Size: px
Start display at page:

Download ""

Transcription

1 ICTC / International Advisory Committee Steering Committee Organizing Committee Technical Program Committee Program at a Glance Industrial Session Special Session Tutorials Technical Paper Session Guideline for Session Chairs Information for Author We have witnessed fast development of various information and communication technologies in the first decade of the 21st century. At the same time, there has been a tremendous amount of efforts to fuse these individual technologies to provide non-precedent services to the end users. Also, there have been a lot of trials to apply information and communication technology (ICT) to other industrial sectors such as green convergence, smart screen & appliances, next generation broadcasting and media, mobile convergence networks, and other ICT convergence applications and services, all under the name of ICT convergence. ICTC is a unique global premier event for researchers, industry professionals, and academics, organized by KICS, Korea, with the technical co-sponsorship of IEEE Communications Society and IEICE Communications Society, which aims at interacting with and disseminating information on the latest developments in the emerging industrial convergence centered around the information and communication technologies. More specifically, it will address challenges with realizing ICT convergence over the various industrial sectors, including the infrastructures and applications in wireless & mobile communication, smart devices & consumer appliances, mobile cloud computing, green communication, healthcare and bio-informatics, and intelligent transportation. The conference will include technical sessions, tutorials, and invited industrial sessions. You are invited to submit papers in all areas of infrastructures, services, and applications for ICT convergence. Accepted papers will be published in the proceedings with an assigned ISBN number and submitted to IEEE Xplore, SCOPUS, and EI Compendex. Tour Information Visa Information Extended Submission Deadline(Final): July 31, 2013 Notification of Acceptance: August 27, 2013 Camera Ready Deadline: September 15, 2013 Author Registration Deadline: September 15, 2013 The Final Program is available! Please book your flight as soon as possible! The Technical Paper Session Program is now available! The Special Session (Invited Talks) Program is now available! IEEE Copyright form submission TODAY:266 TOTAL:49733

2 October 16 (Wednesday), 2013 [Session VI-1] Communication Networks and Future Internet Technologies 3 Chair: Yong-Yuk Won (Yonsei University, Korea) Imperfect Channel State Information [Session VI-2] Information & Communication Theory, and Their Applications 3 Chair: Daeyoung Park (Inha Universitym, Korea) [Session VI-3] Smart Media & Broadcasting, and Smart Devices/Appliances 2 Chair: Sang-Chul Kim (Kookmin University, Korea)

3 A Seamless Handover Scheme in LISP Networks Moneeb Gohar School of Computer Science and Engineering, Kyungpook National University, Korea Hyung-Woo Kang School of Computer Science and Engineering, Kyungpook National University, Korea Seok Joo Koh School of Computer Science and Engineering, Kyungpook National University, Korea Abstract The Locator Identifier Separation Protocol (LISP) has been made as an identifier-locator separation scheme. However, the issue of handover for mobile host is still a serious challenge in LISP. The existing LISP-based handover schemes tend to induce large handover delay and packet loss. To overcome such problems, we propose a new handover control scheme, in which the Map Request and Reply messages are exchanged between old access router and new access router after handover. Then, the locator update operation is performed so as to provide the route optimization. From the ns-2 simulation results, it is shown that the proposed scheme can give better performance than the existing LISP-based schemes in terms of handover delay and throughput. Keywords LISP; mobile networks; handover; analysis I. INTRODUCTION To support the IP mobility, a lot of schemes are so far been proposed [1-3]. On the other hand, the Locator Identifier Separation Protocol (LISP) has recently been made in IETF [4], which splits the current IP address space into endpoint identifier (EID) and routing locator (RLOC). For data delivery between two hosts, an Ingress Tunnel Router (ITR) prepends a new LISP header to the data packet of a source host, and an Egress TR (ETR) strips the LISP header prior to final delivery to the destination host. To address the LISP mobility control, the host-based schemes were proposed [5, 6], in which each mobile host implements the TR functionality. In addition, the works in [7] proposed a network-based scheme, in which a gateway of a domain implements the TR functionality. However, we note that all of the existing LISP mobility schemes are based on a centralized approach by using the central Map Server (MS). However, such a centralized scheme tends to induce larger handover delay and packet loss. In this paper, we propose a new handover control scheme for mobile LISP networks. The proposed handover control scheme can be used to effectively provide mobility support in wireless/mobile LISP networks, compared to the existing centralized schemes. The rest of this paper is organized as follows. In Section 2, we review the existing schemes for handover control. In Section 3, we describe the proposed handover control scheme. Section 4 compares the existing and proposed schemes in terms of handover delay and throughput by ns-2 simulations. Section 5 concludes this paper. II. RELATED WORK To support the LISP mobility, the LISP [4] was extended to the LISP-MN architecture in [5], which proposed a host-based control scheme. In this scheme, it is assumed that Mobile Node (MN) will act as ITR and/or ETR in mobile network. In this architecture, a MS is used as an anchor point for MNs in the mobility control operations. That is, MN will maintain the map cache and directly communicate with MS. This centralized scheme may incur significant overhead of control messages at the MS. To deal with this problem, the work in [6] proposed an enhanced scheme for LISP-MN, which is denoted by LISP- MN-GLAB in this paper. In this scheme, the main idea is the same with LISP-MN. However, a Local Map Server (LMS) is employed at the gateway of the mobile network to provide a localized mobility control. The handover operations of LISP- MN-GLAB are shown in Fig.1. Fig. 1. Handover control in LISP-MN-GLAB In the figure, MN moves from ARold to ARnew region during communication with Correspondent Node (CN). MN shall configure a new Local LOC (LLOC) address. Then, Map Register and Map Notify messages are exchanged between MN and LMS for binding update. After that, MN sends a Solicit-Map Request message to CN. After receiving the Solicit-Map Request message, CN sends a Map Request message to MN to get the updated LLOC information. Then, the MN will send Map Reply message to CN with the updated LLOC information. Finally, the data packet is forwarded from CN to MN. On the other hand, the work in [7] proposed the Seamless Mobility Support (SMOS) scheme in the LISP networks, which is denoted by LISP-SMOS. The main feature of LISP- SMOS is that the EID of MN represents a 128-bit identifier such as Host Identity Protocol (HIP) [8], rather than IP address.

