HP: Hybrid Paxos for WANs

Size: px
Start display at page:

Download "HP: Hybrid Paxos for WANs"

Transcription

1 HP: Hybrid Paxos for WANs Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri TU Darmstadt, Germany Neeraj Suri EU-NSF ICT March 2006 Dependable Embedded Systems & SW Group

2 Safety Critical Systems Resilience against catastrophic failures State Machine Replication Resilience of Critical Services Illusion of a single server that never fails Wide Area Replication Large and unpredictable delays in WANs latency-optimal protocol clients request server SMR clients request no reply reply n 2t+1 replicas EDCC, Valencia, May 18, 2010 Matthias Majuntke 2

3 Which Consensus Protocol State Machine Replication (SMR) Clients propose commands to replicas Agreement on sequence of commands replicas are in consistent state when executing command sequence Consensus protocol needed Latency-optimal protocols Latency: #message delays between when client proposes command and when command is learned by learner (to be executed). Two Protocols by Lamport Classic Paxos (CP) 3 message delays (during normal operation) Majority quorum for recovery Fast Paxos (FP) 2 message delays (during normal operation) message delays in presence of collisions Larger quorum for recovery Client Leader Acceptors Client Client Acceptors Client EDCC, Valencia, May 18, 2010 Matthias Majuntke 3

4 Paxos vs. Fast Paxos Compared Latency Planetlab Experiments Simulation of the CP and FP msg. patterns (different topologies) FP not always faster than CP Some clients prefer CP, some FP Single crash can turn setting EDCC, Valencia, May 18, 2010 Matthias Majuntke 4

5 Motivation for a Hybrid Protocol No clear winner between CP and FP With respect to latency Hybrid Protocol: Hybrid Paxos (HP) Runs CP and FP in parallel Chooses quickest outcome of two protocols Implements Generalized Consensus Commuting commands may be chosen in any order Does not negatively affect throughput FP mode switched off when not beneficial EDCC, Valencia, May 18, 2010 Matthias Majuntke 5

6 Outline of the Talk Contribution System Model Background on Paxos and Generalized Consensus Hybrid Paxos protocol Evaluation Discussion Conclusion EDCC, Valencia, May 18, 2010 Matthias Majuntke 6

7 Contribution Hybrid Paxos (HP) CP with additional fast mode Fast learning in absence of collisions 3 msg delays as CP in presence of collisions Latency optimal 2f+1 servers, f may crash (optimal) Linear number of messages (optimal) First efficient implementation of Generalized Consensus Experiments using Emulab HP reaches theoretical minimum of latency HP does not negatively affect throughput EDCC, Valencia, May 18, 2010 Matthias Majuntke 7

8 System Model Distributed System n servers Any number of clients (may crash) Communication via reliable FIFO channels Crash-stop model clients At most minority of servers fails (n 2f+1), f = #crashes Asynchrony ΩΩ Failure detector (eventually outputs same correct leader) servers Generalized Consensus Command History Equivalence class of command sequences Sequences c 1 and c 2 are equivalent iff executing them produces same outputs and state commuting commands EDCC, Valencia, May 18, 2010 Matthias Majuntke 8

9 Background on Generalized Consensus Protocol operates on command history = equivalence class of command sequences Terms on histories Prefix relation on histories glb of histories (largest common prefix, intersection) lub of histories (smallest common extension, union) h and h compatible iff exists g: h g, h g Definition of Generalized Consensus Consistency: every two learned histories are compatible. Nontriviality: if history is chosen than all contained commands have been proposed. Conservatism: if history h is learned, then h was chosen. Progress: if command c is proposed, eventually a history containing c is learned. EDCC, Valencia, May 18, 2010 Matthias Majuntke 9

10 Background on Paxos Family Following holds for CP, FP, and HP Clients are proposers and learners Servers are acceptors Cooperate to choose single comand history Acceptors query ΩΩ and elect leader among them Unique Leader needed for progress only Paxos * protocols operate in rounds Each leader is preassigned a set of round numbers Operation modes Recovery, to change rounds (must ensure consistency) Normal operation Quorums of acceptors CP: any two quorums intersect FP: requires larger fast quorums FQ n- FQ +1 intersection of quorum and fast quorum FQ is larger than n- FQ n- FQ EDCC, Valencia, May 18, 2010 Matthias Majuntke 10

11 CP and FP Message Patterns cl Recovery (all protocols) Normal Operation of CP ld propose 2b 1a 1b 2a 2b 2a 2b acc Phase 1 Phase 2 Normal Operation of FP cl ld acc 2bfast chosen propose 2bfast Fast mode 2a 1a 1b 2b Recovery from collision EDCC, Valencia, May 18, 2010 Matthias Majuntke 11

12 Ideas behind Message Patterns Normal Operation CP Client sends proposal (command) to leader Leader appends command to history and sends history to acceptors (2a) Acceptors accept history as local history Acceptors send history back to client (2b) Normal Operation FP Client sends proposal to acceptors Acceptors append commands to local fast history (optimistic) Acceptors send history back to client (and leader) (2bfast) Collision Recovery triggered by Leader Recovery (to start a new round) Phase 1: initialized by new leader (1a) Acceptors send local histories to leader (1b) Core of Leader determines chosen history protocol Phase 2: Leader synchronizes acceptors to chosen history (2a) Reply to clients (2b) EDCC, Valencia, May 18, 2010 Matthias Majuntke 12

