Adaptive MPI Multirail Tuning for Non-Uniform Input/Output Access

Size: px
Start display at page:

Download "Adaptive MPI Multirail Tuning for Non-Uniform Input/Output Access"

Transcription

1 Adaptive MPI Multirail Tuning for Non-Uniform Input/Output Access S. Moreaud, B. Goglin and R. Namyst INRIA Runtime team-project University of Bordeaux, France

2 Context Multicore architectures everywhere in HPC Increasing number of cores Increasing complexity Hierarchical aspects Multiplication of shared resources NUMA architecture AMD HyperTransport, Intel QPI Need tasks and data placement according to affinities 2

3 Non Uniform I/O Access NUMA architectures NIC connected to a single NUMA node directly Network micro-benchmarks NUMA-aware manual binding Not included in communication strategies of MPI implementations Does that matter? 3

4 NUIOA effects RDMA single rail micro-benchmark over InfiniBand 4

5 NUIOA effects RDMA single rail micro-benchmark over InfiniBand -23% 5

6 NUIOA Effects Slight impact on latency (< 100ns) High impact on bandwidth Relative to network bandwidth Up to 40% degradation with multirail applications No variation while increasing NUMA distance Not restricted to NICs 42% DMA throughput degradation on NVIDIA GPU access How to adapt MPI communication strategies to these contraints? 6

7 NUIOA-aware communications Adapt process placement to NIC locations? Privileged network access to communicationintensive processes Detecting communication-intensive tasks is tricky Meaningless for uniform communication patterns Conflict with other placement strategies Adapt the MPI implementation according to NIC and processes location Multirail communication 7

8 Experimentation Platform Multiple configurations: 2 x Myri-10G 2 x InfiniBand ConnectX DDR Myri-10G + InfiniBand ConnectX DDR Quad-socket dual-core Opteron 8218 (2.6GHz) 4 NUMA nodes 2 I/O chipsets connected to NUMA nodes #0 and #1 8

9 NUIOA effects on the platform Single rail IMB ping-pong throughput 9

10 And now? Observed NUIOA effects on our testbed Important using InfiniBand NIC Minor using Myrinet NIC It is an old platform... We have seen even worse on recent ones. Don't worry! How to optimize multirail transfers considering NUIOA effects? Open MPI implementation Provide multirail transfers 10

11 Multirail communication in Open MPI BTL 1 BTL 2 Byte Transfer Layer bw1 NIC1 bw2 NIC2 Network Interface 11

12 Multirail communication in Open MPI weight BTL1 BML weight BTL2 BTL Management Layer BTL 1 BTL 2 Byte Transfer Layer bw1 NIC1 bw2 NIC2 Network Interface 12

13 Multirail communication in Open MPI weight BTL1 BML weight BTL2 Splitting ratio Send buffer BTL 1 BTL 2 BTL 1 BTL 2 bw1 bw2 NIC1 NIC2 NIC1 NIC2 13

14 Multirail communication in Open MPI weight BTL1 BML weight BTL2 Splitting ratio Send buffer BTL 1 BTL 2 BTL 1 BTL 2 2GB/s 1GB/s NIC1 NIC2 NIC1 NIC2 14

15 Multirail communication in Open MPI weight BTL1 BML weight BTL2 Splitting ratio Send buffer 67% 33% BTL 1 BTL 2 BTL 1 BTL 2 2GB/s 1GB/s NIC1 NIC2 NIC1 NIC2 15

16 Multirail communication in Open MPI weight BTL1 BML = weight BTL2 Splitting ratio 50% Send buffer 50% BTL 1 BTL 2 BTL 1 BTL 2 bw1 NIC1 = bw2 Identical NICs NIC2 NIC1 Isosplit strategy NIC2 16

17 NUIOA-aware multirail Implementation in Open MPI Let's adapt the data ratio according to the locality Modification of the BML component Bandwidth adjusted with regard to process and BTL location hwloc (Hardware locality) Library Splitting ratio specific to each process After the binding of processes Define data amount sent on each NIC 17

