion Control and Resource Allocation Hongwei Zhang http://www.cs.wayne.edu/~hzhang The hand that hath made you fair hath made you

More information

Lecture 24: Scheduling and QoS

Lecture 24: Scheduling and QoS Lecture 24: Scheduling and QoS CSE 123: Computer Networks Alex C. Snoeren HW 4 due Wednesday Lecture 24 Overview Scheduling (Weighted) Fair Queuing Quality of Service basics Integrated Services Differentiated

More information

Performance Analysis of IEEE

Performance Analysis of IEEE Performance Analysis of IEEE 8. Deartment of Electrical and Comuter Engineering Rutgers University, Piscataway, NJ 8854 Abstract. Introduction Existing work includes [Bianchi ], and some roblems that we

More information

Lecture 22: Buffering & Scheduling. CSE 123: Computer Networks Alex C. Snoeren

Lecture 22: Buffering & Scheduling. CSE 123: Computer Networks Alex C. Snoeren Lecture 22: Buffering & Scheduling CSE 123: Computer Networks Alex C. Snoeren Lecture 23 Overview Buffer Management FIFO RED Traffic Policing/Scheduling 2 Key Router Challenges Buffer management: which

More information

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control Chapter 12 Congestion in Data Networks Effect of Congestion Control Ideal Performance Practical Performance Congestion Control Mechanisms Backpressure Choke Packet Implicit Congestion Signaling Explicit

More information

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Outline Introduction What s wrong with TCP? Idea of Efficiency vs. Fairness XCP, what is it? Is it

More information

Congestion Control & Transport protocols

Congestion Control & Transport protocols Congestion Control & Transport protocols from New Internet and Networking Technologies for Grids and High-Performance Computing, tutorial given at HiPC 04, Bangalore, India December 22nd, 2004 C. Pham

More information

TOPP Probing of Network Links with Large Independent Latencies

TOPP Probing of Network Links with Large Independent Latencies TOPP Probing of Network Links with Large Indeendent Latencies M. Hosseinour, M. J. Tunnicliffe Faculty of Comuting, Information ystems and Mathematics, Kingston University, Kingston-on-Thames, urrey, KT1

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Principles of congestion control

More information

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS 28 CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS Introduction Measurement-based scheme, that constantly monitors the network, will incorporate the current network state in the

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Transport Layer Derek Leonard Hendrix College October 20, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 3: Roadmap 3.1 Transport-layer

More information

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues

What Is Congestion? Computer Networks. Ideal Network Utilization. Interaction of Queues 168 430 Computer Networks Chapter 13 Congestion in Data Networks What Is Congestion? Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity

More information

TCP/IP over ATM over Satellite Links

TCP/IP over ATM over Satellite Links TCP/IP over ATM over Satellite Links Seong-Cheol Kim Samsung Electronics Co. Ltd. http://www.cis.ohio-state.edu/~jain/ 1 Overview TCP over ABR over Satellites TCP over UBR over Satellites Improving TCP

More information

Lecture 4 Wide Area Networks - Congestion in Data Networks

Lecture 4 Wide Area Networks - Congestion in Data Networks DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Congestion in Data Networks Mei Yang Based on Lecture slides by William Stallings 1 WHAT IS CONGESTION? congestion occurs when the number

More information

Internet Services & Protocols. Quality of Service Architecture

Internet Services & Protocols. Quality of Service Architecture Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Quality of Service Architecture Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:

More information

Congestion Control. Lecture 12: TCP Friendliness, DCCP, NATs, and STUN. Chiu Jain Phase Plots. Fair A=B. Responding to Loss. Flow B rate (bps) t 1 t 3

Congestion Control. Lecture 12: TCP Friendliness, DCCP, NATs, and STUN. Chiu Jain Phase Plots. Fair A=B. Responding to Loss. Flow B rate (bps) t 1 t 3 Congestion Control Lecture 12: TCP Friendliness, DCCP, s, and STUN TCP dynamically adapts its rate in response to congestion AIMD causes flows to converge to fair goodput But how do losses (e.g., bit errors)