13 Combining the two protocols CP HP FP cl ld propose 2b 2bfast 2bfast chosen acc 2a 2b propose 2bfast Execute CP and FP pattern in parallel CP with additional FP mode Acceptors locally maintain fast and classic history History from ld as classic history Commands from cl appended to fast history No naïve combination Clients learn either by receiving Quorum of equal 2b messages (learn( learn) Fast Quorum of equal 2bfast messages and one 2b message (hybrid learn) Needed also in FP for speculative execution EDCC, Valencia, May 18, 2010 Matthias Majuntke 13

14 Same message pattern Hybrid Recovery Acceptors maintain separate histories Classic history Fast history Leader perform CP and FP like recoveries in parallel Determines history fh from FP recovery Determines history h from CP recovery Problem: h and fh might be incompatible (no common extension) Determine largest prefix pfh of fh which is compatible with h Pick lub of pfh and h (smallest common extension) Why is this correct (sufficient for Consistency)? To show: any history lh learned by hybrid learn is prefix of pfh. lh fh, and all prefixes of fh compatible with h are prefixes of pfh Sufficient to show: lh compatible with h By hybrid learning: some acceptor holds lh as classic history lh and h have been sent by leader lh and h are compatible Neither h nor fh sufficient Goal: lub of h and fh EDCC, Valencia, May 18, 2010 Matthias Majuntke 14

15 Optimization 1 (msg complexity) Implementation Optimization Leader does not send entire history to acceptors (2a) FIFO channels Optimization 2 (execution) Implementing state machine at servers Only leader executes commands (speculatively) Prevents rollbacks at acceptors Clients receive history digests + result Optimization 3 (latency) Diverging fast and classic histories during normal mode prevents hybrid learning Periodically acceptors locally align fh to h (as in hybrid recovery) Optimization 4 (throughput) FP mode switched off during high load Leader monitors load Also true for FP EDCC, Valencia, May 18, 2010 Matthias Majuntke 15

16 Evaluation Experimental setting Banking system, two operations deposit and withdraw deposit operations are commutable (Generalized Consensus) Emulab test bed 20ms link delay between client and servers, 100Mbps Topology similar to Europe topology from beginning of presentation Servers 600Mhz PC, Fedora 6 EDCC, Valencia, May 18, 2010 Matthias Majuntke 16

17 Latency Latency of HP with varying withdraw rate = probability of collisions EDCC, Valencia, May 18, 2010 Matthias Majuntke Latency vs throughput (with and w/o batching) 17

18 Throughput Throughput with increasing clients EDCC, Valencia, May 18, 2010 Matthias Majuntke 18 Throughput with increasing number of f

19 Related Work [Lamport: ACM Computer 1998] The Part-Time parliament [Lamport: Dist. Comp. 2006] Fast Paxos [Lamport: TR2005] Generalized Consensus and Paxos [Dobre, Suri DSN2006] One-step Consensus with Zero-degradation [Charron-Bost, Schiper: PRDC2006] Improving Fast Paxos: Being Optimal with no Overhead Minimum latency of FP and CP only in failure-free runs [Camargos, Schmidt, Pedone: NCA2008] Mulitcoordinated Agreement Protocols for Higher Availability Improved availability of CP by multiple leaders; collision resolution req. [Zielinski: DISC2005] Optimistic Generic Broadcast Parallel execution of CP and FP; not resilience optimal; quadratic msg complexity [Mao, Junqueira, Marzullo: OSDI2008] Mencius: Building Efficient Replicated State Machine for WANs Based on CP; partition consensus instances among several leaders (throughput) Each client has LAN connection to one leader (latency) Perfect failure detector needed EDCC, Valencia, May 18, 2010 Matthias Majuntke 19

20 Comparison to CP Implements CP Never worse than CP Discussion FP mode switched off when leader is highly loaded Comparison to FP HP and FP need 2 msg delays in absence of collisions HP needs 3, FP needs 6 msg delays in presence of collisions Experiments: Collision rate grows faster than server utilization rate Servers underutilized when hybrid learning rate below 50% FP would spend >50% of the time recovering from collisions Optimizations Batching possible Increasing throughput by a magnitude EDCC, Valencia, May 18, 2010 Matthias Majuntke 20

21 HP: Hybrid Paxos Idea: add fast learning to Paxos Generalized Consensus protocol Summary First protocol with 2 msg delays in absence of collisions and 3 msg delays otherwise Optimal latency, resilience and number of messages Generalized Consensus is practical approach for WAN replication HP can outperform state of the art protocols HP is a Generalized Consensus protocol that features minimal latency and maximum throughput in most situations! EDCC, Valencia, May 18, 2010 Matthias Majuntke 21

22 Thank you for your attention! Questions? EDCC, Valencia, May 18, 2010 Matthias Majuntke 22

Replicated State Machine in Wide-area Networks

Replicated State Machine in Wide-area Networks Replicated State Machine in Wide-area Networks Yanhua Mao CSE223A WI09 1 Building replicated state machine with consensus General approach to replicate stateful deterministic services Provide strong consistency

More information

Reducing the Costs of Large-Scale BFT Replication

Reducing the Costs of Large-Scale BFT Replication Reducing the Costs of Large-Scale BFT Replication Marco Serafini & Neeraj Suri TU Darmstadt, Germany Neeraj Suri EU-NSF ICT March 2006 Dependable Embedded Systems & SW Group www.deeds.informatik.tu-darmstadt.de

More information

Mencius: Another Paxos Variant???

