CIT 668: System Architecture. Caching

Size: px
Start display at page:

Download "CIT 668: System Architecture. Caching"

Transcription

1 CIT 668: System Architecture Caching

2 Topics 1. Cache Types 2. Web Caching 3. Replacement Algorithms 4. Distributed Caches 5. memcached

3 A cache is a system component that stores data so that future requests for that data can be served faster. The original data may be the result of an expensive computation or access to a slower storage medium. Cache

4 Why Caches Work: Locality Two common patterns of data access: Temporal locality: Recently referenced items are likely to be referenced in the near future. Spatial locality: Items with nearby addresses tend to be referenced close together in time. The hit rate of a cache is the percentage of data accesses that find data in the cache.

5 Cache Types Write-Back Write operations finish when data in cache. Disk writes happen at a later time (asynchronous.) Faster, but if power fails written data disappears. Write-Through Write operations finish when data on disk. Disk writes happen at same time (synchronous.) Slower, but no data will be lost after write complete.

6 Memory Hierarchy

7 Disk Caching Operating System Cache Typically gigabytes in size (uses spare RAM.) Power cutoff causes cached data to be lost. Use sync command to force write to disk. Disk Controller Cache Motherboard controllers typically have no cache. Server RAID controllers often have 128MB-1GB write cache. Some are battery-backed to preserve data if power fails. Disk Cache All SATA/SAS disks have 8-64MB cache. Read prefetching grabs data blocks before requested in anticipation of sequential reads. Write ordering re-orders writes to minimize head movement (only disk firmware knows drive geometry so higher level caches can t.)

8 Database Caching

9 Web Caching: Static and Dynamic Content Static Content The origin of the content sent by the server comes from an existing file lying on a filesystem Files such as html, jpeg Dynamic Content The origin of the content sent by the server is dynamically generated by some other program or script or application programming interface (API) called by the web server. Serving static content is usually much faster (from 2 to 100 times) than serving dynamic content, especially if the latter involves data access from a database.

10 Types of Web Caches Client 1 CC Client 2 CC Client n CC Client-side Cache 1.Limited capacities 2.Security issue CP ES CP Internet ES CP Client-side Proxy 1.Very close to clients 2. Reduce web server load reduce communication latency and network traffic 3. Can only cache static web content 4. Can NOT cache web processing components Edge Server 1.Reduce web server load 2.Reduce communication latency and network traffic if appropriately placed 3. Can not be close to clients RP WS Reverse Proxy CC: Client-side Cache CP: Client-side Proxy 1.Reduce web server load ES: Edge Server 2.Cannot reduce communication RP: Reverse Proxy latency and network traffic WS: Web Server

11 Reverse Proxy Caching

12 Cache Replacement Which data item should be removed from cache when the cache is full? Base decision on metrics, such as hit rate saved bandwidth latency reduction CPU performance.

13 Classic Replacement Algorithms Least Recently Used (LRU) It evicts the cached object which was requested the least recently. Least-Frequently-Used (LFU) It evicts the cached object which is accessed least frequently. Size Algorithm It evicts the largest object.

14 Key-Based Replacement Algorithms LRU-Threshold It first presets a threshold and if the objects are larger than that threshold, the objects are not cached. LRU-Minimum It first checks whether there are any objects larger than or equal to the requested object. If yes, one of them is replaced using LRU. Otherwise, it checks all objects larger than half the size of requested object. Repeat this procedure until there exists enough cache space. Lowest Latency First It minimizes the average latency by replacing the object with the lowest download latency first

15 Cost-Based Replacement Algorithms GreedyDual-Size (GDS) algorithm Cost is time/bandwidth to get new copy of object. When a replacement needs to be made, the object with the lowest cost/size ratio will be replaced. GreedyDual-Size Popularity (GDSP) Incorporates frequency of object access into ratio when deciding which object to replace.

16 Cache Validation Cache should provide same version of object as is currently on the server. HTTP headers tell caches how to validate Expires: do not use object after specified date. Cache-Control: flexible HTTP/1.1 headers max-age: do not use object after specified # seconds have passed since retrieval. private: cached data is specific to authenticated user, so only browser caches should cache object. public: marks authenticated responses as cacheable. Etag: unique identifier generated by server changed every time object on server changes. Cache can be sure object is up to date with a HEAD request with If-None-Match header.

17 Why Use Distributed Caches? Why not use DB server cache? DB server is a single machine with limited RAM. It is faster to save application level data, perhaps with complete HTML formatting. Why not have each web server cache data? Servers will cache some of the same data, wasting RAM on redundant caching.