More information

CSE 461. TCP and network congestion

CSE 461. TCP and network congestion CSE 461 TCP and network congestion This Lecture Focus How should senders pace themselves to avoid stressing the network? Topics Application Presentation Session Transport Network congestion collapse Data

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

Multicast and Quality of Service. Internet Technologies and Applications

Multicast and Quality of Service. Internet Technologies and Applications Multicast and Quality of Service Internet Technologies and Applications Aims and Contents Aims Introduce the multicast and the benefits it offers Explain quality of service and basic techniques for delivering

More information

Increase-Decrease Congestion Control for Real-time Streaming: Scalability

Increase-Decrease Congestion Control for Real-time Streaming: Scalability Increase-Decrease Congestion Control for Real-time Streaming: Scalability Dmitri Loguinov City University of New York Hayder Radha Michigan State University 1 Motivation Current Internet video streaming

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Brad Karp UCL Computer Science CS 3035/GZ01 31 st October 2013 Outline Slow Start AIMD Congestion control Throughput, loss, and RTT equation Connection

More information

QUALITY of SERVICE. Introduction

QUALITY of SERVICE. Introduction QUALITY of SERVICE Introduction There are applications (and customers) that demand stronger performance guarantees from the network than the best that could be done under the circumstances. Multimedia

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2002 Lecture 10: Quality of Service Stefan Savage Today s class: Quality of Service What s wrong with Best Effort service? What kinds of service do applications

More information

DATA CENTER TO THE HOME

DATA CENTER TO THE HOME DATA CENTER TO THE HOME Koen De Scheer, Inton Tsang. Olga Bondarenko. Bob Briscoe. koen.de_scheer@alcatel-lucent.com March, 015 1 DCttH OBJECTIVE: UNIVERSAL SUPPORT FOR LOW LATENCY = SUPPORT FOR ADAPTIVE

More information

Network Layer Enhancements

Network Layer Enhancements Network Layer Enhancements EECS 122: Lecture 14 Department of Electrical Engineering and Computer Sciences University of California Berkeley Today We have studied the network layer mechanisms that enable

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Intermediate Traffic Management

Intermediate Traffic Management Intermediate Traffic Management This presentation has been generated by the ATM Forum for the purpose of educating the public on ATM Technology and the ATM Forum s activities. This presentation is the

More information

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control

CS519: Computer Networks. Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control : Computer Networks Lecture 5, Part 4: Mar 29, 2004 Transport: TCP congestion control TCP performance We ve seen how TCP the protocol works Sequencing, receive window, connection setup and teardown And

More information

Router s Queue Management

Router s Queue Management Router s Queue Management Manages sharing of (i) buffer space (ii) bandwidth Q1: Which packet to drop when queue is full? Q2: Which packet to send next? FIFO + Drop Tail Keep a single queue Answer to Q1:

More information

Buffer Requirements for Zero Loss Flow Control with Explicit Congestion Notification. Chunlei Liu Raj Jain

Buffer Requirements for Zero Loss Flow Control with Explicit Congestion Notification. Chunlei Liu Raj Jain Buffer Requirements for Zero Loss Flow Control with Explicit Congestion Notification Chunlei Liu Raj Jain Department of Computer and Information Science The Ohio State University, Columbus, OH 432-277

More information

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012 CSE 473 Introduction to Computer Networks Jon Turner Final Exam Your name here: 12/17/2012 1. (8 points). The figure below shows a network path connecting a server to a client. 200 km 2000 km 2 km X Y

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.1 Kaan Bür, Jens Andersson Transport Layer Protocols Process-to-process delivery [ed.4 ch.23.1] [ed.5 ch.24.1] Transmission Control

More information

Comparison of TCP Performance Models

Comparison of TCP Performance Models Comparison of [July 23, 01] Hans-Peter Schwefel / Manfred Jobmann / Daniel Höllisch / Dan Heyman Siemens ICM / Technische Universität München / AT&T Labs Hans.Schwefel@icn.siemens.de Motivation: Internet

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 16: Congestion control II Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information