Mencius: Another Paxos Variant??? Mencius: Another Paxos Variant??? Authors: Yanhua Mao, Flavio P. Junqueira, Keith Marzullo Presented by Isaiah Mayerchak & Yijia Liu State Machine Replication in WANs WAN = Wide Area Network Goals: Web

More information

Fast Paxos Made Easy: Theory and Implementation

Fast Paxos Made Easy: Theory and Implementation International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 15 Fast Paxos Made Easy: Theory and Implementation Wenbing Zhao, Department of Electrical and Computer Engineering,

More information

MENCIUS: BUILDING EFFICIENT

MENCIUS: BUILDING EFFICIENT MENCIUS: BUILDING EFFICIENT STATE MACHINE FOR WANS By: Yanhua Mao Flavio P. Junqueira Keith Marzullo Fabian Fuxa, Chun-Yu Hsiung November 14, 2018 AGENDA 1. Motivation 2. Breakthrough 3. Rules of Mencius

More information

What is Distributed Storage Good For?

What is Distributed Storage Good For? Efficient Robust Storage using Secret Tokens Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri Dependable Embedded Systems & SW Group Neeraj Suri www.deeds.informatik.tu-darmstadt.de EU-NSF

More information

AGREEMENT PROTOCOLS. Paxos -a family of protocols for solving consensus

AGREEMENT PROTOCOLS. Paxos -a family of protocols for solving consensus AGREEMENT PROTOCOLS Paxos -a family of protocols for solving consensus OUTLINE History of the Paxos algorithm Paxos Algorithm Family Implementation in existing systems References HISTORY OF THE PAXOS ALGORITHM

More information

SpecPaxos. James Connolly && Harrison Davis

SpecPaxos. James Connolly && Harrison Davis SpecPaxos James Connolly && Harrison Davis Overview Background Fast Paxos Traditional Paxos Implementations Data Centers Mostly-Ordered-Multicast Network layer Speculative Paxos Protocol Application layer

More information

Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering

Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, Dan R. K. Ports Server failures are the common case in data centers

More information

Recovering from a Crash. Three-Phase Commit

Recovering from a Crash. Three-Phase Commit Recovering from a Crash If INIT : abort locally and inform coordinator If Ready, contact another process Q and examine Q s state Lecture 18, page 23 Three-Phase Commit Two phase commit: problem if coordinator

More information

Zyzzyva. Speculative Byzantine Fault Tolerance. Ramakrishna Kotla. L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin

Zyzzyva. Speculative Byzantine Fault Tolerance. Ramakrishna Kotla. L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin Zyzzyva Speculative Byzantine Fault Tolerance Ramakrishna Kotla L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin The Goal Transform high-performance service into high-performance

More information

HT-Paxos: High Throughput State-Machine Replication Protocol for Large Clustered Data Centers

HT-Paxos: High Throughput State-Machine Replication Protocol for Large Clustered Data Centers 1 HT-Paxos: High Throughput State-Machine Replication Protocol for Large Clustered Data Centers Vinit Kumar 1 and Ajay Agarwal 2 1 Associate Professor with the Krishna Engineering College, Ghaziabad, India.

More information

Paxos and Replication. Dan Ports, CSEP 552

Paxos and Replication. Dan Ports, CSEP 552 Paxos and Replication Dan Ports, CSEP 552 Today: achieving consensus with Paxos and how to use this to build a replicated system Last week Scaling a web service using front-end caching but what about the

More information

Today: Fault Tolerance

Today: Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Today: Fault Tolerance. Fault Tolerance

Today: Fault Tolerance. Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout Exploiting Commutativity For Practical Fast Replication Seo Jin Park and John Ousterhout Overview Problem: consistent replication adds latency and throughput overheads Why? Replication happens after ordering

More information

Paxos. Sistemi Distribuiti Laurea magistrale in ingegneria informatica A.A Leonardo Querzoni. giovedì 19 aprile 12

Paxos. Sistemi Distribuiti Laurea magistrale in ingegneria informatica A.A Leonardo Querzoni. giovedì 19 aprile 12 Sistemi Distribuiti Laurea magistrale in ingegneria informatica A.A. 2011-2012 Leonardo Querzoni The Paxos family of algorithms was introduced in 1999 to provide a viable solution to consensus in asynchronous

More information

Enhancing Throughput of

Enhancing Throughput of Enhancing Throughput of NCA 2017 Zhongmiao Li, Peter Van Roy and Paolo Romano Enhancing Throughput of Partially Replicated State Machines via NCA 2017 Zhongmiao Li, Peter Van Roy and Paolo Romano Enhancing