18 Point-to-point multirail 1MB messages - InfiniBand NICs 18

19 InfiniBand splitting ratio Optimal ratio : 58% +15% overall bandwidth improvement 19

20 InfiniBand splitting ratio Optimal ratio : 58% +15% overall bandwidth improvement Single rail throughputs 20

21 InfiniBand splitting ratio Optimal ratio : 58% +15% overall bandwidth improvement Single rail throughputs local NIC 1460 MB/s 21

22 InfiniBand splitting ratio Optimal ratio : 58% +15% overall bandwidth improvement Single rail throughputs local NIC 1460 MB/s distant NIC 1140 MB/s 22

23 InfiniBand splitting ratio Optimal ratio : 58% +15% overall bandwidth improvement Single rail throughputs local NIC 1460 MB/s distant NIC 1140 MB/s 2600 MB/s combined throughputs 23

24 InfiniBand splitting ratio Optimal ratio : 58% +15% overall bandwidth improvement Single rail throughputs local NIC 1460 MB/s distant NIC 1140 MB/s 2600 MB/s combined throughputs Ratio between single rail throughput: 56.6% 24

25 InfiniBand splitting ratio Far from both NICs: Identical single rail throughput 50% ratio Multirail ratio: 50% Approximate multirail splitting ratio from single rail bandwidths 25

26 Privilege local NIC Point-to-point multirail splitting ratio Significantly if InfiniBand card (58%) Slightly if Myri-10G card (51%) Far from both NICs isosplit optimal (50%) Derived from single rail bandwidths What about contention? 26

27 Effects of contention Hypothesis : the more contention occurs, the more the local NIC should be privileged Experimentation : Add contention on the path to a distant NIC Throughput degradation No optimal splitting ratio variation Conclusion: Seems to reduce the overall memory bandwidth instead of bandwidths of each link independently 27

28 Effects of contention What about collective operations? Communication from all NUMA nodes simultaneously Which splitting ratio for each running process? 28

29 All-to-all splitting ratio 1MB messages - InfiniBand NICs 29

30 All-to-all splitting ratio 1MB messages - InfiniBand NICs 50% 50% 30

31 All-to-all splitting ratio 1MB messages - InfiniBand NICs 50% 50% 100% 100% 31

32 All-to-all splitting ratio If local NIC should be exclusively used If no local NIC isosplit is optimal 5% improvement on All-to-all collectives with double InfiniBand configuration Other collective operations Improve very intensive communication patterns Insignificant impact otherwise 32

33 Conclusion (1/2) Multirail in MPI implementation Blind split of messages in halves over 2 rails is not optimal NUIOA effects should be involved in splitting strategies Adapting amount of data sent by each NICs according to the locality Determine splitting ratio according to NICs/processes affinity using hwloc 33

34 Conclusion (2/2) Efficient multirail point-to-point communications Splitting ratio derived from single-rail bandwiths 15% performance improvement compared to default strategy Communication intensive patterns Exclusive usage of local NIC for processes close to one Half splitting over NICs for processes not close to them 5% performance improvement for all-to-all 34

35 Future works hwloc should soon replace paffinity component in Open MPI Properly used for both the process binding and the detection of processes and NICs affinities Using sampling or auto-tuning Dynamically compute per-core splitting ratio Integrating knowledge about NICs affinity in collective algorithms Define local leader(s) according to processes and NICs affinities 35

36 Questions?

Optimizing MPI Communication Within Large Multicore Nodes with Kernel Assistance

Optimizing MPI Communication Within Large Multicore Nodes with Kernel Assistance Optimizing MPI Communication Within Large Multicore Nodes with Kernel Assistance S. Moreaud, B. Goglin, D. Goodell, R. Namyst University of Bordeaux RUNTIME team, LaBRI INRIA, France Argonne National Laboratory

More information

Why you should care about hardware locality and how.

