! Network bandwidth shared by all users! Given routing, how to allocate bandwidth. " efficiency " fairness " stability. !

Size: px
Start display at page:

Download "! Network bandwidth shared by all users! Given routing, how to allocate bandwidth. " efficiency " fairness " stability. !"

Transcription

1 Motivation Network Congestion Control EL 933, Class10 Yong Liu 11/22/2005! Network bandwidth shared by all users! Given routing, how to allocate bandwidth efficiency fairness stability! Challenges distributed/selfish/uncooperative end systems remote/dumb/oblivious routers 1 2 Outline Congestion Control! Basics on TCP/RED! Paper 1: Rate control in communication networks: shadow prices, proportional fairness and stability, Frank Kelly, A.K. Maulloo and D.K.H. Tan,, Journal of the Operational Research Society! Paper 2: Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED, Vishal Misra, Weibo Gong and Don Towsley, ACM SIGCOMM 2000! Network is a distributed resource sharing system! Overload means low throughput! Individual user depends on feed back from system to regulate its load 3 4

2 Criteria for Congestion Control Internet Congestion Control! Efficiency: the closeness of the total usage to the optimal level! Fairness: Fairness index: Max-Min Ratio:! Convergence: How fast does the system converge to the desired state. Transport Control Protocol (TCP) at edge Active Queue Management (AQM) in core AIMD! Additive Increase Multiplicative Decrease! AI: aggressive in grabbing available bandwidth! MD: conservative when network is congested! trade-off efficiency & fairness 8 TCP Congestion Control! adapt sending rate to network congestion! window-based rate control # send out a window of W packets each round # increase W by 1 every RTT if no packet loss receiver W sender RTT

3 9 TCP Congestion Control! adapt sending rate to network congestion! window based rate control # send out a window W of packets each round # increase W by 1 every RTT if no packet loss # decrease W by half upon packet loss receiver W sender x RTT 10! slow-start, congestion avoidance, time-out! triple-duplicated ack loss & time-out loss! fast retransmit, fast recovery! TCP Tahoe, Reno, New Reno, Vegas More on TCP Queue Management! natural solution: DropTail-- drop new packets if buffer full synchronization among flows (?) response too late large buffer --> large delay! Active Queue Management (AQM) random drop: break synchronization proactively drop: earlier reaction new approaches: RED, BLUE, PI, AVQ, REM Random Early Detection RED: Marking/dropping based on average queue length x (t) Marking probability p 1 p max t min t max 2t max Average queue length x Marking probability profile has a discontinuity at t max discontinuity removed in gentle_ variant - q (t) - x (t) x (t): smoothed, time averaged q (t) t ->

4 Outline Rate Control for Communication Networks: shadow prices, proportional fairness and stability FP Kelly, AK Maulloo and DFH Tan! optimal rate control! decomposition! primal/dual algorithms! user adaptation! extensions Optimal Rate Control Centralized v.s. Distributed! Demand v.s. supply demand: user rate supply: link bandwidth consumption: routing matrix! Quantification utility function: link cost:! Optimal routing maximize aggregate utility under resource constraint convex optimization solvable! Centralized solution network determines rate for all users require knowledge of routing and utility functions of all users! Distributed algorithm more realistic user determines its own sending rate network uses pricing to regulate users minimum info. exchange between users and network right price --> selfish optimum==global optimum analogy from Market Economics 15 16

5 Decomposition: distributed optimization Decomposition: consistency! User Optimization given a price, how much to send?! Network Optimization given user payment, how to allocate? 17 18! Decomposition: efficiency & fairness Network Opt.: primal-dual formulation! find optimal rate allocation for all users user optimizes his own utility independently links are not over-loaded, some fully-loaded, some under-loaded the aggregated utility is maximized (efficiency) proportional fairness:! primal problem: optimal rates for users! dual problem: optimal prices on links duality theorem: dual solution matches primal solution 19 20

6 Network Opt.: primal algorithm Network Opt.: dual algorithm! link penalty function! dynamic algorithm: link price adjustment! unconstrained optimization! dynamic algorithm: user rate adjustment! convergence! convergence User Adaptation Other Properties! network optimization: approximation: user scheme:! system optimization: approximation: user scheme:! speed of convergence to the optimum! robustness against information accuracy information delay! Utility function of TCP reno: vegas: 23 24