More information

Fast Paxos. Leslie Lamport

Fast Paxos. Leslie Lamport Distrib. Comput. (2006) 19:79 103 DOI 10.1007/s00446-006-0005-x ORIGINAL ARTICLE Fast Paxos Leslie Lamport Received: 20 August 2005 / Accepted: 5 April 2006 / Published online: 8 July 2006 Springer-Verlag

More information

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita Proseminar Distributed Systems Summer Semester 2016 Paxos algorithm stefan.resmerita@cs.uni-salzburg.at The Paxos algorithm Family of protocols for reaching consensus among distributed agents Agents may

More information

Weak Consistency as a Last Resort

Weak Consistency as a Last Resort Weak Consistency as a Last Resort Marco Serafini and Flavio Junqueira Yahoo! Research Barcelona, Spain { serafini, fpj }@yahoo-inc.com ABSTRACT It is well-known that using a replicated service requires

More information

Building Consistent Transactions with Inconsistent Replication

Building Consistent Transactions with Inconsistent Replication Building Consistent Transactions with Inconsistent Replication Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, Dan R. K. Ports University of Washington Distributed storage systems

More information

There Is More Consensus in Egalitarian Parliaments

There Is More Consensus in Egalitarian Parliaments There Is More Consensus in Egalitarian Parliaments Iulian Moraru, David Andersen, Michael Kaminsky Carnegie Mellon University Intel Labs Fault tolerance Redundancy State Machine Replication 3 State Machine

More information

Coordinating distributed systems part II. Marko Vukolić Distributed Systems and Cloud Computing

Coordinating distributed systems part II. Marko Vukolić Distributed Systems and Cloud Computing Coordinating distributed systems part II Marko Vukolić Distributed Systems and Cloud Computing Last Time Coordinating distributed systems part I Zookeeper At the heart of Zookeeper is the ZAB atomic broadcast

More information

Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors. Michel Raynal, Julien Stainer

Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors. Michel Raynal, Julien Stainer Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors Michel Raynal, Julien Stainer Synchrony Weakened by Message Adversaries vs Asynchrony Enriched with Failure Detectors

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 496 (2013) 170 183 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Optimizing Paxos with batching

More information

Beyond FLP. Acknowledgement for presentation material. Chapter 8: Distributed Systems Principles and Paradigms: Tanenbaum and Van Steen

Beyond FLP. Acknowledgement for presentation material. Chapter 8: Distributed Systems Principles and Paradigms: Tanenbaum and Van Steen Beyond FLP Acknowledgement for presentation material Chapter 8: Distributed Systems Principles and Paradigms: Tanenbaum and Van Steen Paper trail blog: http://the-paper-trail.org/blog/consensus-protocols-paxos/

More information

A Formal Model of Crash Recovery in Distributed Software Transactional Memory (Extended Abstract)

A Formal Model of Crash Recovery in Distributed Software Transactional Memory (Extended Abstract) A Formal Model of Crash Recovery in Distributed Software Transactional Memory (Extended Abstract) Paweł T. Wojciechowski, Jan Kończak Poznań University of Technology 60-965 Poznań, Poland {Pawel.T.Wojciechowski,Jan.Konczak}@cs.put.edu.pl

More information

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein Sameh Elnikety. Copyright 2012 Philip A. Bernstein

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein Sameh Elnikety. Copyright 2012 Philip A. Bernstein 10. Replication CSEP 545 Transaction Processing Philip A. Bernstein Sameh Elnikety Copyright 2012 Philip A. Bernstein 1 Outline 1. Introduction 2. Primary-Copy Replication 3. Multi-Master Replication 4.

More information

Intuitive distributed algorithms. with F#

Intuitive distributed algorithms. with F# Intuitive distributed algorithms with F# Natallia Dzenisenka Alena Hall @nata_dzen @lenadroid A tour of a variety of intuitivedistributed algorithms used in practical distributed systems. and how to prototype

More information

SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines

SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State Machines Hanyu Zhao *, Quanlu Zhang, Zhi Yang *, Ming Wu, Yafei Dai * * Peking University Microsoft Research Replication for Fault Tolerance

More information

S-Paxos: Offloading the Leader for High Throughput State Machine Replication

S-Paxos: Offloading the Leader for High Throughput State Machine Replication 212 31st International Symposium on Reliable Distributed Systems S-: Offloading the Leader for High Throughput State Machine Replication Martin Biely, Zarko Milosevic, Nuno Santos, André Schiper Ecole

More information

Generating Fast Indulgent Algorithms

Generating Fast Indulgent Algorithms Generating Fast Indulgent Algorithms Dan Alistarh 1, Seth Gilbert 2, Rachid Guerraoui 1, and Corentin Travers 3 1 EPFL, Switzerland 2 National University of Singapore 3 Université de Bordeaux 1, France

More information

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ)

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ) Data Consistency and Blockchain Bei Chun Zhou (BlockChainZ) beichunz@cn.ibm.com 1 Data Consistency Point-in-time consistency Transaction consistency Application consistency 2 Strong Consistency ACID Atomicity.

More information

Distributed Systems Consensus

Distributed Systems Consensus Distributed Systems Consensus Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Consensus 1393/6/31 1 / 56 What is the Problem?