Why you should care about hardware locality and how. Why you should care about hardware locality and how. Brice Goglin TADaaM team Inria Bordeaux Sud-Ouest Agenda Quick example as an introduction Bind your processes What's the actual problem? Convenient

More information

OPEN MPI WITH RDMA SUPPORT AND CUDA. Rolf vandevaart, NVIDIA

OPEN MPI WITH RDMA SUPPORT AND CUDA. Rolf vandevaart, NVIDIA OPEN MPI WITH RDMA SUPPORT AND CUDA Rolf vandevaart, NVIDIA OVERVIEW What is CUDA-aware History of CUDA-aware support in Open MPI GPU Direct RDMA support Tuning parameters Application example Future work

More information

Optimizing communications on clusters of multicores

Optimizing communications on clusters of multicores Optimizing communications on clusters of multicores Alexandre DENIS with contributions from: Elisabeth Brunet, Brice Goglin, Guillaume Mercier, François Trahay Runtime Project-team INRIA Bordeaux - Sud-Ouest

More information

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces Hye-Churn Jang Hyun-Wook (Jin) Jin Department of Computer Science and Engineering Konkuk University Seoul, Korea {comfact,

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

High Performance MPI on IBM 12x InfiniBand Architecture

High Performance MPI on IBM 12x InfiniBand Architecture High Performance MPI on IBM 12x InfiniBand Architecture Abhinav Vishnu, Brad Benton 1 and Dhabaleswar K. Panda {vishnu, panda} @ cse.ohio-state.edu {brad.benton}@us.ibm.com 1 1 Presentation Road-Map Introduction

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007 Mellanox Technologies Maximize Cluster Performance and Productivity Gilad Shainer, shainer@mellanox.com October, 27 Mellanox Technologies Hardware OEMs Servers And Blades Applications End-Users Enterprise

More information

Operational Robustness of Accelerator Aware MPI

Operational Robustness of Accelerator Aware MPI Operational Robustness of Accelerator Aware MPI Sadaf Alam Swiss National Supercomputing Centre (CSSC) Switzerland 2nd Annual MVAPICH User Group (MUG) Meeting, 2014 Computing Systems @ CSCS http://www.cscs.ch/computers

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

Load Balancing for Parallel Multi-core Machines with Non-Uniform Communication Costs

Load Balancing for Parallel Multi-core Machines with Non-Uniform Communication Costs Load Balancing for Parallel Multi-core Machines with Non-Uniform Communication Costs Laércio Lima Pilla llpilla@inf.ufrgs.br LIG Laboratory INRIA Grenoble University Grenoble, France Institute of Informatics

More information

NAMD Performance Benchmark and Profiling. February 2012

NAMD Performance Benchmark and Profiling. February 2012 NAMD Performance Benchmark and Profiling February 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource -

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Performance of Variant Memory Configurations for Cray XT Systems

Performance of Variant Memory Configurations for Cray XT Systems Performance of Variant Memory Configurations for Cray XT Systems Wayne Joubert, Oak Ridge National Laboratory ABSTRACT: In late 29 NICS will upgrade its 832 socket Cray XT from Barcelona (4 cores/socket)

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Intra-MIC MPI Communication using MVAPICH2: Early Experience

Intra-MIC MPI Communication using MVAPICH2: Early Experience Intra-MIC MPI Communication using MVAPICH: Early Experience Sreeram Potluri, Karen Tomko, Devendar Bureddy, and Dhabaleswar K. Panda Department of Computer Science and Engineering Ohio State University

More information

MM5 Modeling System Performance Research and Profiling. March 2009

MM5 Modeling System Performance Research and Profiling. March 2009 MM5 Modeling System Performance Research and Profiling March 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center