7 25 Extensions! One user employ multiple paths! Joint rate control and routing! System converges to optimum user only uses paths with minimum price traffic rates on selected paths equal 26 Summary! Network optimal rate allocation decomposed into distributed optimization users maximize net gain links minimize cost dynamically approach optimum right link price optimal rate allocation maximized aggregate utility! TCP Works!! maximize efficiency maintain some sort of fairness stable and robust Overview Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED Vishal Misra Wei-Bo Gong Don Towsley University of Massachusetts, Amherst MA 01003, USA (slides borrowed from Vishal)!motivation!key idea!modeling details!validation with ns!analysis sheds insights into RED!conclusions 27 28

8 Motivation Challenge Explore large scale systems 100s s network elements! current simulation technology, e.g. ns 10,000s - 100,000s of flows (TCP, UDP, NG) appropriate for small networks 10s - 100s of network nodes 100s s IP flows inflexible packet-level granularity Our Belief Fluid-based techniques that abstract out protocol details are key to scalable network simulation/understanding! current analysis techniques UDP flows over small networks TCP flows over single link Contribution of Paper First differential equation based fluid model to enable transient analysis of TCP/AQM networks developed Key Idea Loss Model! model traffic as fluid! describe behavior of flows and queues using Stochastic Differential Equations B(t) Sender Packet Drop/Mark AQM Router p(t) Receiver! obtain Ordinary Differential Equations by taking expectations of SDEs!(t) = B(t)#p(t)! solve resultant coupled ODEs numerically Round Trip Delay () Differential equation abstraction: computationally highly efficient Loss Rate as seen by Sender:!(t) = B(t-)#p(t-) 31 32

9 Start Simple: A Single Congested Router System of Differential Equations All quantities are average values. Timeouts and slow start ignored TCP flow i, prop. delay A i! One bottlenecked AQM router capacity {C (packets/sec) } queue length q(t) drop prob. p(t) Window Size: dw ^ i dt = 1 ^R i (q(t)) ^ Additive increase - ^ W i 2 Mult. decrease W^ i (t-) R^ i (q(t-)) ^ ^p(t-) Loss arrival rate AQM router C, p! N TCP flows window sizes W i (t) round trip time R i (t) = A i +q (t)/c throughputs B i (t) = W i (t)/r i (t) Queue length: dq^ dt = -1 [q(t) > 0] C ^ Outgoing traffic + $ W^ i (t) ^R i (q(t)) ^ Incoming traffic System of Differential Equations (cont.) Stepping back: Where are we? W=Window size, R = RTT, q = queue length, p = marking probability Average queue length: dx ^ dt = ln (1-%) & x(t) ^ - ln (1-%) & q(t) ^ dw i dt = f 1 (p,r i ) i = 1..N Where % = averaging parameter of RED(w q ) & = sampling interval ~ 1/C dp dt = f 3 (q) dq dt = f 2(W i ) dp^ Loss probability: = dp dx^ dt dx dt Where dp is obtained from the marking profile dx 35 p x 36 N+2 coupled equations solved numerically using MATLAB

10 Extension to Network Validation Scenario Networked case: V AQM routers queuing delay = aggregate delay q(t) = $ V q V (t) loss probability = cumulative loss probability p(t) = 1-' V (1-p V (t)) Other extensions to the model Timeouts: Leveraged work done in [PFTK Sigcomm98] to model timeouts Aggregation of flows: Represent flows sharing the same route by a single equation 37! DE system programmed with RED AQM policy! equivalent system simulated in ns! transient queuing performance obtained! one way, ftp flows used as traffic sources 38 Flow set 1 Flow set 2 Flow set 3 Topology Flow set 4 RED router 1 RED router 2 Flow set 5 5 sets of flows 2 RED routers Set 2 flows through both routers Performance of SDE method Observations on RED! queue capacities 5 Mb/s! load variation at t=75 and t=150 seconds! 200 flows simulated! DE solver captures transient performance! time taken for DE solver ~ 5 seconds on P450 Inst. queue length Inst. queue length for router 2 Time DE method ns simulation! Tuning of RED is difficult - sensitive to packet sizes, load levels, round trip delay, etc.! discontinuity of drop function contributes to, but is not the only reason for oscillations.! RED uses variable sampling interval &. This could cause oscillations. Further Work Detailed Control Theoretic Analysis of TCP/RED available at