More information

Asynchronous Reconfiguration for Paxos State Machines

Asynchronous Reconfiguration for Paxos State Machines Asynchronous Reconfiguration for Paxos State Machines Leander Jehl and Hein Meling Department of Electrical Engineering and Computer Science University of Stavanger, Norway Abstract. This paper addresses

More information

Cheap Paxos. Leslie Lamport and Mike Massa. Appeared in The International Conference on Dependable Systems and Networks (DSN 2004)

Cheap Paxos. Leslie Lamport and Mike Massa. Appeared in The International Conference on Dependable Systems and Networks (DSN 2004) Cheap Paxos Leslie Lamport and Mike Massa Appeared in The International Conference on Dependable Systems and Networks (DSN 2004) Cheap Paxos Leslie Lamport and Mike Massa Microsoft Abstract Asynchronous

More information

Consensus and related problems

Consensus and related problems Consensus and related problems Today l Consensus l Google s Chubby l Paxos for Chubby Consensus and failures How to make process agree on a value after one or more have proposed what the value should be?

More information

Designing Distributed Systems using Approximate Synchrony in Data Center Networks

Designing Distributed Systems using Approximate Synchrony in Data Center Networks Designing Distributed Systems using Approximate Synchrony in Data Center Networks Dan R. K. Ports Jialin Li Naveen Kr. Sharma Vincent Liu Arvind Krishnamurthy University of Washington CSE Today s most

More information

TAPIR. By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton

TAPIR. By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton TAPIR By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton Outline Problem Space Inconsistent Replication TAPIR Evaluation Conclusion Problem

More information

Byzantine fault tolerance. Jinyang Li With PBFT slides from Liskov

Byzantine fault tolerance. Jinyang Li With PBFT slides from Liskov Byzantine fault tolerance Jinyang Li With PBFT slides from Liskov What we ve learnt so far: tolerate fail-stop failures Traditional RSM tolerates benign failures Node crashes Network partitions A RSM w/

More information

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein. Copyright 2003 Philip A. Bernstein. Outline

10. Replication. CSEP 545 Transaction Processing Philip A. Bernstein. Copyright 2003 Philip A. Bernstein. Outline 10. Replication CSEP 545 Transaction Processing Philip A. Bernstein Copyright 2003 Philip A. Bernstein 1 Outline 1. Introduction 2. Primary-Copy Replication 3. Multi-Master Replication 4. Other Approaches

More information

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf Distributed systems Lecture 6: distributed transactions, elections, consensus and replication Malte Schwarzkopf Last time Saw how we can build ordered multicast Messages between processes in a group Need

More information

Paxos Made Simple. Leslie Lamport, 2001

Paxos Made Simple. Leslie Lamport, 2001 Paxos Made Simple Leslie Lamport, 2001 The Problem Reaching consensus on a proposed value, among a collection of processes Safety requirements: Only a value that has been proposed may be chosen Only a

More information

Distributed Systems 11. Consensus. Paul Krzyzanowski

Distributed Systems 11. Consensus. Paul Krzyzanowski Distributed Systems 11. Consensus Paul Krzyzanowski pxk@cs.rutgers.edu 1 Consensus Goal Allow a group of processes to agree on a result All processes must agree on the same value The value must be one

More information

The Performance of Paxos and Fast Paxos

The Performance of Paxos and Fast Paxos 27º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos 291 The Performance of and Fast Gustavo M. D. Vieira 1, Luiz E. Buzato 1 1 Instituto de Computação, Unicamp Caixa Postal 6176 1383-97

More information

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5.

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5. Question 1 What makes a message unstable? How does an unstable message become stable? Distributed Systems 2016 Exam 2 Review Paul Krzyzanowski Rutgers University Fall 2016 In virtual sychrony, a message

More information

Group Replication: A Journey to the Group Communication Core. Alfranio Correia Principal Software Engineer

Group Replication: A Journey to the Group Communication Core. Alfranio Correia Principal Software Engineer Group Replication: A Journey to the Group Communication Core Alfranio Correia (alfranio.correia@oracle.com) Principal Software Engineer 4th of February Copyright 7, Oracle and/or its affiliates. All rights

More information

Be General and Don t Give Up Consistency in Geo- Replicated Transactional Systems

Be General and Don t Give Up Consistency in Geo- Replicated Transactional Systems Be General and Don t Give Up Consistency in Geo- Replicated Transactional Systems Alexandru Turcu, Sebastiano Peluso, Roberto Palmieri and Binoy Ravindran Replicated Transactional Systems DATA CONSISTENCY

More information

MDCC MULTI DATA CENTER CONSISTENCY. amplab. Tim Kraska, Gene Pang, Michael Franklin, Samuel Madden, Alan Fekete

MDCC MULTI DATA CENTER CONSISTENCY. amplab. Tim Kraska, Gene Pang, Michael Franklin, Samuel Madden, Alan Fekete MDCC MULTI DATA CENTER CONSISTENCY Tim Kraska, Gene Pang, Michael Franklin, Samuel Madden, Alan Fekete gpang@cs.berkeley.edu amplab MOTIVATION 2 3 June 2, 200: Rackspace power outage of approximately 0