4 Each host uses an IP address of AR as its LLOC for networkbased mobility control. The gateway of a domain implements the TR functionality and has the LMS to contain the EID- LLOC mapping information for MNs. The handover operations of LISP-SMOS are shown in Fig. 2, in which MN moves from ARold to ARnew during data transmission. After handover to a new AR, the IP address of ARnew is used as LLOC and MN does not need to configure a new LLOC. After that, the Map Register and Map Notify messages are exchanged between MN and ARnew, and also between ARnew and LMS to update LLOC information with the modified LLOC. After updating the LLOC database, LMS broadcasts a Map Update message to all ARs in the domain. Finally, the data packet is forwarded from LMS to MN. In the proposed scheme, the LMS maintains EID-LLOC Cache (ELC). Each AR shall maintain its Remote LLOC Cache (RLC). The RLC contains the mapping of EID-LLOC for the remote hosts that are in active communication with a certain local host. B. Handover Control Operations To support seamless handover, the proposed scheme assumes the use of link-layer information which is defined in the IEEE [9]. The handover delay is defined as the time interval from the time that MN loses the network connection with the old AR until the time that MN receives the first data packet from the new AR. Fig. 4 shows the handover operation of the proposed scheme. Fig. 2. Handover control in LISP-SMOS III. PROPOSED HANDOVER CONTROL SCHEME A. Network Model The network model for the proposed handover control scheme is shown in Fig. 3. In the figure, each AR implements the TR functionality and maintains a Local EID Cache (LEC) which contains the list of EIDs for all of the attached hosts. The LEC information will be referred to by AR to deliver the data packets to the local hosts. In this paper, we will focus on only the intra-domain mobility control within a local mobile LISP domain, rather than the inter-domain mobility control across different mobile domains. For simplicity, we assume that both CN and MN are located within the same mobile domain (i.e., both are mobile hosts), and also we will assume that MN moves from one AR to another AR within the same domain, as illustrated in Fig. 3. Fig. 4. Handover control in proposed scheme When MN moves to a new mobile network, then it sends a Map Register message to a new AR. On reception of this message, ARnew will update its LEC cache for MN and respond with a Map Notify message to MN. Then, ARnew sends a Map Register message to LMS. On reception of this message, LMS will update its ELC and respond with a Map Notify message to ARnew. After that, ARnew will exchange Map Request and Map Reply messages with ARold for handover control. The Map Reply message shall include the mapping information of EID-LLOC for MN. After exchanging of Map Request and Map Reply messages between the ARold and ARnew, a bidirectional tunneling is established for data forwarding between ARold and ARnew. After establishing the tunnel, ARold forwards the data packets to ARnew, and ARnew will forward the data packets to MN. Now, ARnew of MN sends a Map Request message to AR of CN for route optimization. On reception of the Map Request message, AR of CN will update its RLC table. Then, AR of CN will send the Map Reply message to the ARnew of MN. On reception of the Map Reply message, ARnew updates its RLC table. IV. SIMULATION ANALYSIS In this section, we present the performance analysis of the proposed scheme using ns-2 network simulator [10]. Fig. 3. Network model for proposed scheme A. Simulation Environment Fig. 5 depicts the network topology used in ns-2 simulation.

5 the handover delays of all the candidate schemes are not nearly affected by the MN speed. The proposed scheme gives better performance than the existing schemes. Fig. 5. Test network for ns-2 simulation As shown in the figure, the link between CN and AR has a network bandwidth of 11 Mbps and link delay of 10 ms, and the wired links between the AR and the GW are configured with a bandwidth of 100 Mbps and a transmission delay of 150ms. On the other hand, the wireless link between AR and MN has bandwidth of 11 Mbps and a link delay of 10ms. The link between ARs has bandwidth of 100Mbps and transmission delay of 6ms. During simulation, CN transmits the data packets over the UDP with a packet size of 1,000 bytes at the rate of 100 packets per second. B. Simulation Results Fig. 6 shows the sequence number of data packets that MN has received from CN for the three candidate schemes: LISP- SMOS, LISP-MN-GLAB, and the proposed scheme. From the figure, we can see the handover delays experienced by MN. In LISP-SMOS, the handover occurs in the time interval from 6.9 second to 7.31 second, which corresponds to the handover delay of 314ms. Similarly, in LISP-MN-GLAB, the handover occurs in the time interval from 6.9 second to 7.07 second, which corresponds to the handover delay of 70ms. On the other hand, the handover in the proposed scheme occurs in the time interval from 6.9 second to 7.02 second, which corresponds to handover delay of 20ms. Accordingly, the proposed scheme can reduce the handover delays of the existing schemes approximately by 50ms (compared to LISP- MN-GLAB) and 294ms (compared to LISP-SMOS). Fig. 7. Handover delay for different MN speed Fig. 8 compares the handover delays of candidate schemes for different transmission delay between ARs. We can see in the figure that the transmission delay between AR and AR gives a significant impact on LISP-MN-GLAB and the proposed scheme. This is because both schemes use the link between ARs for the Map Request and data delivery operations after handover to a new AR. On the other hand, LISP-SMOS is not affected by the transmission delay between ARs. This is because in LISP-SMOS the MN performs the Map Register and data delivery operations with the GW of the network. In the meantime, the proposed scheme gives better performance than the existing schemes. Fig. 8. Impact of transmission delay between AR and AR on handover delay Fig. 6. Traces of data packets received by MN during handover Fig. 7 compares the handover delays of the three candidate schemes for different MN speed. In the figure we can see that Fig. 9 compares the handover delay of candidate schemes for different transmission delay between AR and GW. We can see in the figure that transmission delay between AR and GW gives a significant impact on LISP-SMOS. This is because in LISP-SMOS the MN performs the Map Register and data delivery operations with the GW of network. On the other hand, LISP-MN-GLAB and the proposed scheme are not affected by transmission delay between AR and GW. However, the proposed scheme gives the best performance.