11 41 Conclusions! differential equation based model for evaluatingtcp/aqm networks! computation cost of DE method a fraction of the discrete event simulation cost! formal representation and analysis yields better understanding of RED/AQM 42 Future Directions! model short lived and non-responsive flows Unresponsive Flows and AQM Performance, (INFOCOM 2003)! demonstrate applicability to large networks Fluid Models and Solutions for Large-Scale IP Networks, (Sigmetrics 2003)! analyze theoretical model to rectify RED shortcomings On Designing Improved Controllers for AQM Routers Supporting TCP Flows, (INFOCOM 2001)! apply techniques to - other protocols, e.g. TCP-friendly protocols - other AQM mechanisms like Diffserv Providing Throughput Differentiation for TCP Flows Using Adaptive TwoColor Marking and Multi-Level AQM, (INFOCOM 2002) New Directions! high speed networks linear increase not efficient enough: HTCP, FAST more feedback from routers: XCP! wireless networks corruption loss: Explicit Congestion Notification link coupling: cross layer design! overlay/p2p networks application layer control: parallel/relay revisit: efficiency/fairness/stability 43

Congestion Control for High Bandwidth-delay Product Networks

Congestion Control for High Bandwidth-delay Product Networks Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Presented by Chi-Yao Hong Adapted from slides by Dina Katabi CS598pbg Sep. 10, 2009 Trends in the Future

More information

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Outline Introduction What s wrong with TCP? Idea of Efficiency vs. Fairness XCP, what is it? Is it

More information

XCP: explicit Control Protocol

XCP: explicit Control Protocol XCP: explicit Control Protocol Dina Katabi MIT Lab for Computer Science dk@mit.edu www.ana.lcs.mit.edu/dina Sharing the Internet Infrastructure Is fundamental Much research in Congestion Control, QoS,

More information

One More Bit Is Enough

One More Bit Is Enough One More Bit Is Enough Yong Xia, RPI Lakshmi Subramanian, UCB Ion Stoica, UCB Shiv Kalyanaraman, RPI SIGCOMM 05, Philadelphia, PA 08 / 23 / 2005 Motivation #1: TCP doesn t work well in high b/w or delay

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

ADVANCED TOPICS FOR CONGESTION CONTROL

ADVANCED TOPICS FOR CONGESTION CONTROL ADVANCED TOPICS FOR CONGESTION CONTROL Congestion Control The Internet only functions because TCP s congestion control does an effective job of matching traffic demand to available capacity. TCP s Window

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Amin Vahdat, Dina Katabi Lecture 14 Overview" TCP congestion control review XCP Overview 2 Congestion Control

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

Performance Analysis of TCP Variants

Performance Analysis of TCP Variants 102 Performance Analysis of TCP Variants Abhishek Sawarkar Northeastern University, MA 02115 Himanshu Saraswat PES MCOE,Pune-411005 Abstract The widely used TCP protocol was developed to provide reliable

More information

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks Hybrid Control and Switched Systems Lecture #17 Hybrid Systems Modeling of Communication Networks João P. Hespanha University of California at Santa Barbara Motivation Why model network traffic? to validate

More information

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 A SURVEY ON EXPLICIT FEEDBACK BASED CONGESTION CONTROL PROTOCOLS Nasim Ghasemi 1, Shahram Jamali 2 1 Department of

More information

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals

Equation-Based Congestion Control for Unicast Applications. Outline. Introduction. But don t we need TCP? TFRC Goals Equation-Based Congestion Control for Unicast Applications Sally Floyd, Mark Handley AT&T Center for Internet Research (ACIRI) Jitendra Padhye Umass Amherst Jorg Widmer International Computer Science Institute

More information

Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED

Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED Vishal Misra Department of Computer Science University of Massachusetts Amherst MA 13 misra@cs.umass.edu

More information

CS 268: Lecture 7 (Beyond TCP Congestion Control)

CS 268: Lecture 7 (Beyond TCP Congestion Control) Outline CS 68: Lecture 7 (Beyond TCP Congestion Control) TCP-Friendly Rate Control (TFRC) explicit Control Protocol Ion Stoica Computer Science Division Department of Electrical Engineering and Computer