More information

The Distributed Coordination Engine (DConE) TECHNICAL WHITE PAPER

The Distributed Coordination Engine (DConE) TECHNICAL WHITE PAPER The Distributed Coordination Engine (DConE) TECHNICAL WHITE PAPER Table of Contents Introduction... 1 Distributed Transaction Processing with DConE...2 The Paxos Algorithm... 2 Achieving Consensus with

More information

BIG DATA AND CONSISTENCY. Amy Babay

BIG DATA AND CONSISTENCY. Amy Babay BIG DATA AND CONSISTENCY Amy Babay Outline Big Data What is it? How is it used? What problems need to be solved? Replication What are the options? Can we use this to solve Big Data s problems? Putting

More information

CS October 2017

CS October 2017 Atomic Transactions Transaction An operation composed of a number of discrete steps. Distributed Systems 11. Distributed Commit Protocols All the steps must be completed for the transaction to be committed.

More information

Distributed Consensus: Making Impossible Possible

Distributed Consensus: Making Impossible Possible Distributed Consensus: Making Impossible Possible QCon London Tuesday 29/3/2016 Heidi Howard PhD Student @ University of Cambridge heidi.howard@cl.cam.ac.uk @heidiann360 What is Consensus? The process

More information

AS distributed systems develop and grow in size,

AS distributed systems develop and grow in size, 1 hbft: Speculative Byzantine Fault Tolerance With Minimum Cost Sisi Duan, Sean Peisert, Senior Member, IEEE, and Karl N. Levitt Abstract We present hbft, a hybrid, Byzantine fault-tolerant, ted state

More information

Erasure Coding in Object Stores: Challenges and Opportunities

Erasure Coding in Object Stores: Challenges and Opportunities Erasure Coding in Object Stores: Challenges and Opportunities Lewis Tseng Boston College July 2018, PODC Acknowledgements Nancy Lynch Muriel Medard Kishori Konwar Prakash Narayana Moorthy Viveck R. Cadambe

More information

CSE 544 Principles of Database Management Systems. Alvin Cheung Fall 2015 Lecture 14 Distributed Transactions

CSE 544 Principles of Database Management Systems. Alvin Cheung Fall 2015 Lecture 14 Distributed Transactions CSE 544 Principles of Database Management Systems Alvin Cheung Fall 2015 Lecture 14 Distributed Transactions Transactions Main issues: Concurrency control Recovery from failures 2 Distributed Transactions

More information

Coordination and Agreement

Coordination and Agreement Coordination and Agreement Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Introduction 2. Distributed Mutual Exclusion 3. Elections 4. Multicast Communication 5. Consensus and related problems

More information

Making Fast Consensus Generally Faster

Making Fast Consensus Generally Faster Making Fast Consensus Generally Faster [Technical Report] Sebastiano Peluso Virginia Tech peluso@vt.edu Alexandru Turcu Virginia Tech talex@vt.edu Roberto Palmieri Virginia Tech robertop@vt.edu Giuliano

More information

Distributed Consensus: Making Impossible Possible

Distributed Consensus: Making Impossible Possible Distributed Consensus: Making Impossible Possible Heidi Howard PhD Student @ University of Cambridge heidi.howard@cl.cam.ac.uk @heidiann360 hh360.user.srcf.net Sometimes inconsistency is not an option

More information

CSE 486/586 Distributed Systems

CSE 486/586 Distributed Systems CSE 486/586 Distributed Systems Mutual Exclusion Steve Ko Computer Sciences and Engineering University at Buffalo CSE 486/586 Recap: Consensus On a synchronous system There s an algorithm that works. On

More information

Paxos and Raft (Lecture 21, cs262a) Ion Stoica, UC Berkeley November 7, 2016

Paxos and Raft (Lecture 21, cs262a) Ion Stoica, UC Berkeley November 7, 2016 Paxos and Raft (Lecture 21, cs262a) Ion Stoica, UC Berkeley November 7, 2016 Bezos mandate for service-oriented-architecture (~2002) 1. All teams will henceforth expose their data and functionality through

More information

Failures, Elections, and Raft

Failures, Elections, and Raft Failures, Elections, and Raft CS 8 XI Copyright 06 Thomas W. Doeppner, Rodrigo Fonseca. All rights reserved. Distributed Banking SFO add interest based on current balance PVD deposit $000 CS 8 XI Copyright

More information

Distributed Systems. 10. Consensus: Paxos. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 10. Consensus: Paxos. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 10. Consensus: Paxos Paul Krzyzanowski Rutgers University Fall 2017 1 Consensus Goal Allow a group of processes to agree on a result All processes must agree on the same value The value

More information

Efficient and Scalable Replication of Services over Wide-Area Networks

Efficient and Scalable Replication of Services over Wide-Area Networks Efficient and Scalable Replication of Services over Wide-Area Networks Thesis by Abdallah Abouzamazem In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy University of Newcastle

More information

Distributed Systems. coordination Johan Montelius ID2201. Distributed Systems ID2201

Distributed Systems. coordination Johan Montelius ID2201. Distributed Systems ID2201 Distributed Systems ID2201 coordination Johan Montelius 1 Coordination Coordinating several threads in one node is a problem, coordination in a network is of course worse: failure of nodes and networks

More information

Distributed Commit in Asynchronous Systems

Distributed Commit in Asynchronous Systems Distributed Commit in Asynchronous Systems Minsoo Ryu Department of Computer Science and Engineering 2 Distributed Commit Problem - Either everybody commits a transaction, or nobody - This means consensus!