18 Distributed Caches

19 memcached Free & open source, highperformance, distributed memory object caching system, generic in nature, but intended for use in speeding up dynamic web applications by alleviating database load. Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering. -- memcached.org

20 Client software Memcached components Configured with list of memcached servers. Client-based hashing algorithm Chooses server based on key. Server software Stores key/value pairs in in-memory hash table. Servers don t communicate with each other. Server algorithms Cache replacement algorithms, LRU by default.

21 Hashing A hash table is a data structure that uses a hash function to map identifiers known as keys to their associated values. A hash function is a mathematical function that takes a large input and converts it to a small number that can be used to index into an array. Key feature: it takes the same amount of time to store or fetch an item no matter how large the table is.

22 memcached process

23 Memcached example diagram

24 Original code Using memcached function get_foo(int userid) { result = db_select("select * FROM users WHERE userid =?", userid); return result; } Updated code with memcached function get_foo(int userid) { /* first try the cache */ data = memcached_fetch("userrow:" + userid); if (!data) { /* not found : request database */ data = db_select("select * FROM users WHERE userid =?", userid); /* then store in cache until next get */ memcached_add("userrow:" + userid, data); } return data; }

25 Key Points 1. Locality principles 1. Spatial 2. Temporal 2. Cache types: write through vs. write back 3. Web caches: client, proxy, edge(cdn), reverse proxy 4. Cache replacement algorithms 1. LRU, LFU, size 2. LRU-minimum, LRU-threshold, lowest latency 3. GDS, GDSP 5. Distributed caching advantages 6. Memcached 1. Distributed in-memory key/value store 2. Hashing algorithm to distribute data across servers

26 References 1. John Allspaw, The Art of Capacity Planning, O Reilly, Brad Fitzpatrick, LiveJournal: Behind the Scenes, USENIX, Abhijit Gadkari, Caching in the Distributed Environment, The Architecture Journal, 4. Mark Nottingham, Caching Tutorial, Theo Schlossnagle, Scalable Internet Architectures, Sams Publishing,

Seminar on. By Sai Rahul Reddy P. 2/2/2005 Web Caching 1

Seminar on. By Sai Rahul Reddy P. 2/2/2005 Web Caching 1 Seminar on By Sai Rahul Reddy P 2/2/2005 Web Caching 1 Topics covered 1. Why Caching 2. Advantages of Caching 3. Disadvantages of Caching 4. Cache-Control HTTP Headers 5. Proxy Caching 6. Caching architectures

More information

Locality of Reference

Locality of Reference Locality of Reference 1 In view of the previous discussion of secondary storage, it makes sense to design programs so that data is read from and written to disk in relatively large chunks but there is

More information

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook CS356: Discussion #9 Memory Hierarchy and Caches Marco Paolieri (paolieri@usc.edu) Illustrations from CS:APP3e textbook The Memory Hierarchy So far... We modeled the memory system as an abstract array

More information

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg Computer Architecture and System Software Lecture 09: Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Midterm returned + solutions in class today SSD

More information

CMPSC 311- Introduction to Systems Programming Module: Caching

CMPSC 311- Introduction to Systems Programming Module: Caching CMPSC 311- Introduction to Systems Programming Module: Caching Professor Patrick McDaniel Fall 2016 Reminder: Memory Hierarchy L0: Registers CPU registers hold words retrieved from L1 cache Smaller, faster,

More information

Memory. Objectives. Introduction. 6.2 Types of Memory

Memory. Objectives. Introduction. 6.2 Types of Memory Memory Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured. Master the concepts

More information

Announcement. Computer Architecture (CSC-3501) Lecture 20 (08 April 2008) Chapter 6 Objectives. 6.1 Introduction. 6.

Announcement. Computer Architecture (CSC-3501) Lecture 20 (08 April 2008) Chapter 6 Objectives. 6.1 Introduction. 6. Announcement Computer Architecture (CSC-350) Lecture 0 (08 April 008) Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Chapter 6 Objectives 6. Introduction Master the concepts of hierarchical memory

More information

CMPSC 311- Introduction to Systems Programming Module: Caching

CMPSC 311- Introduction to Systems Programming Module: Caching CMPSC 311- Introduction to Systems Programming Module: Caching Professor Patrick McDaniel Fall 2014 Lecture notes Get caching information form other lecture http://hssl.cs.jhu.edu/~randal/419/lectures/l8.5.caching.pdf