More information

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness Recap TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness 81 Feedback Signals Several possible signals, with different

More information

Congestion Control. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Congestion Control. Daniel Zappala. CS 460 Computer Networking Brigham Young University Congestion Control Daniel Zappala CS 460 Computer Networking Brigham Young University 2/25 Congestion Control how do you send as fast as possible, without overwhelming the network? challenges the fastest

More information

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers

15-744: Computer Networking. Overview. Queuing Disciplines. TCP & Routers. L-6 TCP & Routers TCP & Routers 15-744: Computer Networking RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay Product Networks L-6

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. Motivation

A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks. Motivation A Hybrid Systems Modeling Framework for Fast and Accurate Simulation of Data Communication Networks Stephan Bohacek João P. Hespanha Junsoo Lee Katia Obraczka University of Delaware University of Calif.

More information

Congestion Control In the Network

Congestion Control In the Network Congestion Control In the Network Brighten Godfrey cs598pbg September 9 2010 Slides courtesy Ion Stoica with adaptation by Brighten Today Fair queueing XCP Announcements Problem: no isolation between flows

More information

CS 268: Computer Networking

CS 268: Computer Networking CS 268: Computer Networking L-6 Router Congestion Control TCP & Routers RED XCP Assigned reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [KHR02] Congestion Control for High Bandwidth-Delay

More information

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED

TCP Congestion Control : Computer Networking. Introduction to TCP. Key Things You Should Know Already. Congestion Control RED TCP Congestion Control 15-744: Computer Networking L-4 TCP Congestion Control RED Assigned Reading [FJ93] Random Early Detection Gateways for Congestion Avoidance [TFRC] Equation-Based Congestion Control

More information

Congestion Control. Andreas Pitsillides University of Cyprus. Congestion control problem

Congestion Control. Andreas Pitsillides University of Cyprus. Congestion control problem Congestion Control Andreas Pitsillides 1 Congestion control problem growing demand of computer usage requires: efficient ways of managing network traffic to avoid or limit congestion in cases where increases

More information

Understanding TCP Parallelization. Qiang Fu. TCP Performance Issues TCP Enhancements TCP Parallelization (research areas of interest)

Understanding TCP Parallelization. Qiang Fu. TCP Performance Issues TCP Enhancements TCP Parallelization (research areas of interest) Understanding TCP Parallelization Qiang Fu qfu@swin.edu.au Outline TCP Performance Issues TCP Enhancements TCP Parallelization (research areas of interest) Related Approaches TCP Parallelization vs. Single

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 15: Congestion Control Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks George Porter Thanks: Amin Vahdat, Dina Katabi and Alex C. Snoeren Lecture 14 Overview" TCP congestion control review Dukkipati

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 24: Congestion Control Prof. Alan Mislove (amislove@ccs.neu.edu) Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica,

More information

Three-section Random Early Detection (TRED)

Three-section Random Early Detection (TRED) Three-section Random Early Detection (TRED) Keerthi M PG Student Federal Institute of Science and Technology, Angamaly, Kerala Abstract There are many Active Queue Management (AQM) mechanisms for Congestion

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

RED behavior with different packet sizes

RED behavior with different packet sizes RED behavior with different packet sizes Stefaan De Cnodder, Omar Elloumi *, Kenny Pauwels Traffic and Routing Technologies project Alcatel Corporate Research Center, Francis Wellesplein, 1-18 Antwerp,

More information

Scalable Fluid Models and Simulations for Large-Scale IP Networks

Scalable Fluid Models and Simulations for Large-Scale IP Networks Scalable Fluid Models and Simulations for Large-Scale IP Networks YONG LIU University of Massachusetts, Amherst FRANCESCO L. PRESTI Universita dell Aquila VISHAL MISRA Columbia University DONALD F. TOWSLEY

More information

RECENT advances in the modeling and analysis of TCP/IP networks have led to better understanding of AQM dynamics.