More information

Applications of Paxos Algorithm

Applications of Paxos Algorithm Applications of Paxos Algorithm Gurkan Solmaz COP 6938 - Cloud Computing - Fall 2012 Department of Electrical Engineering and Computer Science University of Central Florida - Orlando, FL Oct 15, 2012 1

More information

JPaxos: State machine replication based on the Paxos protocol

JPaxos: State machine replication based on the Paxos protocol JPaxos: State machine replication based on the Paxos protocol Jan Kończak 2, Nuno Santos 1, Tomasz Żurkowski 2, Paweł T. Wojciechowski 2, and André Schiper 1 1 EPFL, Switzerland 2 Poznań University of

More information

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance Practical Byzantine Fault Tolerance Robert Grimm New York University (Partially based on notes by Eric Brewer and David Mazières) The Three Questions What is the problem? What is new or different? What

More information

Self-healing Data Step by Step

Self-healing Data Step by Step Self-healing Data Step by Step Uwe Friedrichsen (codecentric AG) NoSQL matters Cologne, 29. April 2014 @ufried Uwe Friedrichsen uwe.friedrichsen@codecentric.de http://slideshare.net/ufried http://ufried.tumblr.com

More information

Distributed Consensus Protocols

Distributed Consensus Protocols Distributed Consensus Protocols ABSTRACT In this paper, I compare Paxos, the most popular and influential of distributed consensus protocols, and Raft, a fairly new protocol that is considered to be a

More information

Vive La Différence: Paxos vs. Viewstamped Replication vs. Zab

Vive La Différence: Paxos vs. Viewstamped Replication vs. Zab IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID 1 Vive La Différence: Paxos vs. Viewstamped Replication vs. Zab Robbert van Renesse, Nicolas Schiper, Fred B. Schneider, Fellow, IEEE

More information

Assignment 12: Commit Protocols and Replication Solution

Assignment 12: Commit Protocols and Replication Solution Data Modelling and Databases Exercise dates: May 24 / May 25, 2018 Ce Zhang, Gustavo Alonso Last update: June 04, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 12: Commit Protocols and Replication

More information

Recall our 2PC commit problem. Recall our 2PC commit problem. Doing failover correctly isn t easy. Consensus I. FLP Impossibility, Paxos

Recall our 2PC commit problem. Recall our 2PC commit problem. Doing failover correctly isn t easy. Consensus I. FLP Impossibility, Paxos Consensus I Recall our 2PC commit problem FLP Impossibility, Paxos Client C 1 C à TC: go! COS 418: Distributed Systems Lecture 7 Michael Freedman Bank A B 2 TC à A, B: prepare! 3 A, B à P: yes or no 4

More information

Multi-Ring Paxos /12/$ IEEE. Marco Primi University of Lugano (USI) Switzerland

Multi-Ring Paxos /12/$ IEEE. Marco Primi University of Lugano (USI) Switzerland Multi-Ring Paxos Parisa Jalili Marandi University of Lugano (USI) Switzerland Marco Primi University of Lugano (USI) Switzerland Fernando Pedone University of Lugano (USI) Switzerland Abstract This paper

More information

Fast Atomic Multicast

Fast Atomic Multicast Università della Svizzera italiana USI Technical Report Series in Informatics Fast Atomic Multicast Paulo R. Coelho 1, Nicolas Schiper 2, Fernando Pedone 1 1 Faculty of Informatics, Università della Svizzera

More information

High performance recovery for parallel state machine replication

High performance recovery for parallel state machine replication High performance recovery for parallel state machine replication Odorico M. Mendizabal and Fernando Luís Dotti and Fernando Pedone Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil Pontifícia

More information

Robust BFT Protocols

Robust BFT Protocols Robust BFT Protocols Sonia Ben Mokhtar, LIRIS, CNRS, Lyon Joint work with Pierre Louis Aublin, Grenoble university Vivien Quéma, Grenoble INP 18/10/2013 Who am I? CNRS reseacher, LIRIS lab, DRIM research

More information

Strong Consistency at Scale

Strong Consistency at Scale Strong Consistency at Scale Carlos Eduardo Bezerra University of Lugano (USI) Switzerland Le Long Hoang University of Lugano (USI) Switzerland Fernando Pedone University of Lugano (USI) Switzerland Abstract

More information

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov Outline 1. Introduction to Byzantine Fault Tolerance Problem 2. PBFT Algorithm a. Models and overview b. Three-phase protocol c. View-change

More information

Scaling Byzantine Fault-tolerant Replication to Wide Area Networks

Scaling Byzantine Fault-tolerant Replication to Wide Area Networks Scaling Byzantine Fault-tolerant Replication to Wide Area Networks Cristina Nita-Rotaru Dependable and Secure Distributed Systems Lab Department of Computer Science and CERIAS Purdue University Department

More information

Consensus Problem. Pradipta De

Consensus Problem. Pradipta De Consensus Problem Slides are based on the book chapter from Distributed Computing: Principles, Paradigms and Algorithms (Chapter 14) by Kshemkalyani and Singhal Pradipta De pradipta.de@sunykorea.ac.kr