6 Fig. 9. Impact of transmission delay between AR and GW on handover delay Fig.10 compares the throughputs of candidate schemes for different transmission delay between AR and AR. We can see in the figure that the transmission delay between AR and AR gives a significant impact on the throughputs of LISP-MN- GLAB and the proposed scheme. On the other hand, LISP- SMOS is not affected by transmission delay between ARs. This is because LISP-SMOS performs the Map Register and data delivery operations with GW. The proposed scheme gives better performance than the existing schemes. Fig. 11. Impact of transmission delay between AR and GW on throughput V. CONCLUSION In this paper, we proposed a new handover control scheme in mobile LISP networks. In the proposed scheme, every AR has the functionality of TR. For handover support, the Map Request and Map Reply messages are exchanged between ARnew and ARold. Then, the locator update operation is performed between AR of CN and AR of MN so as to provide the route optimization. By simulation analysis, the proposed scheme is compared with the existing centralized schemes in terms of the handover delay and throughput. From the ns-2 simulation results, we can see that the proposed scheme gives better performance than the existing schemes in handover delay and throughput. ACKNOWLEDGMENT This research was supported by the Basic Science Research Program of NRF ( ), and by the MSIP support program of NIPA (NIPA-2013-H ). Fig. 10. Impact of transmission delay between AR and AR on throughput Fig. 11 shows the impact of transmission delay between AR and GW on throughput for candidate schemes. We can see that the transmission delay between AR and GW gives a significant impact on LISP-SMOS. This is because LISP- SMOS performs the Map Register and data delivery operations with GW. On the other hand, LISP-MN-GLAB and the proposed scheme are not affected by transmission delay between AR and GW. However, the proposed scheme can give better performance than the existing schemes. It is noted that the proposed scheme outperforms the existing schemes. This is because the proposed scheme performs the map request and data delivery operations between old AR and new AR, not using the GW of the network. REFERENCES [1] S. Gundavelli, et al., Proxy Mobile IPv6, IETF RFC 5213 (2008). [2] J. Kim, et al.,partial Bicasting with Buffering for Proxy Mobile IPv6 Handover in Wireless Networks, Journal of Information Processing Systems, 7 (2011), [3] D. Kim, et al.,analysis of Handover Latency for Mobile IPv6 and msctp.journal of Information Processing Systems, 4 (2008), [4] D. Farinacci, et al.,locator/id Separation Protocol (LISP). IETF Internet Draft, draft ietf-lisp-23(2012). [5] D. Farinacci, et al.,lisp Mobile Node. IETF Internet Draft, draft-meyerlisp-mn-07(2012). [6] M.Menth, et al.,improvements to LISP Mobile Node.Conference of International Teletraffic Congress (ITC), Amsterdam, Netherlands (2010). [7] J.Hou, et al.,support Mobility for Future Internet.Conference of International Telecommunications Network Strategy and Planning Symposium(2010). [8] R. Moskowitz, et al.,: Host Identity Protocol. IETF RFC 520(2008). [9] IEEE Working Group,Local and Metropolitan Area Networks: Media Independent Handover (MIH) Services,IEEE (2006). [10] Network Simulator NS-2. Available from:

Enhanced Mobility Control in Mobile LISP Networks

Enhanced Mobility Control in Mobile LISP Networks Enhanced Mobility Control in Mobile LISP Networks Moneeb Gohar School of Computer Science and Engineering Kyungpook National University Daegu, South Korea moneebgohar@gmail.com Ji In Kim School of Computer

More information

A Network-Based Handover Scheme in HIP-Based Mobile Networks

A Network-Based Handover Scheme in HIP-Based Mobile Networks J Inf Process Syst, Vol.9, No.4, pp.651~659, December 2013 http://dx.doi.org/10.3745/jips.2013.9.4.651 pissn 1976-913X eissn 2092-805X A Network-Based Handover Scheme in HIP-Based Mobile Networks Moneeb

More information

Partial Bicasting with Buffering for Proxy Mobile IPv6 Handover in Wireless Networks

Partial Bicasting with Buffering for Proxy Mobile IPv6 Handover in Wireless Networks Journal of Information Processing Systems, Vol.7, No.4, December 2011 http://dx.doi.org/10.3745/jips.2011.7.4.627 Partial Bicasting with Buffering for Proxy Mobile IPv6 Handover in Wireless Networks Ji-In

More information

Q-PMIP: Query-based Proxy Mobile IPv6

Q-PMIP: Query-based Proxy Mobile IPv6 Q-PMIP: Query-based Proxy Mobile IPv6 Jae Wan Park*, Ji In Kim*, Seok Joo Koh* *School of Computer Science and Engineering, Kyungpook National University, Korea jwparkinf8@gmail.com, jiin16@gmail.com,

More information

DHT-based Identifier-Locator Mapping Management for Mobile Oriented Future Internet

DHT-based Identifier-Locator Mapping Management for Mobile Oriented Future Internet DHT-based Identifier-Locator Mapping Management for Mobile Oriented Future Internet Hyung-Woo Kang Kyungpook National University Daegu, Korea hwkang0621@gmail.com Ji-In Kim Kyungpook National University

More information

Distributed Mobility Management in Proxy Mobile IPv6 using Hash Function

Distributed Mobility Management in Proxy Mobile IPv6 using Hash Function Distributed Mobility Management in Proxy Mobile IPv6 using Hash Function Ji In Kim School of Computer Science and Engineering Kyungpook National University Daegu, Korea jiin16@gmail.com Seok Joo Koh School

More information

Distributed Mobility Control Schemes in the HIP-based Mobile Networks

Distributed Mobility Control Schemes in the HIP-based Mobile Networks ICACT Transactions on Advanced Communications Technology (TACT) Vol. 2, Issue 4, July 2013 269 Distributed Mobility Control Schemes in the HIP-based Mobile Networks Sang-Il Choi, Seok-Joo Koh School of

More information

Seamless Multicast Handover in Fmipv6-Based Networks

Seamless Multicast Handover in Fmipv6-Based Networks Seamless Multicast Handover in Fmipv6-Based Networks Moneeb Gohar, Seok Joo Koh, Tae-Won Um, and Hyun-Woo Lee Abstract This paper proposes a fast tree join scheme to provide seamless multicast handover

More information

Seamless Multicast Handover in PMIPv6-based Wireless Networks

Seamless Multicast Handover in PMIPv6-based Wireless Networks Seamless Multicast Handover in PMIPv6-based Wireless Networks Moneeb Gohar*, Seok Joo Koh*, Tae-Won Um**, Hyun-Woo Lee** *School of Computer Science and Engineering, Kyungpook National University **Electronic

More information

Distributed CoAP Handover Using Distributed Mobility Agents in Internet-of-Things Networks

Distributed CoAP Handover Using Distributed Mobility Agents in Internet-of-Things Networks J. lnf. Commun. Converg. Eng. 15(1): 37-42, Mar. 2017 Regular paper Distributed CoAP Handover Using Distributed Mobility Agents in Internet-of-Things Networks Sang-Il Choi 1 and Seok-Joo Koh 2*, Member,

More information

Distributed Mobility Control for Mobile-Oriented Future Internet Environments

Distributed Mobility Control for Mobile-Oriented Future Internet Environments Distributed Mobility Control for Mobile-Oriented Future Internet Environments Ji-In Kim Kyungpook National University Daegu, KOREA jiin16@gmail.com Heeyoung JUNG ETRI Daejon, KOREA hyjung@etri.re.kr Seok

More information

A Comparative Analysis of Centralized and Distributed Mobility Management in IP-Based Mobile Networks

A Comparative Analysis of Centralized and Distributed Mobility Management in IP-Based Mobile Networks A Comparative Analysis of Centralized and Distributed Mobility Management in IP-Based Mobile Networks The Mobility Management (MM) is one of the crucial requirements for future mobile networks. The current

More information

NEMO-based Mobility Management in LISP Network

NEMO-based Mobility Management in LISP Network 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP) NEMO-based Mobility Management in LISP Network Yizhen Wu, Ke Chen, Kaiping Xue, Dan Ni The Department of EEIS,