RECENT advances in the modeling and analysis of TCP/IP networks have led to better understanding of AQM dynamics. IEEE GLOBECOM 23 Conference Paper; ACM SIGMETRICS 23 Student Poster A Self-Tuning Structure for Adaptation in TCP/AQM Networks 1 Honggang Zhang, C. V. Hollot, Don Towsley and Vishal Misra Abstract Since

More information

Analysis and Design of Controllers for AQM Routers Supporting TCP Flows. C. V. Hollot, V. Misra, D. Towsley and W. Gong

Analysis and Design of Controllers for AQM Routers Supporting TCP Flows. C. V. Hollot, V. Misra, D. Towsley and W. Gong A Study Group Presentation Analysis and esign of Controllers for AQM outers Supporting TCP Flows C. V. Hollot, V. Misra,. Towsley and W. Gong Presented by: Tan Chee-Wei Advisors: Professor Winston Chiu,

More information

Appendix B. Standards-Track TCP Evaluation

Appendix B. Standards-Track TCP Evaluation 215 Appendix B Standards-Track TCP Evaluation In this appendix, I present the results of a study of standards-track TCP error recovery and queue management mechanisms. I consider standards-track TCP error

More information

CPSC 826 Internetworking. Congestion Control Approaches Outline. Router-Based Congestion Control Approaches. Router-Based Approaches Papers

CPSC 826 Internetworking. Congestion Control Approaches Outline. Router-Based Congestion Control Approaches. Router-Based Approaches Papers 1 CPSC 826 Internetworking Router-Based Congestion Control Approaches Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu October 25, 2004 http://www.cs.clemson.edu/~mweigle/courses/cpsc826

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Brad Karp UCL Computer Science CS 3035/GZ01 31 st October 2013 Outline Slow Start AIMD Congestion control Throughput, loss, and RTT equation Connection

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 1 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Wireless TCP Performance Issues

Wireless TCP Performance Issues Wireless TCP Performance Issues Issues, transport layer protocols Set up and maintain end-to-end connections Reliable end-to-end delivery of data Flow control Congestion control Udp? Assume TCP for the

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

Congestion Control. COSC 6590 Week 2 Presentation By Arjun Chopra, Kashif Ali and Mark Obsniuk

Congestion Control. COSC 6590 Week 2 Presentation By Arjun Chopra, Kashif Ali and Mark Obsniuk Congestion Control COSC 6590 Week 2 Presentation By Arjun Chopra, Kashif Ali and Mark Obsniuk Topics Congestion control TCP and the internet AIMD congestion control Equation Based congestion control Comparison

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

Computer Networking

Computer Networking 15-441 Computer Networking Lecture 17 TCP Performance & Future Eric Anderson Fall 2013 www.cs.cmu.edu/~prs/15-441-f13 Outline TCP modeling TCP details 2 TCP Performance Can TCP saturate a link? Congestion

More information

Congestion Control for High Bandwidth-Delay Product Networks

Congestion Control for High Bandwidth-Delay Product Networks Congestion Control for High Bandwidth-Delay Product Networks Presented by: Emad Shihab Overview Introduce the problem of XCP (what the protocol achieves) (how the protocol achieves this) The problem! TCP

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Congestion control in TCP Contents Principles TCP congestion control states Congestion Fast Recovery TCP friendly applications Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr

More information

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks Random Early Detection (RED) gateways Sally Floyd CS 268: Computer Networks floyd@eelblgov March 20, 1995 1 The Environment Feedback-based transport protocols (eg, TCP) Problems with current Drop-Tail

More information

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources

Congestion. Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets limited resources Congestion Source 1 Source 2 10-Mbps Ethernet 100-Mbps FDDI Router 1.5-Mbps T1 link Destination Can t sustain input rate > output rate Issues: - Avoid congestion - Control congestion - Prioritize who gets

More information

Congestion Control End Hosts. CSE 561 Lecture 7, Spring David Wetherall. How fast should the sender transmit data?

Congestion Control End Hosts. CSE 561 Lecture 7, Spring David Wetherall. How fast should the sender transmit data? Congestion Control End Hosts CSE 51 Lecture 7, Spring. David Wetherall Today s question How fast should the sender transmit data? Not tooslow Not toofast Just right Should not be faster than the receiver

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Stefano Vissicchio UCL Computer Science COMP0023 Recap: Last Lecture Transport Concepts Layering context Transport goals Transport mechanisms and design

More information

Page 1. Review: Internet Protocol Stack. Transport Layer Services. Design Issue EEC173B/ECS152C. Review: TCP

Page 1. Review: Internet Protocol Stack. Transport Layer Services. Design Issue EEC173B/ECS152C. Review: TCP EEC7B/ECS5C Review: Internet Protocol Stack Review: TCP Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet radio Transport Layer Services Design Issue Underlying