More information

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G 10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G Mohammad J. Rashti and Ahmad Afsahi Queen s University Kingston, ON, Canada 2007 Workshop on Communication Architectures

More information

Unifying UPC and MPI Runtimes: Experience with MVAPICH

Unifying UPC and MPI Runtimes: Experience with MVAPICH Unifying UPC and MPI Runtimes: Experience with MVAPICH Jithin Jose Miao Luo Sayantan Sur D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 207/8 A.J.Proença The Roofline Performance Model (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 207/8 AJProença, Advanced Architectures,

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM

UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM Sweety Sen, Sonali Samanta B.Tech, Information Technology, Dronacharya College of Engineering,

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

PORTING PARALLEL APPLICATIONS TO HETEROGENEOUS SUPERCOMPUTERS: LIBRARIES AND TOOLS CAN MAKE IT TRANSPARENT

PORTING PARALLEL APPLICATIONS TO HETEROGENEOUS SUPERCOMPUTERS: LIBRARIES AND TOOLS CAN MAKE IT TRANSPARENT PORTING PARALLEL APPLICATIONS TO HETEROGENEOUS SUPERCOMPUTERS: LIBRARIES AND TOOLS CAN MAKE IT TRANSPARENT Jean-Yves VET, DDN Storage Patrick CARRIBAULT, CEA Albert COHEN, INRIA CEA, DAM, DIF, F-91297

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

AMBER 11 Performance Benchmark and Profiling. July 2011

AMBER 11 Performance Benchmark and Profiling. July 2011 AMBER 11 Performance Benchmark and Profiling July 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource -

More information

KNEM: a Generic and Scalable Kernel-Assisted Intra-node MPI Communication Framework

KNEM: a Generic and Scalable Kernel-Assisted Intra-node MPI Communication Framework KNEM: a Generic and Scalable Kernel-Assisted Intra-node MPI Communication Framework Brice Goglin, Stéphanie Moreaud To cite this version: Brice Goglin, Stéphanie Moreaud. KNEM: a Generic and Scalable Kernel-Assisted

More information

SNAP Performance Benchmark and Profiling. April 2014

SNAP Performance Benchmark and Profiling. April 2014 SNAP Performance Benchmark and Profiling April 2014 Note The following research was performed under the HPC Advisory Council activities Participating vendors: HP, Mellanox For more information on the supporting

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

Memory Footprint of Locality Information On Many-Core Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25

Memory Footprint of Locality Information On Many-Core Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25 ROME Workshop @ IPDPS Vancouver Memory Footprint of Locality Information On Many- Platforms Brice Goglin Inria Bordeaux Sud-Ouest France 2018/05/25 Locality Matters to HPC Applications Locality Matters

More information

Research on the Implementation of MPI on Multicore Architectures

Research on the Implementation of MPI on Multicore Architectures Research on the Implementation of MPI on Multicore Architectures Pengqi Cheng Department of Computer Science & Technology, Tshinghua University, Beijing, China chengpq@gmail.com Yan Gu Department of Computer

More information

Optimizing LS-DYNA Productivity in Cluster Environments

Optimizing LS-DYNA Productivity in Cluster Environments 10 th International LS-DYNA Users Conference Computing Technology Optimizing LS-DYNA Productivity in Cluster Environments Gilad Shainer and Swati Kher Mellanox Technologies Abstract Increasing demand for

More information

Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet. Swamy N. Kandadai and Xinghong He and

Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet. Swamy N. Kandadai and Xinghong He and Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet Swamy N. Kandadai and Xinghong He swamy@us.ibm.com and xinghong@us.ibm.com ABSTRACT: We compare the performance of several applications

More information

Single-Points of Performance

Single-Points of Performance Single-Points of Performance Mellanox Technologies Inc. 29 Stender Way, Santa Clara, CA 9554 Tel: 48-97-34 Fax: 48-97-343 http://www.mellanox.com High-performance computations are rapidly becoming a critical