More information

Host Identifier and Local Locator for Mobile Oriented Future Internet: Implementation Perspective

Host Identifier and Local Locator for Mobile Oriented Future Internet: Implementation Perspective Host Identifier and Local Locator for Mobile Oriented Future Internet: Implementation Perspective Nak Jung Choi*, Ji In Kim**, Seok Joo Koh* * School of Computer Science and Engineering, Kyungpook National

More information

ID/LOC Separation Network Architecture for Mobility Support in Future Internet

ID/LOC Separation Network Architecture for Mobility Support in Future Internet ID/LOC Separation Network Architecture for Mobility Support in Future Internet Nakjung Choi, Taewan You, Jungsoo Park, Taekyoung Kwon and Yanghee Choi School of Computer Science and Engineering, Seoul

More information

Mobile Oriented Future Internet (MOFI): Architectural Design and Implementations

Mobile Oriented Future Internet (MOFI): Architectural Design and Implementations Mobile Oriented Future Internet (): Architectural Design and Implementations Ji-In Kim, Heeyoung Jung, and Seok-Joo Koh With the recent growth in smartphone services, the mobile environment has become

More information

Inter-Domain Mobility Management Based on the Proxy Mobile IP in Mobile Networks

Inter-Domain Mobility Management Based on the Proxy Mobile IP in Mobile Networks J Inf Process Syst, Vol.12, No.2, pp.196~213, June 2016 http://dx.doi.org/10.3745/jips.03.0037 ISSN 1976-913X (Print) ISSN 2092-805X (Electronic) Inter-Domain Mobility Management Based on the Proxy Mobile

More information

msctp for Vertical Handover Between Heterogeneous Networks

msctp for Vertical Handover Between Heterogeneous Networks msctp for Vertical Handover Between Heterogeneous Networks Seok Joo Koh and Sang Wook Kim Department of Computer Science, Kyungpook National University, Daegoo, Korea {sjkoh, swkim}@cs.knu.ac.kr Abstract.

More information

Network-based Fast Handover for IMS Applications and Services

Network-based Fast Handover for IMS Applications and Services Network-based Fast Handover for IMS Applications and Services Sang Tae Kim 1, Seok Joo Koh 1, Lee Kyoung-Hee 2 1 Department of Computer Science, Kyungpook National University 2 Electronics and Telecommunications

More information

Mobile SCTP for IP Mobility Support in All-IP Networks

Mobile SCTP for IP Mobility Support in All-IP Networks Mobile SCTP for IP Mobility Support in All-IP Networks Seok Joo Koh sjkoh@cs.knu.ac.kr Abstract The Stream Control Transmission Protocol (SCTP) is a new transport protocol that is featured multi-streaming

More information

Network Management. International Journal of

Network Management. International Journal of Volume 27 Number 2 March April 2017 ISSN 1055 7148 International Journal of Network Management Editor-in-Chief: James Won-Ki Hong SPECIAL ISSUE: Softwarization of networks, clouds, and internet of things

More information

Seamless Handover Scheme for Proxy Mobile IPv6

Seamless Handover Scheme for Proxy Mobile IPv6 IEEE International Conference on Wireless & Mobile Computing, Networking & Communication Seamless Handover Scheme for Proxy Mobile IPv6 Ju-Eun Kang 1, Dong-Won Kum 2, Yang Li 2, and You-Ze Cho 2 1 LGDACOM

More information

Research Article An ID/Locator Separation Based Group Mobility Management in Wireless Body Area Network

Research Article An ID/Locator Separation Based Group Mobility Management in Wireless Body Area Network Journal of Sensors Volume 215, Article ID 53725, 12 pages http://dx.doi.org/1.1155/215/53725 Research Article An ID/Locator Separation Based Group Mobility Management in Wireless Body Area Network Moneeb

More information

Reliable Transmission for Remote Device Management (RDM) Protocol in Lighting Control Networks

Reliable Transmission for Remote Device Management (RDM) Protocol in Lighting Control Networks Reliable Transmission for Remote Device Management (RDM) Protocol in Lighting Control Networks Sang-Il Choi 1, Sanghun Lee 1, Seok-Joo Koh 1, Sang-Kyu Lim 2, Insu Kim 2, and Tae-Gyu Kang 2 1 Kyungpook

More information

Use of SCTP for IP Handover Support

Use of SCTP for IP Handover Support Use of SCTP for IP Handover Support Dong Phil Kim, Jong Shik Ha, Sang Tae Kim, Seok Joo Koh Department of Computer Science Kyungpook National University {dpkim, mugal1, sainpaul1978}@cs.knu.ac.kr Abstract

More information

Adaptive Local Route Optimization in Hierarchical Mobile IPv6 Networks

Adaptive Local Route Optimization in Hierarchical Mobile IPv6 Networks Adaptive Local Route Optimization in Hierarchical Mobile IPv6 Networks Sangheon Pack, Taekyoung Kwon, and Yanghee Choi School of Computer Science and Engineering Seoul National University, Seoul, Korea

More information

Reliable transmission of visible light communication data in lighting control networks

Reliable transmission of visible light communication data in lighting control networks IET Networks Research Article Reliable transmission of visible light communication data in lighting control networks ISSN 2047-4954 Received on 12th February 2017 Accepted on 12th March 2017 E-First on

More information

A New Inter-networking Architecture for Mobile Oriented Internet Environment

A New Inter-networking Architecture for Mobile Oriented Internet Environment Future Network & MobileSummit 2012 Conference Proceedings Paul Cunningham and Miriam Cunningham (Eds) IIMC International Information Management Corporation, 2012 ISBN: 978-1-905824-29-8 A New Inter-networking

More information

A Seamless Handover Mechanism for IEEE e Broadband Wireless Access

A Seamless Handover Mechanism for IEEE e Broadband Wireless Access A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea {kka1, tongsok}@kt.co.kr

More information

A Design of Distributed Data Traffic Algorithm based on Hierarchical Wireless/Mobile Networks

A Design of Distributed Data Traffic Algorithm based on Hierarchical Wireless/Mobile Networks , pp.147-151 http://dx.doi.org/10.14257/astl.2015.117.35 A Design of Distributed Data Traffic Algorithm based on Hierarchical Wireless/Mobile Networks Ronnie Caytiles, Seungyong Shin, Minji Yang and Byungjoo

More information

Enhanced Cluster-based CoAP in Internet-of-Things Networks

Enhanced Cluster-based CoAP in Internet-of-Things Networks Enhanced Cluster-based CoAP in Internet-of-Things Networks Dong-Kyu Choi School of Computer Science and Engineering, Kyungpook National University Daegu, Korea supergint@gmail.com Joong-Hwa Jung School