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information

Key Point. What are Cache lines

Key Point. What are Cache lines Caching 1 Key Point What are Cache lines Tags Index offset How do we find data in the cache? How do we tell if it s the right data? What decisions do we need to make in designing a cache? What are possible

More information

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example Locality CS429: Computer Organization and Architecture Dr Bill Young Department of Computer Sciences University of Texas at Austin Principle of Locality: Programs tend to reuse data and instructions near

More information

Memory Hierarchies &

Memory Hierarchies & Memory Hierarchies & Cache Memory CSE 410, Spring 2009 Computer Systems http://www.cs.washington.edu/410 4/26/2009 cse410-13-cache 2006-09 Perkins, DW Johnson and University of Washington 1 Reading and

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 21: Memory Hierarchy Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Ideally, computer memory would be large and fast

More information

Chapter 6 Objectives

Chapter 6 Objectives Chapter 6 Memory Chapter 6 Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

A Comparison of File. D. Roselli, J. R. Lorch, T. E. Anderson Proc USENIX Annual Technical Conference

A Comparison of File. D. Roselli, J. R. Lorch, T. E. Anderson Proc USENIX Annual Technical Conference A Comparison of File System Workloads D. Roselli, J. R. Lorch, T. E. Anderson Proc. 2000 USENIX Annual Technical Conference File System Performance Integral component of overall system performance Optimised

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Caches 1 16: Caches Computer Architecture

More information

Lecture 15: Caches and Optimization Computer Architecture and Systems Programming ( )

Lecture 15: Caches and Optimization Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 15: Caches and Optimization Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Last time Program

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang CHAPTER 6 Memory 6.1 Memory 341 6.2 Types of Memory 341 6.3 The Memory Hierarchy 343 6.3.1 Locality of Reference 346 6.4 Cache Memory 347 6.4.1 Cache Mapping Schemes 349 6.4.2 Replacement Policies 365

More information

Physical characteristics (such as packaging, volatility, and erasability Organization.

Physical characteristics (such as packaging, volatility, and erasability Organization. CS 320 Ch 4 Cache Memory 1. The author list 8 classifications for memory systems; Location Capacity Unit of transfer Access method (there are four:sequential, Direct, Random, and Associative) Performance

More information

Recap: Machine Organization

Recap: Machine Organization ECE232: Hardware Organization and Design Part 14: Hierarchy Chapter 5 (4 th edition), 7 (3 rd edition) http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy,

More information

MEMORY. Objectives. L10 Memory

MEMORY. Objectives. L10 Memory MEMORY Reading: Chapter 6, except cache implementation details (6.4.1-6.4.6) and segmentation (6.5.5) https://en.wikipedia.org/wiki/probability 2 Objectives Understand the concepts and terminology of hierarchical

More information

CHAPTER 6 Memory. CMPS375 Class Notes Page 1/ 16 by Kuo-pao Yang

CHAPTER 6 Memory. CMPS375 Class Notes Page 1/ 16 by Kuo-pao Yang CHAPTER 6 Memory 6.1 Memory 233 6.2 Types of Memory 233 6.3 The Memory Hierarchy 235 6.3.1 Locality of Reference 237 6.4 Cache Memory 237 6.4.1 Cache Mapping Schemes 239 6.4.2 Replacement Policies 247

More information

Introduction to OpenMP. Lecture 10: Caches

Introduction to OpenMP. Lecture 10: Caches Introduction to OpenMP Lecture 10: Caches Overview Why caches are needed How caches work Cache design and performance. The memory speed gap Moore s Law: processors speed doubles every 18 months. True for

More information

A CONTENT-TYPE BASED EVALUATION OF WEB CACHE REPLACEMENT POLICIES

A CONTENT-TYPE BASED EVALUATION OF WEB CACHE REPLACEMENT POLICIES A CONTENT-TYPE BASED EVALUATION OF WEB CACHE REPLACEMENT POLICIES F.J. González-Cañete, E. Casilari, A. Triviño-Cabrera Department of Electronic Technology, University of Málaga, Spain University of Málaga,

More information

Lecture: Large Caches, Virtual Memory. Topics: cache innovations (Sections 2.4, B.4, B.5)

Lecture: Large Caches, Virtual Memory. Topics: cache innovations (Sections 2.4, B.4, B.5) Lecture: Large Caches, Virtual Memory Topics: cache innovations (Sections 2.4, B.4, B.5) 1 More Cache Basics caches are split as instruction and data; L2 and L3 are unified The /L2 hierarchy can be inclusive,

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction Chapter 6 Objectives Chapter 6 Memory Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