More information

Scalable Cluster Computing with NVIDIA GPUs Axel Koehler NVIDIA. NVIDIA Corporation 2012

Scalable Cluster Computing with NVIDIA GPUs Axel Koehler NVIDIA. NVIDIA Corporation 2012 Scalable Cluster Computing with NVIDIA GPUs Axel Koehler NVIDIA Outline Introduction to Multi-GPU Programming Communication for Single Host, Multiple GPUs Communication for Multiple Hosts, Multiple GPUs

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011

The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011 The Impact of Inter-node Latency versus Intra-node Latency on HPC Applications The 23 rd IASTED International Conference on PDCS 2011 HPC Scale Working Group, Dec 2011 Gilad Shainer, Pak Lui, Tong Liu,

More information

Memory Management Strategies for Data Serving with RDMA

Memory Management Strategies for Data Serving with RDMA Memory Management Strategies for Data Serving with RDMA Dennis Dalessandro and Pete Wyckoff (presenting) Ohio Supercomputer Center {dennis,pw}@osc.edu HotI'07 23 August 2007 Motivation Increasing demands

More information

MILC Performance Benchmark and Profiling. April 2013

MILC Performance Benchmark and Profiling. April 2013 MILC Performance Benchmark and Profiling April 2013 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

Performance of Variant Memory Configurations for Cray XT Systems

Performance of Variant Memory Configurations for Cray XT Systems Performance of Variant Memory Configurations for Cray XT Systems presented by Wayne Joubert Motivation Design trends are leading to non-power of 2 core counts for multicore processors, due to layout constraints

More information

Performance of the AMD Opteron LS21 for IBM BladeCenter

Performance of the AMD Opteron LS21 for IBM BladeCenter August 26 Performance Analysis Performance of the AMD Opteron LS21 for IBM BladeCenter Douglas M. Pase and Matthew A. Eckl IBM Systems and Technology Group Page 2 Abstract In this paper we examine the

More information

Topology and affinity aware hierarchical and distributed load-balancing in Charm++

Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Emmanuel Jeannot, Guillaume Mercier, François Tessier Inria - IPB - LaBRI - University of Bordeaux - Argonne National

More information

CP2K Performance Benchmark and Profiling. April 2011

CP2K Performance Benchmark and Profiling. April 2011 CP2K Performance Benchmark and Profiling April 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

Unified Communication X (UCX)

Unified Communication X (UCX) Unified Communication X (UCX) Pavel Shamis / Pasha ARM Research SC 18 UCF Consortium Mission: Collaboration between industry, laboratories, and academia to create production grade communication frameworks

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

Performance Impact of Resource Contention in Multicore Systems

Performance Impact of Resource Contention in Multicore Systems Performance Impact of Resource Contention in Multicore Systems R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas Commodity Multicore Chips in NASA HEC 2004:

More information

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess, Torsten Hoefler Swiss National Supercomputing

More information

GROMACS Performance Benchmark and Profiling. September 2012

GROMACS Performance Benchmark and Profiling. September 2012 GROMACS Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource

More information

IBM Information Technology Guide For ANSYS Fluent Customers

IBM Information Technology Guide For ANSYS Fluent Customers IBM ISV & Developer Relations Manufacturing IBM Information Technology Guide For ANSYS Fluent Customers A collaborative effort between ANSYS and IBM 2 IBM Information Technology Guide For ANSYS Fluent

More information

Red Storm / Cray XT4: A Superior Architecture for Scalability

Red Storm / Cray XT4: A Superior Architecture for Scalability Red Storm / Cray XT4: A Superior Architecture for Scalability Mahesh Rajan, Doug Doerfler, Courtenay Vaughan Sandia National Laboratories, Albuquerque, NM Cray User Group Atlanta, GA; May 4-9, 2009 Sandia

More information

Six-Core AMD Opteron Processor

Six-Core AMD Opteron Processor What s you should know about the Six-Core AMD Opteron Processor (Codenamed Istanbul ) Six-Core AMD Opteron Processor Versatility Six-Core Opteron processors offer an optimal mix of performance, energy

More information

A first look at 100 Gbps LAN technologies, with an emphasis on future DAQ applications.