More information

A Global Mobility Scheme for Seamless Multicasting in Proxy Mobile IPv6 Networks

A Global Mobility Scheme for Seamless Multicasting in Proxy Mobile IPv6 Networks ICACT Transactions on on the Advanced Communications Technology (TACT) Vol. Vol. 2, 2, Issue Issue 3, 3, May May 2013 2013 233 A Global Mobility Scheme for Seamless Multicasting in Proxy Mobile IPv6 Networks

More information

CC-SCTP: Chunk Checksum of SCTP for Enhancement of Throughput in Wireless Network Environments

CC-SCTP: Chunk Checksum of SCTP for Enhancement of Throughput in Wireless Network Environments CC-SCTP: Chunk Checksum of SCTP for Enhancement of Throughput in Wireless Network Environments Stream Control Transmission Protocol (SCTP) uses the 32-bit checksum in the common header, by which a corrupted

More information

Integration of LISP and LISP-MN in INET

Integration of LISP and LISP-MN in INET Institute of Computer Science Chair of Communication Networks Prof. Dr.-Ing. P. Tran-Gia, Matthias Hartmann (University of Wuerzburg, Germany) Michael Höfling, Michael Menth (University of Tuebingen, Germany)

More information

An Efficient Correspondent Registration to Reduce Signaling Overheads for Proxy Mobile IPv6

An Efficient Correspondent Registration to Reduce Signaling Overheads for Proxy Mobile IPv6 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 187 An Efficient Correspondent Registration to Reduce Signaling Overheads for Proxy Mobile IPv6 Pyung-Soo

More information

A Scheme of Primary Path Switching for Mobile Terminals using SCTP Handover

A Scheme of Primary Path Switching for Mobile Terminals using SCTP Handover Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 218 A Scheme of Primary Path Switching for Mobile Terminals using

More information

IP Mobility Support with a Multihomed Mobile Router

IP Mobility Support with a Multihomed Mobile Router IP Mobility Support with a Multihomed Mobile Router Hee-Dong Park 1, Dong-Won Kum 2, Yong-Ha Kwon 2, Kang-Won Lee 2, and You-Ze Cho 2 1 Department of Computer Engineering, Pohang College, Pohang, 791-711,

More information

Handover Management for Mobile Nodes in IPv6 Networks

Handover Management for Mobile Nodes in IPv6 Networks TECHNOLOGY ADVANCES FOR 3G AND BEYOND Handover Management for Mobile Nodes in IPv6 Networks Nicolas Montavont and Thomas Noël LSIIT Louis Pasteur University CNRS, Strasbourg ABSTRACT In this article we

More information

Chapter 7 Mobility Management at Transport Layer

Chapter 7 Mobility Management at Transport Layer Chapter 7 Mobility Management at Transport Layer This chapter is dedicated to transport-layer mobility support schemes, which follow an end-to-end philosophy, putting the notion of mobility at the end

More information

Fast Location Opposite Update Scheme for Minimizing Handover Latency over Wireless/Mobile Networks

Fast Location Opposite Update Scheme for Minimizing Handover Latency over Wireless/Mobile Networks Fast Location Opposite Update Scheme for Minimizing Handover Latency over Wireless/Mobile Networks Sunguk Lee Research Institute of Industrial Science and Technology Pohang, Gyeongbuk, 790-330, S.KOREA

More information

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016)

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) ICN IDENTIFIER / LOCATOR Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) 1 A brief review of ID/Locators in IETF It s long, and we ll skim over it Then we discuss the CCNx & NDN

More information

Fast Device Discovery for Remote Device Management in Lighting Control Networks

Fast Device Discovery for Remote Device Management in Lighting Control Networks J Inf Process Syst, Vol.10, No.4, pp.00~00, December 2014 http://dx.doi.org/10.3745/jips.03.0011 ISSN 1976-913X (Print) ISSN 2092-805X (Electronic) Fast Device Discovery for Remote Device Management in

More information

Performance Analysis of Hierarchical Mobile IPv6 in IP-based Cellular Networks

Performance Analysis of Hierarchical Mobile IPv6 in IP-based Cellular Networks Performance Analysis of Hierarchical Mobile IPv6 in IP-based Cellular Networks Sangheon Pack and Yanghee Choi School of Computer Science & Engineering Seoul National University Seoul, Korea Abstract Next-generation

More information

Mobile QoS provisioning by Flow Control Management in Proxy Mobile IPv6

Mobile QoS provisioning by Flow Control Management in Proxy Mobile IPv6 Mobile QoS provisioning by Flow Control Management in Proxy Mobile IPv6 Taihyong Yim, Tri M. Nguyen, Youngjun Kim and Jinwoo Park School of Electrical Engineering Korea University Seoul, Rep. of Korea

More information

Contact: Contact: Seok J. Koh. Tel: KNU. Fax: KOREA.

Contact: Contact: Seok J. Koh. Tel: KNU. Fax: KOREA. Question(s): 1 Meeting, date: Geneva, April 2008 Study Group: 17 Working Party: 1 Intended type of document (R-C-TD-LS): C Source: ETRI Title: Revised Text of X.mmc-2 ISO/IEC WD 24793-2 (MMC-2) Contact:

More information

FAST INTER-AP HANDOFF USING PREDICTIVE AUTHENTICATION SCHEME IN A PUBLIC WIRELESS LAN

FAST INTER-AP HANDOFF USING PREDICTIVE AUTHENTICATION SCHEME IN A PUBLIC WIRELESS LAN FAST INTER-AP HANDOFF USING PREDICTIVE AUTHENTICATION SCHEME IN A PUBLIC WIRELESS LAN SANGHEON PACK AND YANGHEE CHOI School of Computer Science and Engineering, Seoul National University, Seoul, Korea

More information

Intended status: Informational. C. White Logical Elegance, LLC. October 24, 2011

Intended status: Informational. C. White Logical Elegance, LLC. October 24, 2011 Network Working Group Internet-Draft Intended status: Informational Expires: April 26, 2012 D. Farinacci D. Lewis D. Meyer cisco Systems C. White Logical Elegance, LLC. October 24, 2011 LISP Mobile Node

More information

Locator ID Separation Protocol (LISP) Overview

Locator ID Separation Protocol (LISP) Overview Locator ID Separation Protocol (LISP) is a network architecture and protocol that implements the use of two namespaces instead of a single IP address: Endpoint identifiers (EIDs) assigned to end hosts.

More information

Analysis of Proxy Mobile IPv6: A Network-based Mobility Solution

Analysis of Proxy Mobile IPv6: A Network-based Mobility Solution Analysis of Proxy Mobile IPv6: A Network-based Mobility Solution Md. Shohrab Hossain and Mohammed Atiquzzaman School of Computer Science, University of Oklahoma, Norman, OK 7319 Email: {shohrab, atiq}@ou.edu

More information

Optimized Paging Cache Mappings for efficient location management Hyun Jun Lee, Myoung Chul Jung, and Jai Yong Lee

Optimized Paging Cache Mappings for efficient location management Hyun Jun Lee, Myoung Chul Jung, and Jai Yong Lee Optimized Paging Cache Mappings for efficient location management Hyun Jun Lee, Myoung Chul Jung, and Jai Yong Lee Abstract Cellular IP maintains distributed cache for location management and routing purposes.