More information

Time-Step Network Simulation

Time-Step Network Simulation Time-Step Network Simulation Andrzej Kochut Udaya Shankar University of Maryland, College Park Introduction Goal: Fast accurate performance evaluation tool for computer networks Handles general control

More information

15-744: Computer Networking TCP

15-744: Computer Networking TCP 15-744: Computer Networking TCP Congestion Control Congestion Control Assigned Reading [Jacobson and Karels] Congestion Avoidance and Control [TFRC] Equation-Based Congestion Control for Unicast Applications

More information

Computer Network Fundamentals Spring Week 10 Congestion Control Andreas Terzis

Computer Network Fundamentals Spring Week 10 Congestion Control Andreas Terzis Computer Network Fundamentals Spring 2008 Week 10 Congestion Control Andreas Terzis Outline Congestion Control TCP Congestion Control CS 344/Spring08 2 What We Know We know: How to process packets in a

More information

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service EEC7B/ECS5C Review: Internet Protocol Stack Review: TCP Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet radio Do you remember the various mechanisms we have

More information

Congestion Control. Resource allocation and congestion control problem

Congestion Control. Resource allocation and congestion control problem Congestion Control 188lecture8.ppt Pirkko Kuusela 1 Resource allocation and congestion control problem Problem 1: Resource allocation How to effectively and fairly allocate resources among competing users?

More information

The Fluid Flow Approximation of the TCP Vegas and Reno Congestion Control Mechanism

The Fluid Flow Approximation of the TCP Vegas and Reno Congestion Control Mechanism The Fluid Flow Approximation of the TCP Vegas and Reno Congestion Control Mechanism Adam Domański 2, Joanna Domańska 1, Michele Pagano 3, and Tadeusz Czachórski 1(B) 1 Institute of Theoretical and Applied

More information

CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers. Xiaowei Yang

CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers. Xiaowei Yang CS 356: Computer Network Architectures Lecture 19: Congestion Avoidance Chap. 6.4 and related papers Xiaowei Yang xwy@cs.duke.edu Overview More on TCP congestion control Theory Macroscopic behavior TCP

More information

ECE 333: Introduction to Communication Networks Fall 2001

ECE 333: Introduction to Communication Networks Fall 2001 ECE 333: Introduction to Communication Networks Fall 2001 Lecture 28: Transport Layer III Congestion control (TCP) 1 In the last lecture we introduced the topics of flow control and congestion control.

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Laurent Vanbever nsg.ee.ethz.ch ETH Zürich (D-ITET) April 30 2018 Materials inspired from Scott Shenker & Jennifer Rexford Last week on Communication Networks We started

More information

Computer Networks. Course Reference Model. Topic. Congestion What s the hold up? Nature of Congestion. Nature of Congestion 1/5/2015.

Computer Networks. Course Reference Model. Topic. Congestion What s the hold up? Nature of Congestion. Nature of Congestion 1/5/2015. Course Reference Model Computer Networks 7 Application Provides functions needed by users Zhang, Xinyu Fall 204 4 Transport Provides end-to-end delivery 3 Network Sends packets over multiple links School

More information

Congestion Control. Principles of Congestion Control. Network-assisted Congestion Control: ATM. Congestion Control. Computer Networks 10/21/2009

Congestion Control. Principles of Congestion Control. Network-assisted Congestion Control: ATM. Congestion Control. Computer Networks 10/21/2009 Congestion Control Kai Shen Principles of Congestion Control Congestion: informally: too many sources sending too much data too fast for the network to handle results of congestion: long delays (e.g. queueing

More information

RCRT:Rate-Controlled Reliable Transport Protocol for Wireless Sensor Networks

RCRT:Rate-Controlled Reliable Transport Protocol for Wireless Sensor Networks RCRT:Rate-Controlled Reliable Transport Protocol for Wireless Sensor Networks JEONGYEUP PAEK, RAMESH GOVINDAN University of Southern California 1 Applications that require the transport of high-rate data

More information

Congestion Control for High-Bandwidth-Delay-Product Networks: XCP vs. HighSpeed TCP and QuickStart