A first look at 100 Gbps LAN technologies, with an emphasis on future DAQ applications. 21st International Conference on Computing in High Energy and Nuclear Physics (CHEP21) IOP Publishing Journal of Physics: Conference Series 664 (21) 23 doi:1.188/1742-696/664//23 A first look at 1 Gbps

More information

Communication Models for Resource Constrained Hierarchical Ethernet Networks

Communication Models for Resource Constrained Hierarchical Ethernet Networks Communication Models for Resource Constrained Hierarchical Ethernet Networks Speaker: Konstantinos Katrinis # Jun Zhu +, Alexey Lastovetsky *, Shoukat Ali #, Rolf Riesen # + Technical University of Eindhoven,

More information

AcuSolve Performance Benchmark and Profiling. October 2011

AcuSolve Performance Benchmark and Profiling. October 2011 AcuSolve Performance Benchmark and Profiling October 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox, Altair Compute

More information

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning 5th ANNUAL WORKSHOP 209 Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning Hari Subramoni Dhabaleswar K. (DK) Panda The Ohio State University The Ohio State University E-mail:

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters *

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop and Dhabaleswar K. Panda Department of Computer Science and

More information

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Miao Luo, Hao Wang, & D. K. Panda Network- Based Compu2ng Laboratory Department of Computer Science and Engineering The Ohio State

More information

The Optimal CPU and Interconnect for an HPC Cluster

The Optimal CPU and Interconnect for an HPC Cluster 5. LS-DYNA Anwenderforum, Ulm 2006 Cluster / High Performance Computing I The Optimal CPU and Interconnect for an HPC Cluster Andreas Koch Transtec AG, Tübingen, Deutschland F - I - 15 Cluster / High Performance

More information

Performance comparison between a massive SMP machine and clusters

Performance comparison between a massive SMP machine and clusters Performance comparison between a massive SMP machine and clusters Martin Scarcia, Stefano Alberto Russo Sissa/eLab joint Democritos/Sissa Laboratory for e-science Via Beirut 2/4 34151 Trieste, Italy Stefano

More information

HYCOM Performance Benchmark and Profiling

HYCOM Performance Benchmark and Profiling HYCOM Performance Benchmark and Profiling Jan 2011 Acknowledgment: - The DoD High Performance Computing Modernization Program Note The following research was performed under the HPC Advisory Council activities

More information

Placement de processus (MPI) sur architecture multi-cœur NUMA

Placement de processus (MPI) sur architecture multi-cœur NUMA Placement de processus (MPI) sur architecture multi-cœur NUMA Emmanuel Jeannot, Guillaume Mercier LaBRI/INRIA Bordeaux Sud-Ouest/ENSEIRB Runtime Team Lyon, journées groupe de calcul, november 2010 Emmanuel.Jeannot@inria.fr

More information

Rositsa Tinkova Proseminar Technische Informatik SS 2013

Rositsa Tinkova Proseminar Technische Informatik SS 2013 Rositsa Tinkova 17.07.2013 Proseminar Technische Informatik SS 2013 Agenda Motivation HPP HPPNET Performance Analysis Related Work Conclusion 2 Motivation 1. Technological growth 2. Requirements for an

More information

Advantages to Using MVAPICH2 on TACC HPC Clusters

Advantages to Using MVAPICH2 on TACC HPC Clusters Advantages to Using MVAPICH2 on TACC HPC Clusters Jérôme VIENNE viennej@tacc.utexas.edu Texas Advanced Computing Center (TACC) University of Texas at Austin Wednesday 27 th August, 2014 1 / 20 Stampede