More information

OPTIMIZING MOBILITY MANAGEMENT IN FUTURE IPv6 MOBILE NETWORKS

OPTIMIZING MOBILITY MANAGEMENT IN FUTURE IPv6 MOBILE NETWORKS OPTIMIZING MOBILITY MANAGEMENT IN FUTURE IPv6 MOBILE NETWORKS Sandro Grech Nokia Networks (Networks Systems Research) Supervisor: Prof. Raimo Kantola 1 SANDRO GRECH - OPTIMIZING MOBILITY MANAGEMENT IN

More information

Proxy Mobile IPv6 (PMIPv6)

Proxy Mobile IPv6 (PMIPv6) Sungkyunkwan University Proxy Mobile IPv6 (PMIPv6) - Grand ICT 연구센터지원사업라이프컴패니온쉽경험을위한지능형인터랙션융합연구 - 무선포함접속방식에독립적인차세대네트워킹기술개발 SDN/NFV 기반의기업유무선통합네트워크를위한액세스기술독립적오픈소스컨트롤러개발 - 자율제어네트워킹및자율관리핵심기술개발생체모방자율제어시스템및자율관리

More information

Seamless Network Mobility Management for Realtime Service

Seamless Network Mobility Management for Realtime Service Seamless Network Mobility Management for Realtime Service Hee-Dong Park, Yong-Ha Kwon, Kang-Won Lee, Sung-Hyup Lee, Young-Soo Choi, Yang Li, and You-Ze Cho School of Electrical Engineering & Computer Science,

More information

Fast-Handover Mechanism between WLAN and WiMax with MIH in PMIPv6

Fast-Handover Mechanism between WLAN and WiMax with MIH in PMIPv6 Telecommun Syst (2014) 55:47 54 DOI 10.1007/s11235-013-9750-x Fast-Handover Mechanism between 802.11 WLAN and 802.16 WiMax with MIH in PMIPv6 Cheol-Joong Kim Seok-Cheon Park Myung-Kyu Yi Published online:

More information

Location Management Agent for SCTP Handover in Mobile Network

Location Management Agent for SCTP Handover in Mobile Network Location Management Agent for SCTP Handover in Mobile Network Yong-Jin Lee Department of Technology Education, Korea National University of Education 250 Taesungtapyon-ro, Heungduk-ku, Cheongju, South

More information

Deploying LISP Host Mobility with an Extended Subnet

Deploying LISP Host Mobility with an Extended Subnet CHAPTER 4 Deploying LISP Host Mobility with an Extended Subnet Figure 4-1 shows the Enterprise datacenter deployment topology where the 10.17.1.0/24 subnet in VLAN 1301 is extended between the West and

More information

Future Routing and Addressing Models

Future Routing and Addressing Models Future Routing and Addressing Models Rob Evans JANET(UK) The JNT Association 2008 Networkshop 36 1 If it ain't broke... BGP is the inter-domain protocol of choice. Not that there's much choice. Carries

More information

An Approach to Efficient and Reliable design in Hierarchical Mobile IPv6

An Approach to Efficient and Reliable design in Hierarchical Mobile IPv6 An Approach to Efficient and Reliable design in Hierarchical Mobile IPv6 Taewan You 1, Seungyun Lee 1, Sangheon Pack 2, and Yanghee Choi 2 1 Protocol Engineering Center, ETRI, 161 Gajoung-dong, Yusong-gu,

More information

Distributed Pub/Sub Model in CoAP-based Internet-of-Things Networks

Distributed Pub/Sub Model in CoAP-based Internet-of-Things Networks Distributed Pub/Sub Model in CoAP-based Internet-of-Things Networks Joong-Hwa Jung School of Computer Science and Engineering, Kyungpook National University Daegu, Korea godopu16@gmail.com Dong-Kyu Choi

More information

Asian Info-communications Council. Document No November th Conference (Manila)

Asian Info-communications Council. Document No November th Conference (Manila) Asian Info-communications Council Working Group 2 (Services & Applications) TITLE: A COMPARATIVE SURVEY OF SEAMLESS HANDOVER MECHANISMS THEME: Services & Applications related SOURCE: Tran Cong Hung, Ph.D

More information

A Hybrid Load Balance Mechanism for Distributed Home Agents in Mobile IPv6

A Hybrid Load Balance Mechanism for Distributed Home Agents in Mobile IPv6 A Hybrid Load Balance Mechanism for Distributed Home Agents in Mobile IPv6 1 Hui Deng 2Xiaolong Huang 3Kai Zhang 3 Zhisheng Niu 1Masahiro Ojima 1R&D Center Hitachi (China) Ltd. Beijing 100004, China 2Dept.

More information

Flow Mobility Management in PMIPv6-based DMM (Distributed Mobility Management) Networks

Flow Mobility Management in PMIPv6-based DMM (Distributed Mobility Management) Networks Flow Mobility Management in PMIPv6-based DMM (Distributed Mobility Management) Networks Kyoungjae Sun and Younghan Kim Soongsil University, Seoul, Republic of Korea {gomjae, younghak@ssu.ac.kr} Abstract

More information

Charles Perkins Nokia Research Center 2 July Mobility Support in IPv6 <draft-ietf-mobileip-ipv6-14.txt> Status of This Memo

Charles Perkins Nokia Research Center 2 July Mobility Support in IPv6 <draft-ietf-mobileip-ipv6-14.txt> Status of This Memo IETF Mobile IP Working Group INTERNET-DRAFT David B. Johnson Rice University Charles Perkins Nokia Research Center 2 July 2000 Mobility Support in IPv6 Status of This

More information

Domain Based Approach for QoS Provisioning in Mobile IP

Domain Based Approach for QoS Provisioning in Mobile IP Domain Based Approach for QoS Provisioning in Mobile IP Ki-Il Kim and Sang-Ha Kim Department of Computer Science 220 Gung-dong,Yuseong-gu, Chungnam National University, Deajeon 305-764, Korea {kikim, shkim}@cclab.cnu.ac.kr

More information

A Fast Handover Protocol for Mobile IPv6 Using Mobility Prediction Mechanism

A Fast Handover Protocol for Mobile IPv6 Using Mobility Prediction Mechanism A Fast Handover Protocol for Mobile IPv6 Using Mobility Prediction Mechanism Dae Sun Kim 1 and Choong Seon Hong 2 1 School of Electronics and Information, Kyung Hee Univerity 1 Seocheon, Giheung, Yongin,