Congestion Control for High-Bandwidth-Delay-Product Networks: XCP vs. HighSpeed TCP and QuickStart Congestion Control for High-Bandwidth-Delay-Product Networks: XCP vs. HighSpeed TCP and QuickStart Sally Floyd September 11, 2002 ICIR Wednesday Lunch 1 Outline: Description of the problem. Description

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Transport Layer Derek Leonard Hendrix College October 22, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 3: Roadmap 3.1 Transport-layer

More information

ISSN: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 2, Issue 4, April 2013

ISSN: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 2, Issue 4, April 2013 Balanced window size Allocation Mechanism for Congestion control of Transmission Control Protocol based on improved bandwidth Estimation. Dusmant Kumar Sahu 1, S.LaKshmiNarasimman2, G.Michale 3 1 P.G Scholar,

More information

Enhancing TCP Throughput over Lossy Links Using ECN-capable RED Gateways

Enhancing TCP Throughput over Lossy Links Using ECN-capable RED Gateways Enhancing TCP Throughput over Lossy Links Using ECN-capable RED Gateways Haowei Bai AES Technology Centers of Excellence Honeywell Aerospace 3660 Technology Drive, Minneapolis, MN 5548 E-mail: haowei.bai@honeywell.com

More information

Analysis of Reno: A TCP Variant

Analysis of Reno: A TCP Variant International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 5, Number 3 (2012), pp. 267-277 International Research Publication House http://www.irphouse.com Analysis of Reno:

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information

Internet Protocols Fall Lecture 16 TCP Flavors, RED, ECN Andreas Terzis

Internet Protocols Fall Lecture 16 TCP Flavors, RED, ECN Andreas Terzis Internet Protocols Fall 2006 Lecture 16 TCP Flavors, RED, ECN Andreas Terzis Outline TCP congestion control Quick Review TCP flavors Impact of losses Cheating Router-based support RED ECN CS 349/Fall06

More information

Variable Step Fluid Simulation for Communication Network

Variable Step Fluid Simulation for Communication Network Variable Step Fluid Simulation for Communication Network Hongjoong Kim 1 and Junsoo Lee 2 1 Korea University, Seoul, Korea, hongjoong@korea.ac.kr 2 Sookmyung Women s University, Seoul, Korea, jslee@sookmyung.ac.kr

More information

Increase-Decrease Congestion Control for Real-time Streaming: Scalability

Increase-Decrease Congestion Control for Real-time Streaming: Scalability Increase-Decrease Congestion Control for Real-time Streaming: Scalability Dmitri Loguinov City University of New York Hayder Radha Michigan State University 1 Motivation Current Internet video streaming

More information

Congestion Collapse in the 1980s

Congestion Collapse in the 1980s Congestion Collapse Congestion Collapse in the 1980s Early TCP used fixed size window (e.g., 8 packets) Initially fine for reliability But something happened as the ARPANET grew Links stayed busy but transfer

More information

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services Overview 15-441 15-441 Computer Networking 15-641 Lecture 19 Queue Management and Quality of Service Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 What is QoS? Queuing discipline and scheduling

More information

cs/ee 143 Communication Networks

cs/ee 143 Communication Networks cs/ee 143 Communication Networks Chapter 4 Transport Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Recap: Internet overview Some basic mechanisms n Packet switching n Addressing n Routing o

More information

Congestion Control. Tom Anderson

Congestion Control. Tom Anderson Congestion Control Tom Anderson Bandwidth Allocation How do we efficiently share network resources among billions of hosts? Congestion control Sending too fast causes packet loss inside network -> retransmissions

More information

CS Transport. Outline. Window Flow Control. Window Flow Control

CS Transport. Outline. Window Flow Control. Window Flow Control CS 54 Outline indow Flow Control (Very brief) Review of TCP TCP throughput modeling TCP variants/enhancements Transport Dr. Chan Mun Choon School of Computing, National University of Singapore Oct 6, 005

More information

An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management

An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering April 2004 An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management Srisankar

More information

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Haowei Bai Honeywell Aerospace Mohammed Atiquzzaman School of Computer Science University of Oklahoma 1 Outline Introduction

More information

On the Transition to a Low Latency TCP/IP Internet

On the Transition to a Low Latency TCP/IP Internet On the Transition to a Low Latency TCP/IP Internet Bartek Wydrowski and Moshe Zukerman ARC Special Research Centre for Ultra-Broadband Information Networks, EEE Department, The University of Melbourne,

More information

Cloud e Datacenter Networking

Cloud e Datacenter Networking Cloud e Datacenter Networking Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione DIETI Laurea Magistrale in Ingegneria Informatica Prof.