More information

Chelsio 10G Ethernet Open MPI OFED iwarp with Arista Switch

Chelsio 10G Ethernet Open MPI OFED iwarp with Arista Switch PERFORMANCE BENCHMARKS Chelsio 10G Ethernet Open MPI OFED iwarp with Arista Switch Chelsio Communications www.chelsio.com sales@chelsio.com +1-408-962-3600 Executive Summary Ethernet provides a reliable

More information

Ravindra Babu Ganapathi

Ravindra Babu Ganapathi 14 th ANNUAL WORKSHOP 2018 INTEL OMNI-PATH ARCHITECTURE AND NVIDIA GPU SUPPORT Ravindra Babu Ganapathi Intel Corporation [ April, 2018 ] Intel MPI Open MPI MVAPICH2 IBM Platform MPI SHMEM Intel MPI Open

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

ABySS Performance Benchmark and Profiling. May 2010

ABySS Performance Benchmark and Profiling. May 2010 ABySS Performance Benchmark and Profiling May 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

OCTOPUS Performance Benchmark and Profiling. June 2015

OCTOPUS Performance Benchmark and Profiling. June 2015 OCTOPUS Performance Benchmark and Profiling June 2015 2 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research Fast packet processing in the cloud Dániel Géhberger Ericsson Research Outline Motivation Service chains Hardware related topics, acceleration Virtualization basics Software performance and acceleration

More information

Why CPU Topology Matters. Andreas Herrmann

Why CPU Topology Matters. Andreas Herrmann Why CPU Topology Matters 2010 Andreas Herrmann 2010-03-13 Contents Defining Topology Topology Examples for x86 CPUs Why does it matter? Topology Information Wanted In-Kernel

More information

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand Abstract...1 Introduction...2 Overview of ConnectX Architecture...2 Performance Results...3 Acknowledgments...7 For

More information

NUMA Support for Charm++

NUMA Support for Charm++ NUMA Support for Charm++ Christiane Pousa Ribeiro (INRIA) Filippo Gioachin (UIUC) Chao Mei (UIUC) Jean-François Méhaut (INRIA) Gengbin Zheng(UIUC) Laxmikant Kalé (UIUC) Outline Introduction Motivation

More information

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System Center for Information ervices and High Performance Computing (ZIH) Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor ystem Parallel Architectures and Compiler Technologies

More information

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand Matthew Koop 1,2 Terry Jones 2 D. K. Panda 1 {koop, panda}@cse.ohio-state.edu trj@llnl.gov 1 Network-Based Computing Lab, The

More information

A Case for High Performance Computing with Virtual Machines

A Case for High Performance Computing with Virtual Machines A Case for High Performance Computing with Virtual Machines Wei Huang*, Jiuxing Liu +, Bulent Abali +, and Dhabaleswar K. Panda* *The Ohio State University +IBM T. J. Waston Research Center Presentation

More information

Performance of RDMA and HPC Applications in Virtual Machines using FDR InfiniBand on VMware vsphere T E C H N I C A L W H I T E P A P E R

Performance of RDMA and HPC Applications in Virtual Machines using FDR InfiniBand on VMware vsphere T E C H N I C A L W H I T E P A P E R Performance of RDMA and HPC Applications in Virtual Machines using FDR InfiniBand on VMware vsphere T E C H N I C A L W H I T E P A P E R Table of Contents Introduction... 2 Cloud Model for HPC... 2 High

More information

Altair RADIOSS Performance Benchmark and Profiling. May 2013

Altair RADIOSS Performance Benchmark and Profiling. May 2013 Altair RADIOSS Performance Benchmark and Profiling May 2013 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Altair, AMD, Dell, Mellanox Compute

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

CPMD Performance Benchmark and Profiling. February 2014

CPMD Performance Benchmark and Profiling. February 2014 CPMD Performance Benchmark and Profiling February 2014 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