More information

Optimal method to Reducing Link and Signaling Costs in Mobile IP

Optimal method to Reducing Link and Signaling Costs in Mobile IP Optimal method to Reducing Link and Signaling Costs in Mobile IP Sridevi Assistant Professor, Department of Computer Science,Karnatak University,Dharwad Abstract The objective of this research paper is

More information

TTL Propagate Disable and Site-ID Qualification

TTL Propagate Disable and Site-ID Qualification The TTL Propagate Disable feature supports disabling of the TTL (Time-To-Live) propagation for implementing the traceroute tool in a LISP network when RLOC and EID belong to different address-family. The

More information

Evaluating Secure Identification in the Mobile Oriented Future Internet (MOFI) Architecture

Evaluating Secure Identification in the Mobile Oriented Future Internet (MOFI) Architecture Future Network and MobileSummit 2012 Conference Proceedings Paul Cunningham and Miriam Cunningham (Eds) IIMC International Information Management Corporation, 2012 ISBN: 978-1-905824-29-8 Poster Paper

More information

Extended Correspondent Registration Scheme for Reducing Handover Delay in Mobile IPv6

Extended Correspondent Registration Scheme for Reducing Handover Delay in Mobile IPv6 Extended Correspondent Registration Scheme for Reducing Handover Delay in Mobile IPv6 Ved P. Kafle Department of Informatics The Graduate University for Advanced Studies Tokyo, Japan Eiji Kamioka and Shigeki

More information

Virtual Hierarchical Architecture Integrating Mobile IPv6 and MANETs for Internet Connectivity

Virtual Hierarchical Architecture Integrating Mobile IPv6 and MANETs for Internet Connectivity Virtual Hierarchical Architecture Integrating Mobile IPv6 and MANETs for Internet Connectivity Hyemee Park, Tae-Jin Lee, and Hyunseung Choo School of Information and Communication Engineering Sungkyunkwan

More information

Request for Comments: 8112 Category: Informational. I. Kouvelas Arista D. Lewis Cisco Systems May 2017

Request for Comments: 8112 Category: Informational. I. Kouvelas Arista D. Lewis Cisco Systems May 2017 Independent Submission Request for Comments: 8112 Category: Informational ISSN: 2070-1721 D. Farinacci lispers.net A. Jain Juniper Networks I. Kouvelas Arista D. Lewis Cisco Systems May 2017 Locator/ID

More information

New Mobility Management Mechanism for Delivering Packets with Non-Encapsulation

New Mobility Management Mechanism for Delivering Packets with Non-Encapsulation New Mobility Management Mechanism for Delivering Packets with Non-Encapsulation Myoung Ju Yu * and Seong Gon Choi * *College of Electrical & Computer Engineering, Chungbuk National University, 410 Seongbong-ro,

More information

Comparision study of MobileIPv4 and MobileIPv6

Comparision study of MobileIPv4 and MobileIPv6 Comparision study of MobileIPv4 and MobileIPv6 Dr. Sridevi Assistant Professor, Dept. of Computer Science, Karnatak University,Dharwad Abstract: IPv4 is being replaced by IPv6 due to the increased demand

More information

LISP Mobile-Node. draft-meyer-lisp-mn-05.txt. Chris White, Darrel Lewis, Dave Meyer, Dino Farinacci cisco Systems

LISP Mobile-Node. draft-meyer-lisp-mn-05.txt. Chris White, Darrel Lewis, Dave Meyer, Dino Farinacci cisco Systems LISP Mobile-Node draft-meyer-lisp-mn-05.txt Chris White, Darrel Lewis, Dave Meyer, Dino Farinacci cisco Systems EID: dino@cisco.com RLOC: IRTF MobOpts Quebec City July 28 2011 What if... A mobile device

More information

AROSP: Advanced Route Optimization Scheme in PMIPv6 Networks for Seamless Multimedia Service

AROSP: Advanced Route Optimization Scheme in PMIPv6 Networks for Seamless Multimedia Service 26 IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008 AROSP: Advanced Route Optimization Scheme in PMIPv6 Networks for Seamless Multimedia Service Byungjoo

More information

Optimized Mobile User Plane Solutions for 5G

Optimized Mobile User Plane Solutions for 5G Optimized Mobile User Plane Solutions for 5G draft-bogineni-dmm-optimized-mobile-user-plane-01.txt K. Bogineni, A. Akhavain, T. Herbert, D. Farinacci, A. Rodriguez-Natal, G. Carofiglio, J. Augé, L. Muscariello,

More information

Keywords PMIPv6, Local Mobility Anchor, Mobile Access Gateway, AAA.

Keywords PMIPv6, Local Mobility Anchor, Mobile Access Gateway, AAA. Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Optimized Handover

More information

APT: A Practical Transit-Mapping Service Overview and Comparisons

APT: A Practical Transit-Mapping Service Overview and Comparisons APT: A Practical Transit-Mapping Service Overview and Comparisons draft-jen-apt Dan Jen, Michael Meisel, Dan Massey, Lan Wang, Beichuan Zhang, and Lixia Zhang The Big Picture APT is similar to LISP at

More information

New Mobility Management Mechanism for Delivering Packets with Non-Encapsulation

New Mobility Management Mechanism for Delivering Packets with Non-Encapsulation New Mobility Management Mechanism for Delivering Packets with Non-Encapsulation Myoung Ju Yu * and Seong Gon Choi * *College of Electrical & Computer Engineering, Chungbuk National University, 410 Seongbong-ro,

More information

nsctp: A New Transport Layer Tunnelling Approach to Provide Seamless Handover for Moving Network

nsctp: A New Transport Layer Tunnelling Approach to Provide Seamless Handover for Moving Network nsctp: A New Transport Layer Tunnelling Approach to Provide Seamless Handover for Moving Network Peyman Behbahani City University, London, UK p.behbahani@city.ac.uk Veselin Rakocevic City University, London,

More information

IEEE Assisted Network Layer Mobility Support

IEEE Assisted Network Layer Mobility Support IEEE802.21 Assisted Network Layer Mobility Support Qazi Bouland Mussabbir *, Wenbing Yao ** and John Cosmas *** *School Of Engineering and Design, Brunel University Uxbridge, London, UB83PH, UK, qazi.mussabbir@brunel.ac.uk

More information

Locator/ID Separation Protocol (LISP)

Locator/ID Separation Protocol (LISP) Locator/ID Separation Protocol (LISP) Damien Saucez* INRIA Sophia Antipolis FRNOG 18, December 2 th, 2011 * special thanks to Olivier Bonaventure, Luigi Iannone and Dino Farinacci Disclaimer Not a vendor