More information

When You Don t Trust Clients: Byzantine Proposer Fast Paxos

When You Don t Trust Clients: Byzantine Proposer Fast Paxos 2012 32nd IEEE International Conference on Distributed Computing Systems When You Don t Trust Clients: Byzantine Proposer Fast Paxos Hein Meling, Keith Marzullo, and Alessandro Mei Department of Electrical

More information

Revisiting Fast Practical Byzantine Fault Tolerance

Revisiting Fast Practical Byzantine Fault Tolerance Revisiting Fast Practical Byzantine Fault Tolerance Ittai Abraham, Guy Gueta, Dahlia Malkhi VMware Research with: Lorenzo Alvisi (Cornell), Rama Kotla (Amazon), Jean-Philippe Martin (Verily) December 4,

More information

Specula(ng Seriously. Rachid Guerraoui, EPFL

Specula(ng Seriously. Rachid Guerraoui, EPFL Specula(ng Seriously Rachid Guerraoui, EPFL The World is turning IT IT is turning distributed Everybody should come to disc/podc But some don t Indeed theory scares pracbboners But wait, there is more

More information

Distributed Systems 8L for Part IB

Distributed Systems 8L for Part IB Distributed Systems 8L for Part IB Handout 3 Dr. Steven Hand 1 Distributed Mutual Exclusion In first part of course, saw need to coordinate concurrent processes / threads In particular considered how to

More information

A Low-latency Consensus Algorithm for Geographically Distributed Systems

A Low-latency Consensus Algorithm for Geographically Distributed Systems A Low-latency Consensus Algorithm for Geographically Distributed Systems Balaji Arun Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of

More information

High Performance State-Machine Replication

High Performance State-Machine Replication High Performance State-Machine Replication Parisa Jalili Marandi University of Lugano (USI) Switzerland Marco Primi University of Lugano (USI) Switzerland Fernando Pedone University of Lugano (USI) Switzerland

More information

Local Recovery for High Availability in Strongly Consistent Cloud Services

Local Recovery for High Availability in Strongly Consistent Cloud Services IEEE TRANSACTION ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y, JANUARY 2013 1 Local Recovery for High Availability in Strongly Consistent Cloud Services James W. Anderson, Hein Meling, Alexander Rasmussen,

More information

Introduction to Distributed Systems Seif Haridi

Introduction to Distributed Systems Seif Haridi Introduction to Distributed Systems Seif Haridi haridi@kth.se What is a distributed system? A set of nodes, connected by a network, which appear to its users as a single coherent system p1 p2. pn send

More information

EMPIRICAL STUDY OF UNSTABLE LEADERS IN PAXOS LONG KAI THESIS

EMPIRICAL STUDY OF UNSTABLE LEADERS IN PAXOS LONG KAI THESIS 2013 Long Kai EMPIRICAL STUDY OF UNSTABLE LEADERS IN PAXOS BY LONG KAI THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate

More information

Dfinity Consensus, Explored

Dfinity Consensus, Explored Dfinity Consensus, Explored Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren VMware Research {iabraham,dmalkhi,nkartik,lingren}@vmware.com Abstract. We explore a Byzantine Consensus protocol called

More information

Evaluating BFT Protocols for Spire

Evaluating BFT Protocols for Spire Evaluating BFT Protocols for Spire Henry Schuh & Sam Beckley 600.667 Advanced Distributed Systems & Networks SCADA & Spire Overview High-Performance, Scalable Spire Trusted Platform Module Known Network

More information

Replication in Distributed Systems

Replication in Distributed Systems Replication in Distributed Systems Replication Basics Multiple copies of data kept in different nodes A set of replicas holding copies of a data Nodes can be physically very close or distributed all over

More information

Fast Byzantine Consensus

Fast Byzantine Consensus Fast Byzantine Consensus Jean-Philippe Martin, Lorenzo Alvisi Department of Computer Sciences The University of Texas at Austin Email: {jpmartin, lorenzo}@cs.utexas.edu Abstract We present the first consensus

More information

Agreement in Distributed Systems CS 188 Distributed Systems February 19, 2015

Agreement in Distributed Systems CS 188 Distributed Systems February 19, 2015 Agreement in Distributed Systems CS 188 Distributed Systems February 19, 2015 Page 1 Introduction We frequently want to get a set of nodes in a distributed system to agree Commitment protocols and mutual

More information

Large-Scale Key-Value Stores Eventual Consistency Marco Serafini

Large-Scale Key-Value Stores Eventual Consistency Marco Serafini Large-Scale Key-Value Stores Eventual Consistency Marco Serafini COMPSCI 590S Lecture 13 Goals of Key-Value Stores Export simple API put(key, value) get(key) Simpler and faster than a DBMS Less complexity,

More information

Fast Follower Recovery for State Machine Replication

Fast Follower Recovery for State Machine Replication Fast Follower Recovery for State Machine Replication Jinwei Guo 1, Jiahao Wang 1, Peng Cai 1, Weining Qian 1, Aoying Zhou 1, and Xiaohang Zhu 2 1 Institute for Data Science and Engineering, East China

More information