CS 61C: Great Ideas in Computer Architecture. The Memory Hierarchy, Fully Associative Caches

CS 61C: Great Ideas in Computer Architecture. The Memory Hierarchy, Fully Associative Caches CS 61C: Great Ideas in Computer Architecture The Memory Hierarchy, Fully Associative Caches Instructor: Alan Christopher 7/09/2014 Summer 2014 -- Lecture #10 1 Review of Last Lecture Floating point (single

More information

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

Why memory hierarchy? Memory hierarchy. Memory hierarchy goals. CS2410: Computer Architecture. L1 cache design. Sangyeun Cho

Why memory hierarchy? Memory hierarchy. Memory hierarchy goals. CS2410: Computer Architecture. L1 cache design. Sangyeun Cho Why memory hierarchy? L1 cache design Sangyeun Cho Computer Science Department Memory hierarchy Memory hierarchy goals Smaller Faster More expensive per byte CPU Regs L1 cache L2 cache SRAM SRAM To provide

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

Lecture: Cache Hierarchies. Topics: cache innovations (Sections B.1-B.3, 2.1)

Lecture: Cache Hierarchies. Topics: cache innovations (Sections B.1-B.3, 2.1) Lecture: Cache Hierarchies Topics: cache innovations (Sections B.1-B.3, 2.1) 1 Types of Cache Misses Compulsory misses: happens the first time a memory word is accessed the misses for an infinite cache

More information

Cray XE6 Performance Workshop

Cray XE6 Performance Workshop Cray XE6 Performance Workshop Mark Bull David Henty EPCC, University of Edinburgh Overview Why caches are needed How caches work Cache design and performance. 2 1 The memory speed gap Moore s Law: processors

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

Memory Technology. Caches 1. Static RAM (SRAM) Dynamic RAM (DRAM) Magnetic disk. Ideal memory. 0.5ns 2.5ns, $2000 $5000 per GB

Memory Technology. Caches 1. Static RAM (SRAM) Dynamic RAM (DRAM) Magnetic disk. Ideal memory. 0.5ns 2.5ns, $2000 $5000 per GB Memory Technology Caches 1 Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM) 50ns 70ns, $20 $75 per GB Magnetic disk 5ms 20ms, $0.20 $2 per GB Ideal memory Average access time similar

More information

Lecture: Large Caches, Virtual Memory. Topics: cache innovations (Sections 2.4, B.4, B.5)

Lecture: Large Caches, Virtual Memory. Topics: cache innovations (Sections 2.4, B.4, B.5) Lecture: Large Caches, Virtual Memory Topics: cache innovations (Sections 2.4, B.4, B.5) 1 Techniques to Reduce Cache Misses Victim caches Better replacement policies pseudo-lru, NRU Prefetching, cache

More information

Shared memory. Caches, Cache coherence and Memory consistency models. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS15/16

Shared memory. Caches, Cache coherence and Memory consistency models. Diego Fabregat-Traver and Prof. Paolo Bientinesi WS15/16 Shared memory Caches, Cache coherence and Memory consistency models Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen fabregat@aices.rwth-aachen.de WS15/16 Shared memory Caches, Cache

More information

Caches. Hiding Memory Access Times

Caches. Hiding Memory Access Times Caches Hiding Memory Access Times PC Instruction Memory 4 M U X Registers Sign Ext M U X Sh L 2 Data Memory M U X C O N T R O L ALU CTL INSTRUCTION FETCH INSTR DECODE REG FETCH EXECUTE/ ADDRESS CALC MEMORY

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Processor-Memory Performance Gap 10000 µproc 55%/year (2X/1.5yr) Performance 1000 100 10 1 1980 1983 1986 1989 Moore s Law Processor-Memory Performance

More information

OS and Hardware Tuning

OS and Hardware Tuning OS and Hardware Tuning Tuning Considerations OS Threads Thread Switching Priorities Virtual Memory DB buffer size File System Disk layout and access Hardware Storage subsystem Configuring the disk array

More information

Reliable Computing I

Reliable Computing I Instructor: Mehdi Tahoori Reliable Computing I Lecture 8: Redundant Disk Arrays INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC) National Research Center of the Helmholtz

More information

OS and HW Tuning Considerations!

OS and HW Tuning Considerations! Administração e Optimização de Bases de Dados 2012/2013 Hardware and OS Tuning Bruno Martins DEI@Técnico e DMIR@INESC-ID OS and HW Tuning Considerations OS " Threads Thread Switching Priorities " Virtual

More information

Lecture 16. Today: Start looking into memory hierarchy Cache$! Yay!