More information

Lecture 24: Scheduling and QoS

Lecture 24: Scheduling and QoS Lecture 24: Scheduling and QoS CSE 123: Computer Networks Alex C. Snoeren HW 4 due Wednesday Lecture 24 Overview Scheduling (Weighted) Fair Queuing Quality of Service basics Integrated Services Differentiated

More information

Transport Layer Congestion Control

Transport Layer Congestion Control Transport Layer Congestion Control Tom Kelliher, CS 325 Apr. 7, 2008 1 Administrivia Announcements Assignment Read 4.1 4.3. From Last Time TCP Reliability. Outline 1. Congestion control principles. 2.

More information

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013

Congestion Control. Principles of Congestion Control. Network assisted congestion. Asynchronous Transfer Mode. Computer Networks 10/23/2013 Congestion Control Kai Shen Principles of Congestion Control Congestion: Informally: too many sources sending too much data too fast for the network to handle Results of congestion: long delays (e.g. queueing

More information

Transport Layer (Congestion Control)

Transport Layer (Congestion Control) Transport Layer (Congestion Control) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Congestion Collapse Congestion

More information

TCP Westwood and Easy Red to Improve Fairness in High-speed Networks. PfHsn 2002 Berlin, 22 April 2002

TCP Westwood and Easy Red to Improve Fairness in High-speed Networks. PfHsn 2002 Berlin, 22 April 2002 TCP Westwood and Easy Red to Improve Fairness in High-speed Networks L. A. Grieco, S. Mascolo Dipartimento di Elettrotecnica ed Elettronica Politecnico di Bari, Italy PfHsn 2002 Berlin, 22 April 2002 Outline

More information

TCP OVER AD HOC NETWORK

TCP OVER AD HOC NETWORK TCP OVER AD HOC NETWORK Special course on data communications and networks Zahed Iqbal (ziqbal@cc.hut.fi) Agenda Introduction Versions of TCP TCP in wireless network TCP in Ad Hoc network Conclusion References

More information

Greed Considered Harmful

Greed Considered Harmful Greed Considered Harmful Nonlinear (in)stabilities in network resource allocation Priya Ranjan Indo-US workshop 2009 Outline Background Model & Motivation Main results Fixed delays Single-user, single-link

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Flow Control. Flow control problem. Other considerations. Where?

Flow Control. Flow control problem. Other considerations. Where? Flow control problem Flow Control An Engineering Approach to Computer Networking Consider file transfer Sender sends a stream of packets representing fragments of a file Sender should try to match rate

More information

Transport Layer (Congestion Control)

Transport Layer (Congestion Control) Transport Layer (Congestion Control) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 TCP to date: We can set

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 16: Congestion control II Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov.

Lecture 21. Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. Lecture 21 Reminders: Homework 6 due today, Programming Project 4 due on Thursday Questions? Current event: BGP router glitch on Nov. 7 http://money.cnn.com/2011/11/07/technology/juniper_internet_outage/

More information

Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015

Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015 Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015 I d like to complete our exploration of TCP by taking a close look at the topic of congestion control in TCP. To prepare for

More information

EP2200 Performance analysis of Communication networks. Topic 3 Congestion and rate control

EP2200 Performance analysis of Communication networks. Topic 3 Congestion and rate control EP00 Performance analysis of Communication networks Toic 3 Congestion and rate control Congestion, rate and error control Lecture material: Bertsekas, Gallager, Data networks, 6.- I. Kay, Stochastic modeling,

More information

Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks

Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks Zongsheng Zhang Go Hasegawa Masayuki Murata Osaka University Contents Introduction Analysis of parallel TCP mechanism Numerical

More information

Improving TCP Performance over Wireless Networks using Loss Predictors

Improving TCP Performance over Wireless Networks using Loss Predictors Improving TCP Performance over Wireless Networks using Loss Predictors Fabio Martignon Dipartimento Elettronica e Informazione Politecnico di Milano P.zza L. Da Vinci 32, 20133 Milano Email: martignon@elet.polimi.it

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information