More information

SDN-Based Network Security Functions for VoIP and VoLTE Services

SDN-Based Network Security Functions for VoIP and VoLTE Services SDN-Based Network Security Functions for VoIP and VoLTE Services Daeyoung Hyun, Jinyoug Kim, Jaehoon (Paul) Jeong, Hyoungshick Kim, Jungsoo Park, and Taejin Ahn Department of Software, Sungkyunkwan University,

More information

Mobile IPv6. Washington University in St. Louis

Mobile IPv6. Washington University in St. Louis Mobile IPv6 Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Study and Performance Analysis of Traffic Class MIPv6 on Linux Base

Study and Performance Analysis of Traffic Class MIPv6 on Linux Base Study and Performance Analysis of Traffic MIPv on Linux Base ANNOP MONSAKUL Faculty of Science and Technology Tapee College Suratthani, THAILAND annop@tapee.ac.th Abstract: Application on mobile device

More information

Fixed Internetworking Protocols and Networks. IP mobility. Rune Hylsberg Jacobsen Aarhus School of Engineering

Fixed Internetworking Protocols and Networks. IP mobility. Rune Hylsberg Jacobsen Aarhus School of Engineering Fixed Internetworking Protocols and Networks IP mobility Rune Hylsberg Jacobsen Aarhus School of Engineering rhj@iha.dk 1 2011 ITIFN Mobile computing Vision Seamless, ubiquitous network access for mobile

More information

Performance Evaluation of the Post-Registration Method, a Low Latency Handoff in MIPv4

Performance Evaluation of the Post-Registration Method, a Low Latency Handoff in MIPv4 Performance Evaluation of the Post-Registration Method, a Low Latency Handoff in MIPv O. Casals, Ll. Cerdà Dept. Computer Architecture, Technical University of Catalonia (UPC), Barcelona Spain {olga, llorenc}@ac.upc.es

More information

NETWORK MOBILITY SUPPORTED PROXY MOBILE IPV6

NETWORK MOBILITY SUPPORTED PROXY MOBILE IPV6 Journal of Computer Science 10 (9): 1792-1797, 2014 ISSN: 1549-3636 2014 doi:10.3844/jcssp.2014.1792.1797 Published Online 10 (9) 2014 (http://www.thescipub.com/jcs.toc) NETWORK MOBILITY SUPPORTED PROXY

More information

An Analysis of the Flow-Based Fast Handover Method for Mobile IPv6 Network. Jani Puttonen, Ari Viinikainen, Miska Sulander and Timo Hämäläinen

An Analysis of the Flow-Based Fast Handover Method for Mobile IPv6 Network. Jani Puttonen, Ari Viinikainen, Miska Sulander and Timo Hämäläinen An Analysis of the Flow-Based Fast Handover Method for Mobile IPv6 Network Jani Puttonen, Ari Viinikainen, Miska Sulander and Timo Hämäläinen Emails: janput@cc.jyu.fi, arjuvi@mit.jyu.fi, sulander@cc.jyu.fi,

More information

An Identifier / Locator Split Architecture for Multi-homing and Mobility Support

An Identifier / Locator Split Architecture for Multi-homing and Mobility Support IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 13 An Identifier / Locator Split Architecture for Multi-homing and Mobility Support Joonsuk KANG and Koji OKAMURA,

More information

Improvements to LISP Mobile Node

Improvements to LISP Mobile Node Improvements to LISP Mobile Node Michael Menth, Dominik Klein, and Matthias Hartmann University of Würzburg, Institute of Computer Science, Germany Abstract The Locator/Identifier Separation Protocol (LISP)

More information

Design and Implementation of NEMO based ZigBee Mobile Router for Healthcare System

Design and Implementation of NEMO based ZigBee Mobile Router for Healthcare System 2010 10th Annual International Symposium on Applications and the Internet Design and Implementation of based for Healthcare System Jin Ho Kim, Rim Haw, Eung Jun Cho, Choong Seon Hong Department of Computer

More information

LISP Generalized SMR

LISP Generalized SMR The feature enables LISP xtr (ITR and ETR) to update map cache when there is a change in database mapping. Note There is no configuration commands for this feature. This feature is turned on automatically.

More information

School of Computer Science

School of Computer Science Cost Analysis of NEMO Protocol Entities Md. Shohrab Hossain, Mohammed Atiquzzaman TR-OU-TNRL-10-105 September 2010 Telecommunication & Network Research Lab School of Computer Science THE UNIVERSITY OF

More information

UbiqStor: Server and Proxy for Remote Storage of Mobile Devices

UbiqStor: Server and Proxy for Remote Storage of Mobile Devices UbiqStor: Server and Proxy for Remote Storage of Mobile Devices MinHwan Ok 1, Daegeun Kim 2, and Myong-soon Park 1,* 1 Dept. of Computer Science and Engineering / Korea University Seoul, 136-701, Korea

More information

Internet Engineering Task Force (IETF) Request for Comments: Cisco Systems January 2013

Internet Engineering Task Force (IETF) Request for Comments: Cisco Systems January 2013 Internet Engineering Task Force (IETF) Request for Comments: 6831 Category: Experimental ISSN: 2070-1721 D. Farinacci D. Meyer J. Zwiebel S. Venaas Cisco Systems January 2013 The Locator/ID Separation

More information

Mobile IP and its trends for changing from IPv4 to IPv6

Mobile IP and its trends for changing from IPv4 to IPv6 Mobile IP and its trends for changing from IPv4 to IPv6 Nguyen Ngoc Chan*, Tran Cong Hung Ph.D. (Posts & Telecommunications Institute of Technology, Viet Nam) E-mail: ngoc_chan@ptithcm.edu.vn, conghung@ptithcm.edu.vn

More information

LISP Router IPv6 Configuration Commands

LISP Router IPv6 Configuration Commands ipv6 alt-vrf, page 2 ipv6 etr, page 4 ipv6 etr accept-map-request-mapping, page 6 ipv6 etr map-cache-ttl, page 8 ipv6 etr map-server, page 10 ipv6 itr, page 13 ipv6 itr map-resolver, page 15 ipv6 map-cache-limit,

More information

A Study on Mobile IPv6 Based Mobility Management Architecture

A Study on Mobile IPv6 Based Mobility Management Architecture UDC 621.396.69:681.32 A Study on Mobile IPv6 Based Mobility Management Architecture VTsuguo Kato VRyuichi Takechi VHideaki Ono (Manuscript received January 19, 2001) Mobile IPv6 is considered to be one

More information

IP Mobility Design Considerations

IP Mobility Design Considerations CHAPTER 4 The Cisco Locator/ID Separation Protocol Technology in extended subnet mode with OTV L2 extension on the Cloud Services Router (CSR1000V) will be utilized in this DRaaS 2.0 System. This provides

More information