Lecture 16. Today: Start looking into memory hierarchy Cache$! Yay! Lecture 16 Today: Start looking into memory hierarchy Cache$! Yay! Note: There are no slides labeled Lecture 15. Nothing omitted, just that the numbering got out of sequence somewhere along the way. 1

More information

Summary Cache based Co-operative Proxies

Summary Cache based Co-operative Proxies Summary Cache based Co-operative Proxies Project No: 1 Group No: 21 Vijay Gabale (07305004) Sagar Bijwe (07305023) 12 th November, 2007 1 Abstract Summary Cache based proxies cooperate behind a bottleneck

More information

Motivation There are applications for which it is critical to establish certain availability, consistency, performance etc.

Motivation There are applications for which it is critical to establish certain availability, consistency, performance etc. 1 Motivation Motivation There are applications for which it is critical to establish certain availability, consistency, performance etc. Banking Web mail KOS, CourseWare (to some degree) Questions How

More information

Summary of Computer Architecture

Summary of Computer Architecture Summary of Computer Architecture Summary CHAP 1: INTRODUCTION Structure Top Level Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output

More information

The University of Adelaide, School of Computer Science 13 September 2018

The University of Adelaide, School of Computer Science 13 September 2018 Computer Architecture A Quantitative Approach, Sixth Edition Chapter 2 Memory Hierarchy Design 1 Programmers want unlimited amounts of memory with low latency Fast memory technology is more expensive per

More information

Eastern Mediterranean University School of Computing and Technology CACHE MEMORY. Computer memory is organized into a hierarchy.

Eastern Mediterranean University School of Computing and Technology CACHE MEMORY. Computer memory is organized into a hierarchy. Eastern Mediterranean University School of Computing and Technology ITEC255 Computer Organization & Architecture CACHE MEMORY Introduction Computer memory is organized into a hierarchy. At the highest

More information

PowerVault MD3 SSD Cache Overview

PowerVault MD3 SSD Cache Overview PowerVault MD3 SSD Cache Overview A Dell Technical White Paper Dell Storage Engineering October 2015 A Dell Technical White Paper TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS

More information

Page 1. Multilevel Memories (Improving performance using a little cash )

Page 1. Multilevel Memories (Improving performance using a little cash ) Page 1 Multilevel Memories (Improving performance using a little cash ) 1 Page 2 CPU-Memory Bottleneck CPU Memory Performance of high-speed computers is usually limited by memory bandwidth & latency Latency

More information

Memory Hierarchy. Memory Flavors Principle of Locality Program Traces Memory Hierarchies Associativity. (Study Chapter 5)

Memory Hierarchy. Memory Flavors Principle of Locality Program Traces Memory Hierarchies Associativity. (Study Chapter 5) Memory Hierarchy Why are you dressed like that? Halloween was weeks ago! It makes me look faster, don t you think? Memory Flavors Principle of Locality Program Traces Memory Hierarchies Associativity (Study

More information

10/16/2017. Miss Rate: ABC. Classifying Misses: 3C Model (Hill) Reducing Conflict Misses: Victim Buffer. Overlapping Misses: Lockup Free Cache

10/16/2017. Miss Rate: ABC. Classifying Misses: 3C Model (Hill) Reducing Conflict Misses: Victim Buffer. Overlapping Misses: Lockup Free Cache Classifying Misses: 3C Model (Hill) Divide cache misses into three categories Compulsory (cold): never seen this address before Would miss even in infinite cache Capacity: miss caused because cache is

More information

Computer Architecture Memory hierarchies and caches

Computer Architecture Memory hierarchies and caches Computer Architecture Memory hierarchies and caches S Coudert and R Pacalet January 23, 2019 Outline Introduction Localities principles Direct-mapped caches Increasing block size Set-associative caches

More information

Donn Morrison Department of Computer Science. TDT4255 Memory hierarchies

Donn Morrison Department of Computer Science. TDT4255 Memory hierarchies TDT4255 Lecture 10: Memory hierarchies Donn Morrison Department of Computer Science 2 Outline Chapter 5 - Memory hierarchies (5.1-5.5) Temporal and spacial locality Hits and misses Direct-mapped, set associative,

More information

CS161 Design and Architecture of Computer Systems. Cache $$$$$

CS161 Design and Architecture of Computer Systems. Cache $$$$$ CS161 Design and Architecture of Computer Systems Cache $$$$$ Memory Systems! How can we supply the CPU with enough data to keep it busy?! We will focus on memory issues,! which are frequently bottlenecks