Solutions for Scalable HPC

Solutions for Scalable HPC Solutions for Scalable HPC Scot Schultz, Director HPC/Technical Computing HPC Advisory Council Stanford Conference Feb 2014 Leading Supplier of End-to-End Interconnect Solutions Comprehensive End-to-End

More information

InfiniBand Experiences of PC²

InfiniBand Experiences of PC² InfiniBand Experiences of PC² Dr. Jens Simon simon@upb.de Paderborn Center for Parallel Computing (PC²) Universität Paderborn hpcline-infotag, 18. Mai 2004 PC² - Paderborn Center for Parallel Computing

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation Miao Luo, Ping Lai, Sreeram Potluri, Emilio P. Mancini, Hari Subramoni, Krishna Kandalla, Dhabaleswar K. Panda Department of Computer

More information

NUMA-aware OpenMP Programming

NUMA-aware OpenMP Programming NUMA-aware OpenMP Programming Dirk Schmidl IT Center, RWTH Aachen University Member of the HPC Group schmidl@itc.rwth-aachen.de Christian Terboven IT Center, RWTH Aachen University Deputy lead of the HPC

More information

Performance Evaluation of InfiniBand with PCI Express

Performance Evaluation of InfiniBand with PCI Express Performance Evaluation of InfiniBand with PCI Express Jiuxing Liu Server Technology Group IBM T. J. Watson Research Center Yorktown Heights, NY 1598 jl@us.ibm.com Amith Mamidala, Abhinav Vishnu, and Dhabaleswar

More information

XT Node Architecture

XT Node Architecture XT Node Architecture Let s Review: Dual Core v. Quad Core Core Dual Core 2.6Ghz clock frequency SSE SIMD FPU (2flops/cycle = 5.2GF peak) Cache Hierarchy L1 Dcache/Icache: 64k/core L2 D/I cache: 1M/core

More information

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS)

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) DELIVERABLE D5.5 Report on ICARUS visualization cluster installation John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) 02 May 2011 NextMuSE 2 Next generation Multi-mechanics Simulation Environment Cluster

More information

NUMA replicated pagecache for Linux

NUMA replicated pagecache for Linux NUMA replicated pagecache for Linux Nick Piggin SuSE Labs January 27, 2008 0-0 Talk outline I will cover the following areas: Give some NUMA background information Introduce some of Linux s NUMA optimisations

More information

Parallel Performance Studies for a Clustering Algorithm

Parallel Performance Studies for a Clustering Algorithm Parallel Performance Studies for a Clustering Algorithm Robin V. Blasberg and Matthias K. Gobbert Naval Research Laboratory, Washington, D.C. Department of Mathematics and Statistics, University of Maryland,

More information

LS-DYNA Performance Benchmark and Profiling. October 2017

LS-DYNA Performance Benchmark and Profiling. October 2017 LS-DYNA Performance Benchmark and Profiling October 2017 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: LSTC, Huawei, Mellanox Compute resource

More information

HMEM and Lemaitre2: First bricks of the CÉCI s infrastructure

HMEM and Lemaitre2: First bricks of the CÉCI s infrastructure HMEM and Lemaitre2: First bricks of the CÉCI s infrastructure - CÉCI: What we want - Cluster HMEM - Cluster Lemaitre2 - Comparison - What next? - Support and training - Conclusions CÉCI: What we want CÉCI:

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 Leading Supplier of End-to-End Interconnect Solutions Analyze Enabling the Use of Data Store ICs Comprehensive End-to-End InfiniBand and Ethernet Portfolio

More information

I N F M A S T E R S T H E S I S I N C O M P U T E R S C I E N C E

I N F M A S T E R S T H E S I S I N C O M P U T E R S C I E N C E I N F - 3981 M A S T E R S T H E S I S I N C O M P U T E R S C I E N C E Efficient Intra-node Communication for Chip Multiprocessors Torje S. Henriksen October, 2008 FACULTY OF SCIENCE Department of Computer

More information