More information

Chapter 5. Memory Technology

Chapter 5. Memory Technology Chapter 5 Large and Fast: Exploiting Memory Hierarchy Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM) 50ns 70ns, $20 $75 per GB Magnetic disk 5ms 20ms, $0.20 $2 per

More information

Cache introduction. April 16, Howard Huang 1

Cache introduction. April 16, Howard Huang 1 Cache introduction We ve already seen how to make a fast processor. How can we supply the CPU with enough data to keep it busy? The rest of CS232 focuses on memory and input/output issues, which are frequently

More information

Problem: Processor- Memory Bo<leneck

Problem: Processor- Memory Bo<leneck Storage Hierarchy Instructor: Sanjeev Se(a 1 Problem: Processor- Bo

More information

Registers. Instruction Memory A L U. Data Memory C O N T R O L M U X A D D A D D. Sh L 2 M U X. Sign Ext M U X ALU CTL INSTRUCTION FETCH

Registers. Instruction Memory A L U. Data Memory C O N T R O L M U X A D D A D D. Sh L 2 M U X. Sign Ext M U X ALU CTL INSTRUCTION FETCH PC Instruction Memory 4 M U X Registers Sign Ext M U X Sh L 2 Data Memory M U X C O T R O L ALU CTL ISTRUCTIO FETCH ISTR DECODE REG FETCH EXECUTE/ ADDRESS CALC MEMOR ACCESS WRITE BACK A D D A D D A L U

More information

Lecture 2: Memory Systems

Lecture 2: Memory Systems Lecture 2: Memory Systems Basic components Memory hierarchy Cache memory Virtual Memory Zebo Peng, IDA, LiTH Many Different Technologies Zebo Peng, IDA, LiTH 2 Internal and External Memories CPU Date transfer

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Large and Fast: Exploiting Memory Hierarchy The Basic of Caches Measuring & Improving Cache Performance Virtual Memory A Common

More information

Today: Computer System Overview (Stallings, chapter ) Next: Operating System Overview (Stallings, chapter ,

Today: Computer System Overview (Stallings, chapter ) Next: Operating System Overview (Stallings, chapter , Lecture Topics Today: Computer System Overview (Stallings, chapter 1.1-1.8) Next: Operating System Overview (Stallings, chapter 2.1-2.4, 2.8-2.10) 1 Announcements Syllabus and calendar available Consulting

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Processor-Memory Performance Gap 10000 µproc 55%/year (2X/1.5yr) Performance 1000 100 10 1 1980 1983 1986 1989 Moore s Law Processor-Memory Performance

More information

Squirrel case-study. Decentralized peer-to-peer web cache. Traditional centralized web cache. Based on the Pastry peer-to-peer middleware system

Squirrel case-study. Decentralized peer-to-peer web cache. Traditional centralized web cache. Based on the Pastry peer-to-peer middleware system Decentralized peer-to-peer web cache Based on the Pastry peer-to-peer middleware system Traditional centralized web cache 1 2 Decentralized caching of web pages use the resources of peers (web browsers/clients)

More information

Plot SIZE. How will execution time grow with SIZE? Actual Data. int array[size]; int A = 0;

Plot SIZE. How will execution time grow with SIZE? Actual Data. int array[size]; int A = 0; How will execution time grow with SIZE? int array[size]; int A = ; for (int i = ; i < ; i++) { for (int j = ; j < SIZE ; j++) { A += array[j]; } TIME } Plot SIZE Actual Data 45 4 5 5 Series 5 5 4 6 8 Memory

More information

I/O Buffering and Streaming

I/O Buffering and Streaming I/O Buffering and Streaming I/O Buffering and Caching I/O accesses are reads or writes (e.g., to files) Application access is arbitary (offset, len) Convert accesses to read/write of fixed-size blocks

More information

Caching and Demand-Paged Virtual Memory

Caching and Demand-Paged Virtual Memory Caching and Demand-Paged Virtual Memory Definitions Cache Copy of data that is faster to access than the original Hit: if cache has copy Miss: if cache does not have copy Cache block Unit of cache storage

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

The check bits are in bit numbers 8, 4, 2, and 1.

The check bits are in bit numbers 8, 4, 2, and 1. The University of Western Australia Department of Electrical and Electronic Engineering Computer Architecture 219 (Tutorial 8) 1. [Stallings 2000] Suppose an 8-bit data word is stored in memory is 11000010.

More information

SharePoint 2010 Technical Case Study: Microsoft SharePoint Server 2010 Social Environment

SharePoint 2010 Technical Case Study: Microsoft SharePoint Server 2010 Social Environment SharePoint 2010 Technical Case Study: Microsoft SharePoint Server 2010 Social Environment This document is provided as-is. Information and views expressed in this document, including URL and other Internet

More information

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6.

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Cache Memories From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Today Cache memory organization and operation Performance impact of caches The memory mountain Rearranging

More information

Sarah L. Harris and David Money Harris. Digital Design and Computer Architecture: ARM Edition Chapter 8 <1>

Sarah L. Harris and David Money Harris. Digital Design and Computer Architecture: ARM Edition Chapter 8 <1> Chapter 8 Digital Design and Computer Architecture: ARM Edition Sarah L. Harris and David Money Harris Digital Design and Computer Architecture: ARM Edition 215 Chapter 8 Chapter 8 :: Topics Introduction

More information

VIRTUAL MEMORY READING: CHAPTER 9

VIRTUAL MEMORY READING: CHAPTER 9 VIRTUAL MEMORY READING: CHAPTER 9 9 MEMORY HIERARCHY Core! Processor! Core! Caching! Main! Memory! (DRAM)!! Caching!! Secondary Storage (SSD)!!!! Secondary Storage (Disk)! L cache exclusive to a single

More information

COMPUTER ARCHITECTURES

COMPUTER ARCHITECTURES COMPUTER ARCHITECTURES Cache memory Gábor Horváth BUTE Department of Networked Systems and Services ghorvath@hit.bme.hu Budapest, 2019. 04. 07. 1 SPEED OF MEMORY OPERATIONS The memory is a serious bottleneck

More information

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative Chapter 6 s Topics Memory Hierarchy Locality of Reference SRAM s Direct Mapped Associative Computer System Processor interrupt On-chip cache s s Memory-I/O bus bus Net cache Row cache Disk cache Memory

More information

CIT 668: System Architecture. Scalability

CIT 668: System Architecture. Scalability CIT 668: System Architecture Scalability 1. Scales 2. Types of Growth 3. Vertical Scaling 4. Horizontal Scaling 5. n-tier Architectures 6. Example: Wikipedia 7. Capacity Planning Topics What is Scalability

More information

Computer Science 432/563 Operating Systems The College of Saint Rose Spring Topic Notes: Memory Hierarchy

Computer Science 432/563 Operating Systems The College of Saint Rose Spring Topic Notes: Memory Hierarchy Computer Science 432/563 Operating Systems The College of Saint Rose Spring 2016 Topic Notes: Memory Hierarchy We will revisit a topic now that cuts across systems classes: memory hierarchies. We often

More information

A Cache Hierarchy in a Computer System

A Cache Hierarchy in a Computer System A Cache Hierarchy in a Computer System Ideally one would desire an indefinitely large memory capacity such that any particular... word would be immediately available... We are... forced to recognize the

More information

This Unit: Main Memory. Building a Memory System. First Memory System Design. An Example Memory System

This Unit: Main Memory. Building a Memory System. First Memory System Design. An Example Memory System This Unit: Main Memory Building a Memory System Application OS Compiler Firmware CPU I/O Memory Digital Circuits Gates & Transistors Memory hierarchy review DRAM technology A few more transistors Organization:

More information

CS 3510 Comp&Net Arch

CS 3510 Comp&Net Arch CS 3510 Comp&Net Arch Cache P1 Dr. Ken Hoganson 2010 Von Neuman Architecture Instructions and Data Op Sys CPU Main Mem Secondary Store Disk I/O Dev Bus The Need for Cache Memory performance has not kept

More information

Chapter Seven Morgan Kaufmann Publishers

Chapter Seven Morgan Kaufmann Publishers Chapter Seven Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored as a charge on capacitor (must be

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization The Memory Hierarchy Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture

More information

Memory Hierarchy. Goal: Fast, unlimited storage at a reasonable cost per bit.

Memory Hierarchy. Goal: Fast, unlimited storage at a reasonable cost per bit. Memory Hierarchy Goal: Fast, unlimited storage at a reasonable cost per bit. Recall the von Neumann bottleneck - single, relatively slow path between the CPU and main memory. Fast: When you need something

More information

Page replacement algorithms OS

Page replacement algorithms OS Page replacement algorithms OS 2007-08 1 When a page fault occurs OS has to choose a page to evict from memory If the page has been modified, the OS has to schedule a disk write of the page The page just

More information

Multimedia Streaming. Mike Zink

Multimedia Streaming. Mike Zink Multimedia Streaming Mike Zink Technical Challenges Servers (and proxy caches) storage continuous media streams, e.g.: 4000 movies * 90 minutes * 10 Mbps (DVD) = 27.0 TB 15 Mbps = 40.5 TB 36 Mbps (BluRay)=

More information

Portland State University ECE 587/687. Caches and Memory-Level Parallelism

Portland State University ECE 587/687. Caches and Memory-Level Parallelism Portland State University ECE 587/687 Caches and Memory-Level Parallelism Revisiting Processor Performance Program Execution Time = (CPU clock cycles + Memory stall cycles) x clock cycle time For each

More information

Caching Prof. James L. Frankel Harvard University. Version of 5:16 PM 5-Apr-2016 Copyright 2016 James L. Frankel. All rights reserved.

Caching Prof. James L. Frankel Harvard University. Version of 5:16 PM 5-Apr-2016 Copyright 2016 James L. Frankel. All rights reserved. Caching Prof. James L. Frankel Harvard University Version of 5:16 PM 5-Apr-2016 Copyright 2016 James L. Frankel. All rights reserved. Memory Hierarchy Extremely limited number of registers in CPU Lots

More information

Caching Basics. Memory Hierarchies

Caching Basics. Memory Hierarchies Caching Basics CS448 1 Memory Hierarchies Takes advantage of locality of reference principle Most programs do not access all code and data uniformly, but repeat for certain data choices spatial nearby

More information

Memory Hierarchy, Fully Associative Caches. Instructor: Nick Riasanovsky

Memory Hierarchy, Fully Associative Caches. Instructor: Nick Riasanovsky Memory Hierarchy, Fully Associative Caches Instructor: Nick Riasanovsky Review Hazards reduce effectiveness of pipelining Cause stalls/bubbles Structural Hazards Conflict in use of datapath component Data

More information

Memory Hierarchy: Caches, Virtual Memory

Memory Hierarchy: Caches, Virtual Memory Memory Hierarchy: Caches, Virtual Memory Readings: 5.1-5.4, 5.8 Big memories are slow Computer Fast memories are small Processor Memory Devices Control Input Datapath Output Need to get fast, big memories

More information

+ Random-Access Memory (RAM)

+ Random-Access Memory (RAM) + Memory Subsystem + Random-Access Memory (RAM) Key features RAM is traditionally packaged as a chip. Basic storage unit is normally a cell (one bit per cell). Multiple RAM chips form a memory. RAM comes

More information

Advanced Computer Architecture

Advanced Computer Architecture ECE 563 Advanced Computer Architecture Fall 2009 Lecture 3: Memory Hierarchy Review: Caches 563 L03.1 Fall 2010 Since 1980, CPU has outpaced DRAM... Four-issue 2GHz superscalar accessing 100ns DRAM could

More information

CISC 360. The Memory Hierarchy Nov 13, 2008

CISC 360. The Memory Hierarchy Nov 13, 2008 CISC 360 The Memory Hierarchy Nov 13, 2008 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class12.ppt Random-Access Memory (RAM) Key features RAM is packaged

More information

Page Replacement. (and other virtual memory policies) Kevin Webb Swarthmore College March 27, 2018

Page Replacement. (and other virtual memory policies) Kevin Webb Swarthmore College March 27, 2018 Page Replacement (and other virtual memory policies) Kevin Webb Swarthmore College March 27, 2018 Today s Goals Making virtual memory virtual : incorporating disk backing. Explore page replacement policies

More information

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Memory Hierarchy Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Time (ns) The CPU-Memory Gap The gap widens between DRAM, disk, and CPU speeds

More information

Module Outline. CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies.

Module Outline. CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies. M6 Memory Hierarchy Module Outline CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies. Events on a Cache Miss Events on a Cache Miss Stall the pipeline.

More information

Trace Driven Simulation of GDSF# and Existing Caching Algorithms for Web Proxy Servers

Trace Driven Simulation of GDSF# and Existing Caching Algorithms for Web Proxy Servers Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 378 Trace Driven Simulation of GDSF# and Existing Caching Algorithms for

More information

SharePoint 2010 Technical Case Study: Microsoft SharePoint Server 2010 Enterprise Intranet Collaboration Environment

SharePoint 2010 Technical Case Study: Microsoft SharePoint Server 2010 Enterprise Intranet Collaboration Environment SharePoint 2010 Technical Case Study: Microsoft SharePoint Server 2010 Enterprise Intranet Collaboration Environment This document is provided as-is. Information and views expressed in this document, including

More information